
ISBN 0-321-33025-0

Chapter 4
Lexical and Syntax Analysis

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
E-mail: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

Copyright © 2006 Jenhui Chen. All rights reserved. 1-2

Chapter 4 Topics

• Introduction
• Lexical Analysis
• The Parsing Problem
• Recursive-Descent Parsing
• Bottom-Up Parsing

Copyright © 2006 Jenhui Chen. All rights reserved. 1-3

Introduction

• Language implementation systems must
analyze source code, regardless of the
specific implementation approach

• Nearly all syntax analysis is based on a
formal description of the syntax of the
source language (BNF)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-4

Syntax Analysis

• The syntax analysis portion of a language
processor nearly always consists of two
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a
regular grammar)

– A high-level part called a syntax analyzer, or
parser (mathematically, a push-down
automaton based on a context-free grammar,
or BNF)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-5

Using BNF to Describe Syntax

• Provides a clear and concise syntax
description

• The parser can be based directly on the BNF
• Parsers based on BNF are easy to maintain

Copyright © 2006 Jenhui Chen. All rights reserved. 1-6

Reasons to Separate Lexical and Syntax
Analysis

• Simplicity - less complex approaches can
be used for lexical analysis; separating
them simplifies the parser

• Efficiency - separation allows optimization
of the lexical analyzer

• Portability - parts of the lexical analyzer
may not be portable, but the parser always
is portable

Copyright © 2006 Jenhui Chen. All rights reserved. 1-7

Lexical Analysis

• A lexical analyzer is a pattern matcher for
character strings

• A lexical analyzer is a “front-end” for the
parser

• Identifies substrings of the source program
that belong together - lexemes
– Lexemes match a character pattern, which is

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT

Copyright © 2006 Jenhui Chen. All rights reserved. 1-8

Lexical Analysis (continued)

• The lexical analyzer is usually a function that is
called by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a

software tool that constructs table-driven lexical
analyzers given such a description

– Design a state diagram that describes the tokens and
write a program that implements the state diagram

– Design a state diagram that describes the tokens and
hand-construct a table-driven implementation of the
state diagram

Copyright © 2006 Jenhui Chen. All rights reserved. 1-9

State Diagram Design

– A naïve state diagram would have a transition
from every state on every character in the
source language - such a diagram would be
very large!

Copyright © 2006 Jenhui Chen. All rights reserved. 1-10

Lexical Analysis (cont.)

• In many cases, transitions can be combined
to simplify the state diagram
– When recognizing an identifier, all uppercase

and lowercase letters are equivalent
• Use a character class that includes all letters

– When recognizing an integer literal, all digits are
equivalent - use a digit class

Copyright © 2006 Jenhui Chen. All rights reserved. 1-11

Lexical Analysis (cont.)

• Reserved words and identifiers can be
recognized together (rather than having a
part of the diagram for each reserved word)
– Use a table lookup to determine whether a

possible identifier is in fact a reserved word

Copyright © 2006 Jenhui Chen. All rights reserved. 1-12

Lexical Analysis (cont.)

• Convenient utility subprograms:
– getChar - gets the next character of input, puts

it in nextChar, determines its class and puts
the class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated,
lexeme

– lookup - determines whether the string in
lexeme is a reserved word (returns a code)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-13

State Diagram

Copyright © 2006 Jenhui Chen. All rights reserved. 1-14

Lexical Analysis (cont.)

Implementation (assume initialization):
int lex() {
getChar();
switch (charClass) {
case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT)
{
addChar();
getChar();

}
return lookup(lexeme);
break;

…

Copyright © 2006 Jenhui Chen. All rights reserved. 1-15

Lexical Analysis (cont.)

…
case DIGIT:

addChar();
getChar();
while (charClass == DIGIT) {

addChar();
getChar();

}
return INT_LIT;
break;

} /* End of switch */
} /* End of function lex */

Copyright © 2006 Jenhui Chen. All rights reserved. 1-16

The Parsing Problem

• Goals of the parser, given an input program:
– Find all syntax errors; for each, produce an

appropriate diagnostic message, and recover
quickly

– Produce the parse tree, or at least a trace of the
parse tree, for the program

Copyright © 2006 Jenhui Chen. All rights reserved. 1-17

The Parsing Problem (cont.)

