A Cache Sharing Interface for Data Access in Mobile Ad Hoc Networks

Chih-Feng Chao¹, Ying-Hong Wang¹, Jenhui Chen², and Yi-Chein Lin¹
¹Dept. of Computer Science and Information Engineering, Tamkang University, Taiwan
²Dept. of Computer Science and Information Engineering, Chang Gung University, Taiwan
cfchao@giga.net.tw; inhon@mail.tku.edu.tw; jhchen@mail.cgu.edu.tw; 693191305@s93.tku.edu.tw

Abstract

Nowadays mobile communication is widespread in the world and has become a necessity in our daily lives. Unlike infrastructured wireless networks, mobile ad hoc networks (MANETS) have no fixed infrastructure such as base stations or access points, and the framework is dynamic owing to frequent changes in both topology and mobile nodes. Most researches, however, focus on the discussion of the shortest path or the highest bandwidth; issues related to the data transmission in MANETS are rarely considered. To deal with the intrinsic properties of MANETs, this paper proposes a cache sharing interface for data access. Under the operation of the proposed mechanism, routes and time span to access data are shortened and the data reusable rate is enhanced to save the use of bandwidth and power consumption of mobile nodes.

Index Terms—Ad hoc networks, cache, mobile computing, dynamic caching, wireless networks.

1. Introduction

The improvement and integration of miscellaneous electronic products and communication technology promote the usage of portable devices. People could travel around for work and conferences by using wired or wireless communication to receive information and data immediately.

A mobile ad hoc network (MANET) is a self-organizing and adaptive wireless network formed by the dynamic gathering of mobile nodes (MNs), and the topology of a MANET frequently changes due to the mobility of MNs. The dynamic properties of MANETs are therefore challenging to routing protocol design [1, 2, 3]. To cope with the intrinsic properties of MANETs, we proposed a backup node mechanism, Dynamic Backup Routes Routing Protocol (DBR²P), for quick reconnection during link failures in [4, 5]. DBR²P is proposed to focus attention on the intrinsic properties of MANETs, and the results of the simulation experiment show that DBR²P has good performance.

Researches on routing protocols in MANETs have always been an important topic for discussion. Most researches, however, focus on the discovery of the shortest path or the highest bandwidth; issues related to the data transmission in MANETs are rarely considered [6, 7, 8]. Therefore, a suitable mechanism to cooperate with routing protocols is indispensable in order to solve the problems of data transmission and to enhance the entire efficiency in MANETs [9, 10].

A cache sharing interface integrated with dynamic backup routes routing protocol for MANETs is presented in this paper. With the aid of the proposed mechanism and DBR²P, the repetition of data and data path occurring in a MANET could be cached in some special MNs. Routes and time span to access data are therefore shortened, and the data reusable rate is enhanced to reduce the use of bandwidth and the power consumption of battery.

In the sections that follow the concept of DBR²P is briefly introduced. Section 3 describes the characteristics of temporal locality and spatial locality in MANETs. Section 4 illustrates the operations of the cache sharing interface integrated with DBR²P. Finally, Section 5 concludes with suggestions of current challenges and potential directions for future research.

2. Dynamic Backup Routes Routing Protocol

DBR²P [4, 5] is an on-demand routing protocol [1] in which intermediate nodes receive and transmit the same request packets obtained from the source node to gather more information to establish backup nodes. DBR²P includes three phases (route discovery phase, backup node setup phase, and route maintenance phase)
requiring two kinds of cache (RD-request_Cache, Backup_Route_Cache).

2.1 Route Discovery Phase

When source node S requires a route to destination node D, S enters the route discovery phase. In the route discovery phase, source node S broadcasts route discovery request packets (RD-request) to nearby nodes. The RD-request includes a sequence number field to distinguish the route discovery process from the others, and a route content field to record all the addresses of nodes along the path from S to D. Initially, the address of the source node is inserted in the route content field of RD-request.

