Chapter 4

Lexical and Syntax Analysis

長庚大學資訊工程學系 陳仁暉 助理教授
 Tel：（03）211－8800 Ext： 5990
 E－mail：jhchen＠mail．cgu．edu．tw
 URL：http：／／www．csie．cgu．edu．tw／jhchen

© All rights reserved．No part of this publication and file may be reproduced，stored in a retrieval system， or transmitted in any form or by any means，electronic，mechanical，photocopying，recording or otherwise， without prior written permission of Professor Jenhui Chen（E－mail：jhchen＠mail．cgu．edu．tw）．

Chapter 4 Topics

- Introduction
- Lexical Analysis
- The Parsing Problem
- Recursive-Descent Parsing
- Bottom-Up Parsing

Introduction

- Language implementation systems must analyze source code, regardless of the specific implementation approach
- Nearly all syntax analysis is based on a formal description of the syntax of the source language (BNF)

Syntax Analysis

- The syntax analysis portion of a language processor nearly always consists of two parts:
- A low-level part called a lexical analyzer (mathematically, a finite automaton based on a regular grammar)
- A high-level part called a syntax analyzer, or parser (mathematically, a push-down automaton based on a context-free grammar, or BNF)

Using BNF to Describe Syntax

- Provides a clear and concise syntax description
- The parser can be based directly on the BNF
- Parsers based on BNF are easy to maintain

Reasons to Separate Lexical and Syntax Analysis

- Simplicity - less complex approaches can be used for lexical analysis; separating them simplifies the parser
- Efficiency - separation allows optimization of the lexical analyzer
- Portability - parts of the lexical analyzer may not be portable, but the parser always is portable

Lexical Analysis

- A lexical analyzer is a pattern matcher for character strings
- A lexical analyzer is a "front-end" for the parser
- Identifies substrings of the source program that belong together - lexemes
- Lexemes match a character pattern, which is associated with a lexical category called a token
- sum is a lexeme; its token may be IDENT

Lexical Analysis (continued)

- The lexical analyzer is usually a function that is called by the parser when it needs the next token
- Three approaches to building a lexical analyzer:
- Write a formal description of the tokens and use a software tool that constructs table-driven lexical analyzers given such a description
- Design a state diagram that describes the tokens and write a program that implements the state diagram
- Design a state diagram that describes the tokens and hand-construct a table-driven implementation of the state diagram

State Diagram Design

- A naïve state diagram would have a transition from every state on every character in the source language - such a diagram would be very large!

Lexical Analysis (cont.)

- In many cases, transitions can be combined to simplify the state diagram
- When recognizing an identifier, all uppercase and lowercase letters are equivalent
- Use a character class that includes all letters
- When recognizing an integer literal, all digits are equivalent - use a digit class

Lexical Analysis (cont.)

- Reserved words and identifiers can be recognized together (rather than having a part of the diagram for each reserved word)
- Use a table lookup to determine whether a possible identifier is in fact a reserved word

Lexical Analysis (cont.)

- Convenient utility subprograms:
- getChar - gets the next character of input, puts it in nextchar, determines its class and puts the class in charclass
- addChar - puts the character from nextchar into the place the lexeme is being accumulated, lexeme
- lookup - determines whether the string in lexeme is a reserved word (returns a code)

State Diagram

Lexical Analysis (cont.)

```
Implementation (assume initialization):
int lex() {
    getChar();
    switch (charClass) {
    case LETTER:
        addChar();
        getChar();
        while (charClass == LETTER || charClass == DIGIT)
        {
        addChar();
        getChar();
    }
return lookup(lexeme);
break;
```


Lexical Analysis (cont.)

```
case DIGIT:
    addChar();
        getChar();
        while (charClass == DIGIT) {
            addChar();
            getChar();
        }
        return INT_LIT;
        break;
    } /* End of switch */
} /* End of function lex */
```


The Parsing Problem

- Goals of the parser, given an input program:
- Find all syntax errors; for each, produce an appropriate diagnostic message, and recover quickly
- Produce the parse tree, or at least a trace of the parse tree, for the program

The Parsing Problem (cont.)