• Two categories of parsers
– Top down - produce the parse tree, beginning

at the root
• Order is that of a leftmost derivation
• Traces or builds the parse tree in preorder

– Bottom up - produce the parse tree, beginning
at the leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the
input

Copyright © 2006 Jenhui Chen. All rights reserved. 1-18

The Parsing Problem (cont.)

• Top-down Parsers
– Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next
sentential form in the leftmost derivation, using
only the first token produced by A

• The most common top-down parsing
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation
– LL means `Left-to-right Leftmost derivation’

Copyright © 2006 Jenhui Chen. All rights reserved. 1-19

The Parsing Problem (cont.)

• Bottom-up parsers
– Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule
in the grammar that must be reduced to
produce the previous sentential form in the
right derivation

– The most common bottom-up parsing
algorithms are in the LR family

– LR stands for `Left-to-right Rightmost
derivation’

Copyright © 2006 Jenhui Chen. All rights reserved. 1-20

The Parsing Problem (cont.)

• The Complexity of Parsing
– Parsers that work for any unambiguous

grammar are complex and inefficient (O(n3),
where n is the length of the input)

– Compilers use parsers that only work for a
subset of all unambiguous grammars, but do it
in linear time (O(n), where n is the length of the
input)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-21

Recursive-Descent Parsing

• There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated by
that nonterminal

• EBNF is ideally suited for being the basis for
a recursive-descent parser, because EBNF
minimizes the number of nonterminals

Copyright © 2006 Jenhui Chen. All rights reserved. 1-22

Recursive-Descent Parsing (cont.)

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | (<expr>)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-23

Recursive-Descent Parsing (cont.)

• Assume we have a lexical analyzer named
lex, which puts the next token code in
nextToken

• The coding process when there is only one
RHS:
– For each terminal symbol in the RHS, compare it

with the next input token; if they match,
continue, else there is an error

– For each nonterminal symbol in the RHS, call its
associated parsing subprogram

Copyright © 2006 Jenhui Chen. All rights reserved. 1-24

Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language
generated by the rule:
<expr> → <term> {(+ | -) <term>}

*/

void expr() {

/* Parse the first term */

term();
…

Copyright © 2006 Jenhui Chen. All rights reserved. 1-25

Recursive-Descent Parsing (cont.)

/* As long as the next token is + or -, call
lex to get the next token, and parse the
next term */

while (nextToken == PLUS_CODE ||
nextToken == MINUS_CODE){

lex();
term();

}
}

• This particular routine does not detect errors
• Convention: Every parsing routine leaves the next

token in nextToken

Copyright © 2006 Jenhui Chen. All rights reserved. 1-26

Recursive-Descent Parsing (cont.)

• A nonterminal that has more than one RHS
requires an initial process to determine
which RHS it is to parse
– The correct RHS is chosen on the basis of the

next token of input (the lookahead)
– The next token is compared with the first token

that can be generated by each RHS until a match
is found

– If no match is found, it is a syntax error

Copyright © 2006 Jenhui Chen. All rights reserved. 1-27

Recursive-Descent Parsing (cont.)

/* Function factor
Parses strings in the language
generated by the rule:
<factor> -> id | (<expr>) */

void factor() {

/* Determine which RHS */

if (nextToken) == ID_CODE)

/* For the RHS id, just call lex */

lex();

Copyright © 2006 Jenhui Chen. All rights reserved. 1-28

Recursive-Descent Parsing (cont.)

/* If the RHS is (<expr>) – call lex to pass
over the left parenthesis, call expr, and
check for the right parenthesis */

else if (nextToken == LEFT_PAREN_CODE) {
lex();
expr();
if (nextToken == RIGHT_PAREN_CODE)

lex();
else

error();
} /* End of else if (nextToken == ... */

else error(); /* Neither RHS matches */
}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-29

Recursive-Descent Parsing (cont.)

• The LL Grammar Class
– The Left Recursion Problem

• If a grammar has left recursion, either direct or
indirect, it cannot be the basis for a top-down
parser

– A grammar can be modified to remove left recursion

Copyright © 2006 Jenhui Chen. All rights reserved. 1-30

Recursive-Descent Parsing (cont.)

• The other characteristic of grammars that
disallows top-down parsing is the lack of
pairwise disjointness
– The inability to determine the correct RHS on

the basis of one token of lookahead
– Def: FIRST(α) = {a | α =>* aβ }

(If α =>* ε, ε is in FIRST(α))

Copyright © 2006 Jenhui Chen. All rights reserved. 1-31

Recursive-Descent Parsing (cont.)