When a node receives a RD-request from its neighbor, it will check whether the RD-request is received for the first time according to the sequence number of the RD-request in the records of its RD-request_Cache. There is no <$#RD, n>$ entity in its RD-request_Cache if this node receives the RD-request from a node for the first time. Then, the entity, <$#RD, I>$, is stored in the RD-request_Cache of the node, where <$#RD$ is the sequence number of the RD-request, and the value, I, means this node receives the RD-request for the first time. Also, the timer, T_c, is started. Then, this node inserts its address into the route content field of the RD-request, and broadcasts this modified RD-request to its neighboring nodes.

If a node receives the RD-request with duplicate sequence number from its neighboring nodes, then there is an entity, <$#RD, n>$, in its RD-request_Cache, where the <$#RD$ is equal to the sequence number of this RD-request. This node continues to check whether the route content field of RD-request includes its address; if so, the node discards this RD-request to avoid the infinite loop.

The parameter n in the <$#RD, n>$ entity is used to prevent too many upstream or downstream paths crossing this node as this node is an intermediate node of the route or backup routes. If there are too many transmissible paths of the route and backup routes crossing a node, a lot of backup routes may be invalid when this node disconnects or moves out. In addition, T_c begins when a node first receives RD-request from an upstream node, and an over-long route can be avoided if a node only receives duplicate RD-request within the period T_c. Moreover, the control message overhead, such as RD-request packets, can be bounded.

After the destination node D receives the first-arriving RD-request, D sends a route discovery reply packet (RD-reply), whose route content field is the route of the RD-request, back to the source node S, and waits for more RD-requests for a short period, T_c, before entering the Backup Node Setup Phase.

2.2 Backup Node Setup Phase

After the route discovery phase, the destination node D may gather many routes within a period, T_c. The nodes (excluding S and D) among those routes from S to D are intermediate nodes. Backup nodes are nodes with at least two different paths to their neighboring nodes in those routes from S to D. Thus, S is itself a possible backup node. The nodes in those routes that D has received are compared pairwise (from beginning to end) to find whether any two paths have a section in common. A final node (excluding D) in such a section is a backup node. A subset of backup nodes can be gathered from any two routes. Then, all the subsets of backup nodes are joined and the backup route setup packet (BR-setup) that includes each backup node and the partial paths from the backup node to D is generated. Then D uses the BR-setup to set up the Backup_Route_Cache of those backup nodes separately. The BR-setup contains the sequence number of this routing process, the address of a backup node, and the path from the backup node to the destination node. Backup nodes store partial paths from the backup node to the destination node in their Backup_Route_Cache after they receive the BR-setup.

2.3 Route Maintenance Phase

In DBRP, the mechanism of passive acknowledgement [7] is used to detect a link failure. When a link failure is detected, a node in the route from the source to the destination can no longer transmit the data packet. This node will pass a “Link_Fail_Message packet (LF-message)” to an upstream node until the message reaches a backup node. After the backup node receives the LF-message, the backup route of Backup_Route_Cache is fetched to replace the route behind the backup node, and the source node S is informed to change the route. Then, S sends packets along the new route. A backup route that has been fetched by the Backup_Route_Cache is labeled as a non-backup route. If Backup_Route_Cache includes no other backup route, then the node loses the qualification to be a backup node. The source node will re-enter the Route Discovery Phase to establish a new route to the destination node when no available backup node exists.

Sometimes the backup routes may be incorrect if the destination node receives inconsistent routes due to the loss of RD-request in the route discovery phase or the movement of the nodes along the backup routes in the route maintenance phase. If the current route is still alive, the situation that backup routes are incorrect will not influence the communication of the current route. If the current route is broken and replaced by a backup route, DBRP can still operate even though the backup
route is broken again. That is because the link failure will be detected and a LF-message will be sent to find another backup node.