- Two categories of parsers
- Top down - produce the parse tree, beginning at the root
- Order is that of a leftmost derivation
- Traces or builds the parse tree in preorder
- Bottom up - produce the parse tree, beginning at the leaves
- Order is that of the reverse of a rightmost derivation
- Parsers look only one token ahead in the input

The Parsing Problem (cont.)

- Top-down Parsers
- Given a sentential form, xA α, the parser must choose the correct A-rule to get the next sentential form in the leftmost derivation, using only the first token produced by A
- The most common top-down parsing algorithms:
- Recursive descent - a coded implementation
- LL parsers - table driven implementation
- LL means `Left-to-right Leftmost derivation’

The Parsing Problem (cont.)

- Bottom-up parsers
- Given a right sentential form, α, determine what substring of α is the right-hand side of the rule in the grammar that must be reduced to produce the previous sentential form in the right derivation
- The most common bottom-up parsing algorithms are in the LR family
- LR stands for `Left-to-right Rightmost derivation'

The Parsing Problem (cont.)

- The Complexity of Parsing
- Parsers that work for any unambiguous grammar are complex and inefficient ($O\left(n^{3}\right)$, where n is the length of the input)
- Compilers use parsers that only work for a subset of all unambiguous grammars, but do it in linear time ($O(n)$, where n is the length of the input)

Recursive-Descent Parsing

- There is a subprogram for each nonterminal in the grammar, which can parse sentences that can be generated by that nonterminal
- EBNF is ideally suited for being the basis for a recursive-descent parser, because EBNF minimizes the number of nonterminals

Recursive-Descent Parsing (cont.)

- A grammar for simple expressions:
<expr> \rightarrow <term> \{(+ | -) <term>\}
<term> \rightarrow <factor> \{(* | /) <factor>\}
<factor> \rightarrow id | (<expr>)

Recursive-Descent Parsing (cont.)

- Assume we have a lexical analyzer named lex, which puts the next token code in nextToken
- The coding process when there is only one RHS:
- For each terminal symbol in the RHS, compare it with the next input token; if they match, continue, else there is an error
- For each nonterminal symbol in the RHS, call its associated parsing subprogram

Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language generated by the rule:
<expr> \rightarrow <term> $\{(+\mid-)<$ term>\}

* /
void expr() \{
/* Parse the first term */
term();

Recursive-Descent Parsing (cont.)

```
/* As long as the next token is + or -, call
        lex to get the next token, and parse the
        next term */
    while (nextToken == PLUS_CODE ||
                nextToken == MINUS_CODE){
        lex();
        term();
    }
}
- This particular routine does not detect errors
- Convention: Every parsing routine leaves the next token in nextToken
```


Recursive-Descent Parsing (cont.)

- A nonterminal that has more than one RHS requires an initial process to determine which RHS it is to parse
- The correct RHS is chosen on the basis of the next token of input (the lookahead)
- The next token is compared with the first token that can be generated by each RHS until a match is found
- If no match is found, it is a syntax error

Recursive-Descent Parsing (cont.)

$$
\begin{aligned}
& \text { /* Function factor } \\
& \text { Parses strings in the language } \\
& \text { generated by the rule: } \\
& \text { <factor> -> id (<expr>) */ } \\
& \text { void factor() \{ } \\
& \text { /* Determine which RHS */ } \\
& \text { if (nextToken) == ID_CODE) } \\
& \text { /* For the RHS id, just call lex */ } \\
& \text { lex(); }
\end{aligned}
$$

Recursive-Descent Parsing (cont.)

```
/* If the RHS is (<expr>) - call lex to pass
                over the left parenthesis, call expr, and check for the right parenthesis */
    else if (nextToken == LEFT_PAREN_CODE) {
        lex();
            expr();
            if (nextToken == RIGHT_PAREN_CODE)
                lex();
            else
                error();
    } /* End of else if (nextToken == ... */
    else error(); /* Neither RHS matches */
    }
```


Recursive-Descent Parsing (cont.)