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that

has more than one RHS, for each pair of rules, A
→ αi and A → αj, it must be true that

FIRST(αi) ∩ FIRST(αj) = φ
• Examples:

A → a | bB | cAb
A → a | aB

Copyright © 2006 Jenhui Chen. All rights reserved. 1-32

Recursive-Descent Parsing (cont.)

• Left factoring can resolve the problem
Replace

<variable> → identifier | identifier [<expression>]
with

<variable> → identifier <new>
<new> → ε | [<expression>]

or
<variable> → identifier [[<expression>]]
(the outer brackets are metasymbols of EBNF)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-33

FIRST Sets

• FIRST(α) is the set of all terminal symbols
that can begin some sentential form that
starts with α

• FIRST(α) = {a in Vt | α * aβ } U { ε } if α *
ε

• Example:
<stmt> simple | begin <stmts> end
FIRST(<stmt>) = {simple, begin}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-34

Computing FIRST sets

Initially FIRST(A) is empty
1. For productions A a β, where a in Vt

Add { a } to FIRST(A)
2. For productions A ε

Add { ε } to FIRST(A)
3. For productions A α B β, where α * ε and

NOT (B ε)
Add FIRST(αB) to FIRST(A)

4. For productions A α, where α * ε
Add FIRST(α) and { ε } to FIRST(A)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-35

To compute FIRST across strings of
terminals and non-terminals:

FIRST(ε) = { ε }
FIRST(Aα) = A if A is a terminal

= FIRST(A) U FIRST(α)
if A ε

= FIRST(A) otherwise

Copyright © 2006 Jenhui Chen. All rights reserved. 1-36

Example 1

• S a S e
• S B
• B b B e
• B C
• C c C e
• C d

• FIRST(C) =
• FIRST(B) =
• FIRST(S) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-37

Example 1

• S a S e
• S B
• B b B e
• B C
• C c C e
• C d

• FIRST(C) = {c,d}
• FIRST(B) = {b,c,d}
• FIRST(S) = {a,b,c,d}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-38

Example 2

• P i | c | n T S
• Q P | a S | b S c S T
• R b | ε
• S c | R n | ε
• T R S q

• FIRST(P) =
• FIRST(Q) =
• FIRST(R) =
• FIRST(S) =
• FIRST(T) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-39

Example 2

• P i | c | n T S
• Q P | a S | b S c S T
• R b | ε
• S c | R n | ε
• T R S q

• FIRST(P) = {i,c,n}
• FIRST(Q) = {i,c,n,a,b}
• FIRST(R) = {b, ε}
• FIRST(S) = {c,b,n, ε}
• FIRST(T) = {b,c,n,q}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-40

Example 3

• S a S e | S T S
• T R S e | Q
• R r S r | ε
• Q S T | ε

• FIRST(S) =
• FIRST(R) =
• FIRST(T) =
• FIRST(Q) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-41

Example 3

• S a S e | S T S
• T R S e | Q
• R r S r | ε
• Q S T | ε

• FIRST(S) = {a}
• FIRST(R) = {r, ε}
• FIRST(T) = {r,a, ε}
• FIRST(Q) = {a, ε}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-42

FOLLOW Sets

• FOLLOW(A) is the set of terminals (including
end of file) that may follow non-terminal A
in some sentential form.

• FOLLOW(A) = {a in Vt | S + …Aa…} U {$
(end of file)} if S + …A

• For example, consider L + (())(L)L --
Both ‘)’ and end of file can follow L

Copyright © 2006 Jenhui Chen. All rights reserved. 1-43

Computing FOLLOW(A)

1. If S is a start symbol, put $ in FOLLOW(S)
2. Productions of the form B α A a, then

add { a } to FOLLOW(A)
3. Productions of the form B α A β,

Add FIRST(β) – {ε} to FOLLOW(A)
INTUITION: Suppose B AX and FIRST(X) = {c}
S + α B β α A X β + α A c δ β