3. Temporal Locality and Spatial Locality in MANETs

- Spatial Locality characteristic: An accessed block exhibits spatial locality if blocks near it are likely to be accessed in the near future [11, 12].
- Temporal Locality characteristic: An accessed block exhibits temporal locality if it is likely to be accessed again in the near future [11, 12].

Generally speaking, the applications of MANETs are mostly in temporary occasions, such as battlefields, rescue scenes, assemblies, etc. That is to say the MNs in a certain MANET often gather temporarily for certain purpose. Therefore, comparing to other wired or wireless networks, the MNs in a MANET have more distinct temporal locality and spatial locality characteristics in data access.

Taken Figure 1 as an example, MNs in Group-1 (node A,B,C,D,E,F) and Group-2 (node G,H,I,J,K,L,M) belong to the same MANET in an assembly. Assume the MNs in Group-1 and Group-2 belong to different communities, the MNs in Group-1 and Group-2 may have respective temporal locality and spatial locality characteristics in data access.

![Figure 1. Temporal locality and spatial locality in a MANET.](image)

3.1 Data Caching Scheme

Due to the aforementioned distinct temporal locality and spatial locality characteristics of data access in MANETs, data caching scheme could be adopted to help reduce the use of bandwidth and the power consumption of battery.

As shown in Figure 2, after Node D requests a data item (marked as d_k) from Node S, Node S will send d_k to Node D through the route i (marked as $r_i: S \rightarrow B \rightarrow F \rightarrow J \rightarrow N \rightarrow D$) set up by DBRP. During the process of data transfer in data caching scheme, all nodes on the data transfer routes cache d_k. Thus, when other nodes, those not on the r_i, such as E, K, etc., want to request d_k, they do not need to rebuild a route connecting Node S to transfer d_k. They (Node E or K) could connect to the nearest neighbor node on r_i to request d_k. For example, node E could connect to node F or node K could connect to node J to request d_k.

![Figure 2. An example of data transmission path in a MANET.](image)

Although using data caching scheme could shorten routes and time span to access data and raise data reusable rate to reduce the use of bandwidth, it will also cause the mass production of d_k clones in the MANET and result in additional waste of resources.

3.2 Data-Path Caching Scheme

Data-path caching scheme is also a kind of effective scheme to reduce data request delays without causing a large number of data clones.

As shown in Figure 2, after Node D requests a data item (d_k) from Node S, Node S will send d_k to Node D through the route i ($r_i: S \rightarrow B \rightarrow F \rightarrow J \rightarrow N \rightarrow D$) set up by DBRP. The data-path caching scheme enables all nodes to cache data-path of d_k (meanwhile data-path cache buffer will record that node S and D have d_k) during the process of data transfer. When other nodes (such as B, E, or K), except for node S and node D, also want to request d_k, they could detect which node has d_k by inquiring the cache data-path buffer of the nodes on the path. Then a route connecting node S or node D is set up to request d_k.

Through the use of data-path caching scheme, bandwidth and power are reduced while caching the data-path for each data because nodes can obtain data by using few hops. However, it will increase routing overhead to map data and cache nodes.
4. The Cache Sharing Interface Integrated with DBR²P

A cache sharing interface integrated with DBR²P for MANETs is presented in this section.

4.1 Components

Each MN, as illustrated in Figure 3, is installed with a Cache Sharing Interface, which includes four major components — Cache Manager (CM), Handoff Manager (HM), Data Cache Buffer (DCB), and Data-Path Cache Buffer (DPCB).

![Mobile Node Diagram](image)

Figure 3. A mobile node is installed with a caching sharing interface.

CM is mainly responsible for putting the data that pass through the MN into DCB, or putting the data path into DPCB. Data path indicates which MNs contain the data. If the space of DCB or DPCB overflows, CM will adopt the Least Recently Used algorithm (LRU algorithm) to replace data or data path. The major job of HM is to transfer data seamlessly to a new backup node. When a link failure is detected, DBR²P will initiate a backup route. Meanwhile, the MN, which is also an on-the-route backup node, has to take the action of handoff, and the data cached in the MN’s DCB will be transferred seamlessly to the new backup node.