- The LL Grammar Class
- The Left Recursion Problem
- If a grammar has left recursion, either direct or indirect, it cannot be the basis for a top-down parser
- A grammar can be modified to remove left recursion

Recursive-Descent Parsing (cont.)

- The other characteristic of grammars that disallows top-down parsing is the lack of pairwise disjointness
- The inability to determine the correct RHS on the basis of one token of lookahead
- Def: $\operatorname{FIRST}(\alpha)=\left\{a \mid \alpha=>^{*} a \beta\right\}$
(If $\alpha=>^{*} \varepsilon, \varepsilon$ is in $\operatorname{FIRST}(\alpha)$)

Recursive-Descent Parsing (cont.)

- Pairwise Disjointness Test:
- For each nonterminal, A, in the grammar that has more than one RHS, for each pair of rules, A $\rightarrow \alpha_{i}$ and $\mathrm{A} \rightarrow \alpha_{j}$, it must be true that $\operatorname{FIRST}\left(\alpha_{i}\right) \cap \operatorname{FIRST}\left(\alpha_{j}\right)=\phi$
- Examples:

$$
\begin{array}{l|l|l}
\mathrm{A} \rightarrow \mathrm{a}|\mathrm{bB}| \mathrm{cAb} \\
\mathrm{~A} \rightarrow \mathrm{a} & \mathrm{aB}
\end{array}
$$

Recursive-Descent Parsing (cont.)

- Left factoring can resolve the problem Replace
<variable> \rightarrow identifier | identifier [<expression>] with
$<$ variable> \rightarrow identifier <new>
<new $>\rightarrow \varepsilon$ | [<expression>]
or
<variable> \rightarrow identifier [[<expression>]]
(the outer brackets are metasymbols of EBNF)

FIRST Sets

- $\operatorname{FIRST}(\alpha)$ is the set of all terminal symbols that can begin some sentential form that starts with α
- $\operatorname{FIRST}(\alpha)=\left\{a\right.$ in $\left.V_{t} \mid \alpha \rightarrow * a \beta\right\} \cup\{\varepsilon\}$ if $\alpha \rightarrow *$ ε
- Example:
<stmt> \rightarrow simple | begin <stmts> end FIRST $(<$ stmt $>$) $=$ \{simple, begin $\}$

Computing FIRST sets

Initially $\operatorname{FIRST}(\mathrm{A})$ is empty

1. For productions $\mathrm{A} \rightarrow$ a β, where a in V_{t} Add $\{\mathrm{a}\}$ to $\operatorname{FIRST}(\mathrm{A})$
2. For productions $\mathrm{A} \rightarrow \varepsilon$

Add $\{\varepsilon\}$ to $\operatorname{FIRST}(A)$
3. For productions $A \rightarrow \alpha B \beta$, where $\alpha \rightarrow * \varepsilon$ and NOT $(B \rightarrow \varepsilon)$
Add FIRST($\alpha \mathrm{B}$) to FIRST(A)
4. For productions $\mathrm{A} \rightarrow \alpha$, where $\alpha \rightarrow{ }^{*} \varepsilon$ Add $\operatorname{FIRST}(\alpha)$ and $\{\varepsilon\}$ to $\operatorname{FIRST}(\mathrm{A})$

To compute FIRST across strings of terminals and non-terminals:
$\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$
$\operatorname{FIRST}(\mathrm{A} \alpha)=\mathrm{A}$ if A is a terminal
$=\operatorname{FIRST}(\mathrm{A}) \mathrm{U} \operatorname{FIRST}(\alpha)$ if $A \rightarrow \varepsilon$
$=$ FIRST(A) otherwise

Example 1

- $S \rightarrow$ a S e
- $S \rightarrow B$
- B \rightarrow b Be
- $\mathrm{B} \rightarrow \mathrm{C}$
- $\mathrm{C} \rightarrow \mathrm{cCe}$
- $C \rightarrow d$
- $\operatorname{FIRST}(\mathrm{C})=$
- $\operatorname{FIRST}(\mathrm{B})=$
- $\operatorname{FIRST}(\mathrm{S})=$