Copyright © 2006 Jenhui Chen. All rights reserved. 1-44

4. Productions of the form B α A
or B α A β where β * ε
Add FOLLOW(B) to FOLLOW(A)
INTUITION:
– Suppose B Y A

S + α B β α Y A β
– Suppose B A X and X ε

S + α B β α A X β α A β

NOTE: ε never in FOLLOW sets

Copyright © 2006 Jenhui Chen. All rights reserved. 1-45

Example 4

• S a S e | B
• B b B C f | C
• C c C g | d | ε

• FIRST(C) = {c,d, ε}
• FIRST(B) = {b,c,d, ε}
• FIRST(S) = {a,b,c,d, ε}

• FOLLOW(C) =

• FOLLOW(B) =

• FOLLOW(S) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-46

Example 4

• S a S e | B
• B b B C f | C
• C c C g | d | ε

• FIRST(C) = {c,d, ε}
• FIRST(B) = {b,c,d, ε}
• FIRST(S) = {a,b,c,d, ε}

• FOLLOW(C) =

• FOLLOW(B) =

• FOLLOW(S) = {$, e }

g,f

c,d,f
FOLLOW(B) = {c,d,f,$,e}

FOLLOW(C) = {c,d,e,f,g,$}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-47

Example 5

• S (A) | ε
• A T E
• E , T E | ε
• T (A) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {‘,’, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(E) =
• FOLLOW(T) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-48

Example 5

• S (A) | ε
• A T E
• E , T E | ε
• T (A) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {‘,’, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) = {$}
• FOLLOW(A) = {) }
• FOLLOW(E) = {) }
• FOLLOW(T) = {‘,’,)}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-49

Example 6

• E T E’
• E’ + T E’ | ε
• T F T’
• T’ * F T’ | ε
• F (E) | id

• FIRST(F) = FIRST(T) =
FIRST(E) = {(,id}

• FIRST(T’) = {*,ε}
• FIRST(E’) = {+,ε}

• FOLLOW(E) =
• FOLLOW(E’) =
• FOLLOW(T) =
• FOLLOW(T’) =
• FOLLOW(F) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-50

Example 6

• E T E’
• E’ + T E’ | ε
• T F T’
• T’ * F T’ | ε
• F (E) | id

• FIRST(F) = FIRST(T) = FIRST(E) = {(,id}
• FIRST(T’) = {*,ε}
• FIRST(E’) = {+,ε}

• FOLLOW(E) = {$,)}
• FOLLOW(E’) = {$,)}
• FOLLOW(T) = {+,$,)}
• FOLLOW(T’) = {+,$,)}
• FOLLOW(F) = {*,+,$,)}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-51

Example 7

• S A B C | A D
• A a | a A
• B b | c | ε
• C D a C
• D b b | c c

• FIRST(D) = FIRST(C) = {b,c}
• FIRST(B) = {b,c,ε}
• FIRST(A) = FIRST(S) = {a}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(B) =
• FOLLOW(C) =
• FOLLOW(D) =

Copyright © 2006 Jenhui Chen. All rights reserved. 1-52

Example 7

• S A B C | A D
• A a | a A
• B b | c | ε
• C D a C
• D b b | c c

• FIRST(D) = FIRST(C) = {b,c}
• FIRST(B) = {b,c,ε}
• FIRST(A) = FIRST(S) = {a}

• FOLLOW(S) = {$}
• FOLLOW(A) = {b,c}
• FOLLOW(B) = {b,c}
• FOLLOW(C) = {$}
• FOLLOW(D) = {a,$}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-53

Writing an LL(1) Grammar

• The two most common obstacles to “LL(1)-
ness” are
– Left recursion
– Common prefixes

Copyright © 2006 Jenhui Chen. All rights reserved. 1-54

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-55

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-56

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S

SS

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-57

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S

SS

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-58

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-59

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-60

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

ε

SS

P

Copyright © 2006 Jenhui Chen. All rights reserved. 1-61

Grammar

S a B
| b C

B b b C
C c c

Two strings in the language: abbcc and bcc
Can choose between them based on the first

character of the input.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-62

LL(k) parsing

• Process input k symbols at a time.
• Initially, current non-terminal is start symbol.
• Algorithm

– Given next k input tokens and current non-terminal T, choose
a rule R (T …)

– For each element X in rule R from left to right,
if X is a non-terminal, call function for X
else if symbol X is a terminal, see if next input symbol
matches X; if so, update from the input

• Typically, we consider LL(1)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-63