4.2 Compound Caching Scheme

As discussed in Section 3, simply using data caching scheme or data-path caching scheme is definitely insufficient. Therefore, in our proposed mechanism, a compound caching scheme is introduced to solve the defects of aforementioned data caching and data-path caching schemes.

Assume a route path set up by DBR²P as shown in Figure 4. The major procedure of compound caching scheme is as follows:

1) Set the backup node which is nearest to destination node (node D) as the cache node of node D (assume the cache node is node C).
2) The cache node (node C) will cache the data item (d_i) transmitted from node S to node D.
3) Set the $BOUNDARY_{SC}$ at 1/2 hops on the routing path between source node (node S) and cache node (node C). Nodes closer to node S cache data-path of d_i (meanwhile the DPCB of nodes H, I, J, K and L will record that node S has d_i) while nodes closer to node C cache data-path of d_i (meanwhile the DPCB of nodes M, N will record that node C has d_i).
4) Set the $BOUNDARY_{CD}$ at 1/2 hops on the routing path between cache node (C) and destination node (node D). Nodes closer to C cache data-path of d_i (meanwhile the DPCB of node L will record that node C has d_i) while nodes closer to node D cache data-path d_i (meanwhile the DPCB of nodes M, N will record node D has d_i).
5) If 1/2 hops(S to C) or 1/2 hops(C to D) is odd, the procedure will set boundaries closer to cache node (node C), as illustrated in Figure 4. $BOUNDARY_{CD}$ will be set between node L and node M; hence, the effective cache range of three nodes — node S, node C, and node D — will be more equal.

![Cache Boundaries](image)

Figure 4. The cache boundaries when using compound caching scheme.

4.3 Handoff Processes

Refer to Figure 5(a), after node D requests a data item (d_i) from node S, node S will transmit d_i to node D following the route ($S \rightarrow B \rightarrow F \rightarrow J \rightarrow M \rightarrow D$) set up by DBR²P. During the operation of compound caching scheme, the cache node of node D will be node J. Refer to Figure 5(b), if the link between J -> M fails, d_i will be transmitted through the route ($S \rightarrow B \rightarrow$...
$F \rightarrow J \rightarrow N \rightarrow D$) under the workings of DBR2.P. If the link between $J \rightarrow M$ also fails, assume that d_i will be transmitted through another route ($S \rightarrow B \rightarrow F \rightarrow I \rightarrow M \rightarrow D$). In the meantime, the incomplete d_i cached in DCB of node J will be transferred seamlessly to a new take-over cache node (backup node F).

![Diagram](image)

Figure 5. The handoff processes after link failures occur.

In the above-mentioned situations, in order to avoid the waste of bandwidth, HM will only transmit the incomplete d_i to the new cache node (backup node F) instead of transferring the entire data cached in DCB. Besides, to maintain cache consistency, while cache node starts the process of handoff, HM needs to inform the nodes, in which DPCB records node J has d_i, to modify their records. The original record that node J has d_i will therefore be updated to that the new take over cache node (backup node F) has d_i, and the original records related to node J in DPCB will be deleted entirely.

5. Conclusion and Future Work

In this paper, we propose a cache sharing interface integrated with dynamic backup route routing protocol for data access in MANETs. This mechanism could help to enhance the data reusable rate and therefore the consumption of bandwidth and battery power of MNs is reduced.

The detailed operation procedure of the proposed mechanism is in the process of design and a simulation environment will be set up to test the proposed mechanism. With the aid of pertinent simulation results, it is believed that in the near future the mechanism could offer good performance in environments using different routing protocols. The ultimate goal is to fulfill the interchangeability of the dynamic cache sharing mechanism.

6. References