Example 1

- $S \rightarrow$ a S e
- $S \rightarrow B$
- B \rightarrow b B e
- $B \rightarrow C$
- $\mathrm{C} \rightarrow \mathrm{cCe}$
- $\mathrm{C} \rightarrow \mathrm{d}$
- $\operatorname{FIRST}(C)=\{c, d\}$
- $\operatorname{FIRST}(B)=\{b, c, d\}$
- $\operatorname{FIRST}(S)=\{a, b, c, d\}$

Example 2

- $P \rightarrow i|c| n T S$
- $\mathrm{Q} \rightarrow \mathrm{P}|\mathrm{aS}| \mathrm{bScST}$
- $\operatorname{FIRST}(\mathrm{P})=$
- $\mathrm{R} \rightarrow \mathrm{b} \mid \varepsilon$
- $\mathrm{S} \rightarrow \mathrm{c}|\mathrm{Rn}| \varepsilon$
- $\mathrm{T} \rightarrow \mathrm{RSq}$
- $\operatorname{FIRST}(\mathrm{Q})=$
- $\operatorname{FIRST}(\mathrm{R})=$
- $\operatorname{FIRST}(\mathrm{S})=$
- $\operatorname{FIRST}(\mathrm{T})=$

Example 2

- $P \rightarrow i|c| n T S$
- $\mathrm{Q} \rightarrow \mathrm{P} \mid \mathrm{aS\mid bScST}$
- $\mathrm{R} \rightarrow \mathrm{b} \mid \varepsilon$
- $\mathrm{S} \rightarrow \mathrm{c}|\mathrm{Rn}| \varepsilon$
- $\mathrm{T} \rightarrow \mathrm{RS}$ q
- $\operatorname{FIRST}(P)=\{i, c, n\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}, \mathrm{a}, \mathrm{b}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{b}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{c}, \mathrm{b}, \mathrm{n}, \varepsilon\}$
- $\operatorname{FIRST}(T)=\{b, c, n, q\}$

Example 3

- $S \rightarrow$ aSelSTS
- T \rightarrow RSe|Q
- $\mathrm{R} \rightarrow \mathrm{r} \boldsymbol{\mathrm { S }} \mathrm{r} \mid \varepsilon$
- $\mathrm{Q} \rightarrow \mathrm{ST} \mid \varepsilon$
- $\operatorname{FIRST}(\mathrm{S})=$
- $\operatorname{FIRST}(\mathrm{R})=$
- $\operatorname{FIRST}(\mathrm{T})=$
- $\operatorname{FIRST}(\mathrm{Q})=$

Example 3

- $S \rightarrow$ aSelSTS
- T \rightarrow RSe|Q
- $\mathrm{R} \rightarrow \mathrm{r} \boldsymbol{\mathrm { S }} \mathrm{r} \mid \varepsilon$
- $\mathrm{Q} \rightarrow \mathrm{ST} \mid \varepsilon$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{r, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{T})=\{r, a, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{a}, \varepsilon\}$

FOLLOW Sets

- $\operatorname{FOLLOW}(\mathrm{A})$ is the set of terminals (including end of file) that may follow non-terminal A in some sentential form.
- $\operatorname{FOLLOW}(\mathrm{A})=\left\{a\right.$ in $\mathrm{V}_{\mathrm{t}} \mid \mathrm{S} \rightarrow^{+}$...Aa $\left.\ldots\right\} \cup\{\$$ (end of file) if $\mathrm{S} \rightarrow^{+}$...A
- For example, consider $\mathrm{L} \rightarrow^{+}(())(\mathrm{L}) \mathrm{L}--$ Both ')' and end of file can follow L

Computing FOLLOW(A)

1. If S is a start symbol, put $\$$ in FOLLOW(S)
2. Productions of the form $B \rightarrow \alpha A$ a, then add \{ a \} to FOLLOW(A)
3. Productions of the form $B \rightarrow \alpha A \beta$,