Two Approaches

• Recursive Descent parsing
– Code tailored to the grammar

• Table Driven – predictive parsing
– Table tailored to the grammar
– General Algorithm

Copyright © 2006 Jenhui Chen. All rights reserved. 1-64

Writing a Recursive Descent Parser

• Procedure for each non-terminal.
Use next token (lookahead) to choose which production to
mimic.
– for non-terminal X, call procedure X()
– for terminals X, call ‘match(X)’

• match(symbol) {
if (symbol = lookahead)

lookahead = yylex()
else error() }

• Call yylex() before the first call to get first
lookahead.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-65

Back to grammar

S() {
if (lookahead==a) { match(a);B(); }

else if (lookahead == b) { match(b);
C(); }

else error(“expecting a or b”);
}
B() {match(b); match(b); C();}
C() { match(c) ; match(c) ;}

main() {
lookahead==yylex();

S();
}

S a B
| b C

B b b C
C c c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-66

Parsing abbcc

S Remaining input: abbcc

Copyright © 2006 Jenhui Chen. All rights reserved. 1-67

Parsing abbcc

S

a B

Remaining input: bbcc

Copyright © 2006 Jenhui Chen. All rights reserved. 1-68

Parsing abbcc

S

a B

b b C

Remaining input: cc

Copyright © 2006 Jenhui Chen. All rights reserved. 1-69

Parsing abbcc

S

a B

b b C

c c

Remaining input:

Copyright © 2006 Jenhui Chen. All rights reserved. 1-70

How do we find the lookaheads?

• Can compute PREDICT sets from FIRST and
FOLLOW

• PREDICT(A α) =
FIRST(α) – {ε} U FOLLOW(A) if ε in FIRST(α)
FIRST(α) if ε not in FIRST(α)

NOTE: ε never in PREDICT sets
For LL(k) grammars, the PREDICT sets for a given

non-terminal will be disjoint.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-71

Example

Production Predict
E T E’ = FIRST(T) = {(,id}

E’ + T E’ {+}

E’ ε = FOLLOW(E’) = {$,)}

T F T’ = FIRST(F) = {(,id}

T’ * F T’ {*}

T’ ε = FOLLOW(T’) = {+,$,)}

F id {id}

F (E) {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E) = {(,id}
•FIRST(T’) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-72

Parsing a + b * c

E Remaining input: a+b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-73

Parsing a + b * c

E Remaining input:
T E’

a+b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-74

Parsing a + b * c

E Remaining input:
T E’

F T’

a+b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-75

Parsing a + b * c

E Remaining input:
T E’

F T’

id
a

+b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-76

Parsing a + b * c

E Remaining input:
T E’

F T’

id
a

ε

+b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-77

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

ε

b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-78

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

ε F T’

b*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-79

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

id
b

ε F T’

*c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-80

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-81

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

id
c

Copyright © 2006 Jenhui Chen. All rights reserved. 1-82

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

id
c

ε

Copyright © 2006 Jenhui Chen. All rights reserved. 1-83

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’ ε

id
c

ε

Copyright © 2006 Jenhui Chen. All rights reserved. 1-84

Stacks in Recursive Descent Parsing

• Runtime stack
• Procedure activations

correspond to a path in
parse tree from root to
some interior node

E

E’

T

id
b

F

Copyright © 2006 Jenhui Chen. All rights reserved. 1-85

LL(1) Predictive Parse Tables

An LL(1) Parse table is a mapping T: Vn x Vt
production P or error

1. For all productions A α do
• For each terminal a in Predict(A α),

T[A][a] = A α

2. Every undefined table entry is an error.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-86

Using LL(1) Parse Tables

ALGORITHM
INPUT: token sequence to be parsed, followed

by ‘$’ (end of file)
DATA STRUCTURES:
• Parse stack: Initialized by pushing ‘$’ and

then pushing the start symbol
• Parse table T

Copyright © 2006 Jenhui Chen. All rights reserved. 1-87

push($); push(start_symbol); lookahead = yylex()
repeat

X = pop(stack)
if X is a terminal symbol or $ then

if X = lookahead then
lookahead = yylex()

else error()
else /* X is non-terminal */

if T[X][lookahead] = X Y1 Y2 …Ym

push(Ym) … push (Y1)
else error()

until X = $ token

Copyright © 2006 Jenhui Chen. All rights reserved. 1-88

Expression Grammar

NT/T + * () ID $

E T E’ T E’