Add FIRST(β) - $\{\varepsilon\}$ to $\operatorname{FOLLOW}(\mathrm{A})$
INTUITION: Suppose $B \rightarrow A X$ and FIRST $(X)=\{c\}$
$S \rightarrow+\alpha B \beta \rightarrow \alpha A X \beta \rightarrow^{+} \alpha A c \delta \beta$
4. Productions of the form $B \rightarrow \alpha A$
or $\mathrm{B} \rightarrow \alpha \mathrm{A} \beta$ where $\beta \rightarrow$ * ε
Add FOLLOW(B) to FOLLOW(A)
INTUITION:

- Suppose B \rightarrow Y A
$S \rightarrow+\alpha B \beta \rightarrow \alpha \mathrm{YA} \beta$
- Suppose $B \rightarrow A X$ and $X \rightarrow \varepsilon$ $S \rightarrow+\alpha B \beta \rightarrow \alpha X \beta \rightarrow \alpha \beta$

NOTE: ε never in FOLLOW sets

Example 4

- $\mathrm{S} \rightarrow$ a S e|B
- $\mathrm{B} \rightarrow \mathrm{bBCf} \mid \mathrm{C}$
- $C \rightarrow c \mathrm{Cg}|\mathrm{d}| \varepsilon$
- $\operatorname{FIRST}(C)=\{c, d, \varepsilon\}$
- $\operatorname{FIRST}(B)=\{b, c, d, \varepsilon\}$
- $\operatorname{FIRST}(S)=\{a, b, c, d, \varepsilon\}$
- $\operatorname{FOLLOW}(\mathrm{C})=$
- $\operatorname{FOLLOW}(B)=$
- $\operatorname{FOLLOW}(\mathrm{S})=$

Example 4

- $\mathrm{S} \rightarrow \mathrm{aSe\mid B}$
- B \rightarrow b BCf|C
- $C \rightarrow C \operatorname{cod} \mid \varepsilon$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FIRST}(B)=\{b, c, d, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FOLLOW}(\mathrm{C})=\mathrm{g}, \mathrm{f}$ $\operatorname{FOLLOW}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \$\}$
- $\operatorname{FOLLOW}(B)=c, d, f$ FOLLOW (B) $=\{\mathrm{c}, \mathrm{d}, \mathrm{f}, \$, \mathrm{e}\}$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$, \mathrm{e}\}$

Example 5

- $S \rightarrow(A) \mid \varepsilon$
- $\mathrm{A} \rightarrow \mathrm{TE}$
- E \rightarrow, TE| ε
- T \rightarrow (A) $|\mathrm{a}| \mathrm{b} \mid \mathrm{c}$
- $\operatorname{FOLLOW}(\mathrm{S})=$
- $\operatorname{FOLLOW}(\mathrm{A})=$
- $\operatorname{FOLLOW}(\mathrm{E})=$
- $\operatorname{FOLLOW}(\mathrm{T})=$
- $\operatorname{FIRST}(T)=\{(, a, b, c\}$
- $\operatorname{FIRST}(E)=\{‘, ’, \varepsilon\}$
- $\operatorname{FIRST}(A)=\{(, a, b, c\}$
- $\operatorname{FIRST}(S)=\{(, \varepsilon\}$

Example 5

- $S \rightarrow(A) \mid \varepsilon$
- $A \rightarrow T E$
- $\mathrm{E} \rightarrow$, TE| ε
- T \rightarrow (A) $|\mathrm{a}| \mathrm{b} \mid \mathrm{c}$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$
- $\operatorname{FOLLOW}(\mathrm{A})=\{)\}$
- $\operatorname{FOLLOW}(E)=\{)\}$
- $\operatorname{FOLLOW}(\mathrm{T})=\{$, ,',) $\}$
- $\operatorname{FIRST}(T)=\{(, a, b, c\}$
- $\operatorname{FIRST}(E)=\{‘,, \varepsilon\}$
- $\operatorname{FIRST}(A)=\{(, a, b, c\}$
- $\operatorname{FIRST}(S)=\{(, \varepsilon\}$