E’ + T E’ ε ε

T F T’ F T’

T’ ε * F T’ ε ε

F (E) ID

Copyright © 2006 Jenhui Chen. All rights reserved. 1-89

Parsing a + b * c

Stack Input Action
$E a+b*c$ E T E’

$E’T a+b*c$ T F T’

$E’T’F a+b*c$ F id
$E’T’id a+b*c$ match
$E’T’ +b*c$ T’ ε

$E’ +b*c$ E’ + T E’

$E’T+ +b*c$ match
$E’T b*c$ T F T’

Stack Input Action
$E’T’F b*c$ F id
$E’T’id b*c$ match
$E’T’ *c$ T’ * F T’

$E’T’F* *c$ match
$E’T’F c$ F id
$E’T’id c$ match

$E’ $ E’ ε

$E’T’ $ T’ ε

$ $ accept

Copyright © 2006 Jenhui Chen. All rights reserved. 1-90

Stack in Predictive Parsing

• Algorithm data structure
• Holds terminals and non-terminals from

the grammar
– terminals – still need to be matched from the

input
– non-terminals – still need to be expanded

Copyright © 2006 Jenhui Chen. All rights reserved. 1-91

Making a grammar LL(1)

• Not all context free languages have LL(1)
grammars

• Can show a grammar is not LL(1) by looking
at the predict sets
– For LL(a) grammars, the PREDICT sets for a

given non-terminal will be disjoint.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-92

Example

Production Predict
E E + T = FIRST(E) = {(,id}

E T = FIRST(T) = {(,id}

T T * F = FIRST(T) = {(,id}

T F = FIRST(F) = {(,id}

F id = {id}

F (E) = {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E) = {(,id}
•FIRST(T) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}

Two problems: E and T

Copyright © 2006 Jenhui Chen. All rights reserved. 1-93

Making a non-LL(1) grammar LL(1)

• Eliminate common prefixes
Ex: A B a C D | B a C E

• Transform left recursion to right recursion
Ex: E E + T | T

Copyright © 2006 Jenhui Chen. All rights reserved. 1-94

Eliminate Common Prefixes

• A α β | α δ
Can become:

A α A’
A’ β | δ

Doesn’t always remove the problem. Why?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-95

Why is left recursion a problem?

A

A α

A α

A α

Copyright © 2006 Jenhui Chen. All rights reserved. 1-96

Remove Left Recursion

A A α1 | A α2 | … | β1 | β2 | …
becomes
A β1 A’| β2 A’| …
A’ α1 A’ | α2 A’ | … | ε

Τhe left recursion becomes right recursion

Copyright © 2006 Jenhui Chen. All rights reserved. 1-97

A

A α

A α

A α

A A α | β becomes A β B, B α B |

β

A

β Β

α Β

α Β

α Β

ε

ε

Copyright © 2006 Jenhui Chen. All rights reserved. 1-98

Bottom-up Parsing

• The parsing problem is finding the correct
RHS in a right-sentential form to reduce to
get the previous right-sentential form in
the derivation

Copyright © 2006 Jenhui Chen. All rights reserved. 1-99

Bottom-up Parsing (cont.)

•Intuition about handles:
– Def: β is the handle of the right sentential form

γ = αβw if and only if S =>*rm αAw =>rm αβw
– Def: β is a phrase of the right sentential form

γ if and only if S =>* γ = α1Aα2 =>+ α1βα2
– Def: β is a simple phrase of the right sentential

form γ if and only if S =>* γ = α1Aα2 => α1βα2

Copyright © 2006 Jenhui Chen. All rights reserved. 1-100

Bottom-up Parsing (cont.)

• Intuition about handles:
– The handle of a right sentential form is its

leftmost simple phrase
– Given a parse tree, it is now easy to find the

handle
– Parsing can be thought of as handle pruning

Copyright © 2006 Jenhui Chen. All rights reserved. 1-101

Bottom-up Parsing (cont.)

• Shift-Reduce Algorithms
– Reduce is the action of replacing the handle on

the top of the parse stack with its
corresponding LHS

– Shift is the action of moving the next token to
the top of the parse stack

Copyright © 2006 Jenhui Chen. All rights reserved. 1-102

Bottom-up Parsing (cont.)