Example 6

- $\mathrm{E} \rightarrow$ T E'
- $\mathrm{E}^{\prime} \rightarrow+\mathrm{T}^{\prime} \mid \varepsilon$
- $\mathrm{T} \rightarrow \mathrm{F}$ T
- T' \rightarrow^{*} F T' $\mid \varepsilon$
- $\mathrm{F} \rightarrow$ (E$) \mid \mathrm{id}$
- $\operatorname{FIRST}(\mathrm{F})=\operatorname{FIRST}(\mathrm{T})=$ FIRST(E) $=\{(, \mathrm{id}\}$
- $\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
- $\operatorname{FIRST}\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$
- $\operatorname{FOLLOW}(\mathrm{E})=$
- FOLLOW(E') =
- $\operatorname{FOLLOW}(\mathrm{T})=$
- $\operatorname{FOLLOW}\left(T^{\prime}\right)=$
- FOLLOW(F) =

Example 6

- E \rightarrow T E'
- $\mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon$
- T \rightarrow F T,
- T' \rightarrow * F T' $\mid \varepsilon$
- $F \rightarrow$ (E) |id
- $\operatorname{FOLLOW}(E)=\{\$)$,
- $\left.\operatorname{FOLLOW}\left(E^{\prime}\right)=\{\$),\right\}$
- $\operatorname{FOLLOW}(T)=\{+, \$)$,
- $\left.\operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\{+, \$),\right\}$
- $\left.\operatorname{FOLLOW}(F)=\left\{{ }^{*},+, \$,\right)\right\}$
- $\operatorname{FIRST}(\mathrm{F})=\operatorname{FIRST}(\mathrm{T})=\operatorname{FIRST}(E)=\{(, \mathrm{id}\}$
- $\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
- $\operatorname{FIRST}\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$

Example 7

- $S \rightarrow$ ABC|AD
- $A \rightarrow a \mid a A$
- $\mathrm{B} \rightarrow \mathrm{b}|\mathrm{c}| \varepsilon$
- $\mathrm{C} \rightarrow \mathrm{DaC}$
- $D \rightarrow b b \mid c c$
- $\operatorname{FOLLOW}(\mathrm{S})=$
- $\operatorname{FOLLOW}(\mathrm{A})=$
- $\operatorname{FOLLOW}(\mathrm{B})=$
- $\operatorname{FOLLOW}(\mathrm{C})=$
- $\operatorname{FOLLOW}(\mathrm{D})=$
- $\operatorname{FIRST}(\mathrm{D})=\operatorname{FIRST}(\mathrm{C})=\{\mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(B)=\{b, c, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}\}$

Example 7

- $S \rightarrow$ ABC|AD
- $A \rightarrow a \mid a A$
- $\mathrm{B} \rightarrow \mathrm{b}|\mathrm{c}| \varepsilon$
- $\mathrm{C} \rightarrow \mathrm{D}$ a C
- $D \rightarrow b b \mid c c$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$
- $\operatorname{FOLLOW}(\mathrm{A})=\{b, c\}$
- $\operatorname{FOLLOW}(\mathrm{B})=\{b, c\}$
- $\operatorname{FOLLOW}(\mathrm{C})=\{\$\}$
- $\operatorname{FOLLOW}(\mathrm{D})=\{\mathrm{a}, \$\}$
- $\operatorname{FIRST}(\mathrm{D})=\operatorname{FIRST}(\mathrm{C})=\{\mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(B)=\{b, c, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}\}$

Writing an LL(1) Grammar

- The two most common obstacles to "LL(1)ness" are
- Left recursion
- Common prefixes

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end \$

Top Down (LL) Parsing

Grammar

$$
\begin{gathered}
S \rightarrow a B \\
\mid b C \\
B \rightarrow b b C \\
C \rightarrow c c
\end{gathered}
$$

Two strings in the language: abbcc and bcc Can choose between them based on the first character of the input.

LL(k) parsing

- Process input k symbols at a time.
- Initially, current non-terminal is start symbol.
- Algorithm
- Given next k input tokens and current non-terminal T , choose a rule $\mathrm{R}(\mathrm{T} \rightarrow \ldots$)
- For each element X in rule R from left to right, if X is a non-terminal, call function for X else if symbol X is a terminal, see if next input symbol matches X; if so, update from the input
- Typically, we consider LL(1)

Two Approaches

- Recursive Descent parsing
- Code tailored to the grammar
- Table Driven - predictive parsing
- Table tailored to the grammar
- General Algorithm

Writing a Recursive Descent Parser

- Procedure for each non-terminal.