• Advantages of LR parsers:
– They will work for nearly all grammars that

describe programming languages.
– They work on a larger class of grammars than

other bottom-up algorithms, but are as efficient
as any other bottom-up parser.

– They can detect syntax errors as soon as it is
possible.

– The LR class of grammars is a superset of the
class parsable by LL parsers.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-103

Bottom-up Parsing (cont.)

• LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could

use the entire history of the parse, up to
the current point, to make parsing
decisions
– There were only a finite and relatively small

number of different parse situations that could
have occurred, so the history could be stored in
a parser state, on the parse stack

Copyright © 2006 Jenhui Chen. All rights reserved. 1-104

Bottom-up Parsing (cont.)

• An LR configuration stores the state of an
LR parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-105

Bottom-up Parsing (cont.)

• LR parsers are table driven, where the
table has two components, an ACTION
table and a GOTO table
– The ACTION table specifies the action of the

parser, given the parser state and the next
token

• Rows are state names; columns are terminals
– The GOTO table specifies which state to put

on top of the parse stack after a reduction
action is done

• Rows are state names; columns are nonterminals

Copyright © 2006 Jenhui Chen. All rights reserved. 1-106

Structure of An LR Parser

Copyright © 2006 Jenhui Chen. All rights reserved. 1-107

Bottom-up Parsing (cont.)

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next
configuration is:
(S0X1S1X2S2…XmSmaiS, ai+1…an$)

– If ACTION[Sm, ai] = Reduce A → β and S =
GOTO[Sm-r, A], where r = the length of β, the
next configuration is
(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-108

Bottom-up Parsing (cont.)

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is

complete and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an

error-handling routine.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-109

LR Parsing Table

Copyright © 2006 Jenhui Chen. All rights reserved. 1-110

Bottom-up Parsing (cont.)

• A parser table can be generated from a
given grammar with a tool, e.g., yacc

Copyright © 2006 Jenhui Chen. All rights reserved. 1-111

Summary

• Syntax analysis is a common part of language
implementation

• A lexical analyzer is a pattern matcher that isolates
small-scale parts of a program
– Detects syntax errors
– Produces a parse tree

• A recursive-descent parser is an LL parser
– EBNF

• Parsing problem for bottom-up parsers: find the
substring of current sentential form

• The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

	Chapter 4�Lexical and Syntax Analysis
	Chapter 4 Topics
	Introduction
	Syntax Analysis
	Using BNF to Describe Syntax
	Reasons to Separate Lexical and Syntax Analysis
	Lexical Analysis
	Lexical Analysis (continued)
	State Diagram Design
	Lexical Analysis (cont.)
	Lexical Analysis (cont.)
	Lexical Analysis (cont.)
	State Diagram
	Lexical Analysis (cont.)
	Lexical Analysis (cont.)
	The Parsing Problem
	The Parsing Problem (cont.)
	The Parsing Problem (cont.)
	The Parsing Problem (cont.)
	The Parsing Problem (cont.)
	Recursive-Descent Parsing
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	Recursive-Descent Parsing (cont.)
	FIRST Sets
	Computing FIRST sets
	Example 1
	Example 1
	Example 2
	Example 2
	Example 3
	Example 3
	FOLLOW Sets
	Computing FOLLOW(A)
	Example 4
	Example 4
	Example 5
	Example 5
	Example 6
	Example 6
	Example 7
	Example 7
	Writing an LL(1) Grammar
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Grammar
	LL(k) parsing
	Two Approaches
	Writing a Recursive Descent Parser
	Back to grammar
	Parsing abbcc
	Parsing abbcc
	Parsing abbcc
	Parsing abbcc
	How do we find the lookaheads?
	Example
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Stacks in Recursive Descent Parsing
	LL(1) Predictive Parse Tables
	Using LL(1) Parse Tables
	Expression Grammar
	Parsing a + b * c
	Stack in Predictive Parsing
	Making a grammar LL(1)
	Example
	Making a non-LL(1) grammar LL(1)�
	Eliminate Common Prefixes
	Why is left recursion a problem?
	Remove Left Recursion
	A A a | b becomes A b B, B a B |
	Bottom-up Parsing
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	Structure of An LR Parser
	Bottom-up Parsing (cont.)
	Bottom-up Parsing (cont.)
	LR Parsing Table
	Bottom-up Parsing (cont.)
	Summary