Use next token (lookahead) to choose which production to mimic.

- for non-terminal X , call procedure X()
- for terminals X, call 'match(X)'
- match(symbol) \{

```
    if (symbol = lookahead)
        lookahead = yylex()
    else error() }
```

- Call yylex() before the first call to get first lookahead.

Back to grammar

```
S() {
    if (lookahead==a) { match(a);B(); }
    else if (lookahead == b) { match(b);
        C(); }
    else error("expecting a or b");
}
B() {match(b); match(b); C();}
C() { match(c) ; match(c) ;}
```


$\mathrm{S} \quad \rightarrow \mathrm{aB}$

| b C C(); \}
else error("expecting a or b");

B() \{match(b); match(b); C();\}
C() \{ match(c) ; match(c) ;\}

$\mathrm{B} \rightarrow \mathrm{b}$ b C
 $C \rightarrow c$

```
main() {
    lookahead==yylex();
    S();
}
```


Parsing abbcc

S

Remaining input: abbcc

Parsing abbcc

Remaining input: bbcc

Parsing abbcc

Remaining input: cc

Parsing abbcc

Remaining input:

How do we find the lookaheads?

- Can compute PREDICT sets from FIRST and FOLLOW
- PREDICT $(\mathrm{A} \rightarrow \alpha)=$
$\operatorname{FIRST}(\alpha)-\{\varepsilon\} \cup \operatorname{FOLLOW}(\mathrm{A})$ if ε in $\operatorname{FIRST}(\alpha)$
$\operatorname{FIRST}(\alpha)$ if ε not in $\operatorname{FIRST}(\alpha)$
NOTE: ε never in PREDICT sets
For $\operatorname{LL}(k)$ grammars, the PREDICT sets for a given non-terminal will be disjoint.

Example

Production	Predict
$\mathrm{E} \rightarrow$ T E'	$=\operatorname{FIRST}(\mathrm{T})=\{(, \mathrm{id}\}$
$\mathrm{E}^{\prime} \rightarrow+$ T E'	$\{+\}$
$\mathrm{E}^{\prime} \rightarrow \varepsilon$	$\left.=\mathrm{FOLLOW}\left(\mathrm{E}^{\prime}\right)=\{\$),\right\}$
$\mathrm{T} \rightarrow \mathrm{FT}$ '	$=\mathrm{FIRST}(\mathrm{F})=\{(, \mathrm{id}\}$
$\mathrm{T}^{\prime} \rightarrow$ * F T'	$\{*$ *
$\mathrm{T}^{\prime} \rightarrow \varepsilon$	$\left.=\mathrm{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\{+, \$),\right\}$
$F \rightarrow$ id	$\{i d\}$
$\mathrm{F} \rightarrow$ (E)	\{ $\}$

- $\operatorname{FIRST}(\mathrm{F})=\{(, \mathrm{id}\}$
-FIRST(T) $=\{(, i d\}$
-FIRST(E) $=\{(, \mathrm{id}\}$
- $\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
-FIRST(E’) $=\{+, \varepsilon\}$
-FOLLOW(E) = \{\$,) $\}$
-FOLLOW(E') = \{\$, $)\}$
- FOLLOW $(T)=\{+\$)$,
- $\left.\operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\{+, \$),\right\}$
$\cdot \operatorname{FOLLOW}(\mathrm{F})=\{*,+, \$)$,

Parsing $a+b * c$

E

Remaining input:
 a+b*c

Parsing $a+b * c$

Remaining input: a+b*c

Parsing $a+b * c$

Remaining input: a+b*c

Parsing $a+b * c$

Remaining input: $\quad+b^{*} \mathrm{c}$

Parsing $a+b * c$

Remaining input: +b*c

Parsing $a+b * c$

Remaining input: b*c

Parsing $a+b * c$

Remaining input: b*c

Parsing $a+b * c$

Remaining input: * ${ }^{\text {C }}$

Parsing $a+b * c$

Remaining input: c

Parsing $a+b * c$

Remaining input:

Parsing $a+b * c$

Remaining input:

Parsing $a+b * c$

Remaining input:

Stacks in Recursive Descent Parsing

- Runtime stack

- Procedure activations correspond to a path in parse tree from root to some interior node

LL(1) Predictive Parse Tables

An LL(1) Parse table is a mapping $T: \mathrm{V}_{\mathrm{n}} \times \mathrm{V}_{\mathrm{t}} \rightarrow$ production P or error

1. For all productions $A \rightarrow \alpha$ do

- For each terminal a in Predict($\mathrm{A} \rightarrow \alpha$),

$$
\mathrm{T}[\mathrm{~A}][\mathrm{a}]=\mathrm{A} \rightarrow \alpha
$$

2. Every undefined table entry is an error.

Using LL(1) Parse Tables

ALGORITHM

INPUT: token sequence to be parsed, followed by '\$' (end of file)
DATA STRUCTURES:

- Parse stack: Initialized by pushing '\$’ and then pushing the start symbol
- Parse table T

```
push(\$); push(start_symbol); lookahead = yylex()
repeat
    X = pop(stack)
    if \(X\) is a terminal symbol or \(\$\) then
        if \(X=\) lookahead then
            lookahead = yylex()
        else error()
    else /* X is non-terminal */
        if \(T[X][\) lookahead \(]=X \rightarrow Y_{1} Y_{2} \ldots Y_{m}\)
        \(\operatorname{push}\left(Y_{m}\right) \ldots\) push \(\left(Y_{1}\right)\)
    else error()
until \(\mathrm{X}=\$\) token
```


Expression Grammar

NT/T	+	*	()	ID	\$
E			\rightarrow T E'		\rightarrow T E'	
E'	$\rightarrow+$ T E'			$\rightarrow \varepsilon$		$\rightarrow \varepsilon$
T			\rightarrow F T'		\rightarrow F T'	
T'	$\rightarrow \varepsilon$	\rightarrow * F T		$\rightarrow \varepsilon$		$\rightarrow \varepsilon$
F			\rightarrow (E)		\rightarrow ID	

Parsing $a+b * c$

Stack	Input	Action
\$E	$a+b * c \$$	$\mathrm{E} \rightarrow$ T E'
\$E'T	$a+b * c \$$	T \rightarrow F T
\$E'T'F	$a+b * c \$$	$\mathrm{F} \rightarrow$ id
\$E'T'id	$a+b * c \$$	match
\$E'T'	+b * c \$	$\mathrm{T}^{\prime} \rightarrow \varepsilon$
\$E'	+b * c \$	$\mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime}$
\$E'T+	+b*c\$	match
\$ ${ }^{\prime}$ 'T	$b * c \$$	T \rightarrow F T

Stack	Input	Action
\$E'T'F	b*c\$	$\mathrm{F} \rightarrow$ id
\$E'T'id	b*c\$	match
\$E'T'	* C \$	T' \rightarrow * F T'
\$E'T'F*	* C \$	match
\$E'T'F	c\$	$\mathrm{F} \rightarrow$ id
\$E'T'id	c\$	match
\$E'T'	\$	T' \rightarrow ¢
\$E'	\$	$\mathrm{E}^{\prime} \rightarrow \varepsilon$
\$	\$	accept

Stack in Predictive Parsing

- Algorithm data structure
- Holds terminals and non-terminals from the grammar
- terminals - still need to be matched from the input
- non-terminals - still need to be expanded

Making a grammar LL(1)

- Not all context free languages have LL(1) grammars
- Can show a grammar is not $\mathrm{LL}(1)$ by looking at the predict sets
- For LL(a) grammars, the PREDICT sets for a given non-terminal will be disjoint.

Example

Production	Predict
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$	$=\operatorname{FIRST}(\mathrm{E})=\{(, \mathrm{id}\}$
$\mathrm{E} \rightarrow \mathrm{T}$	$=\operatorname{FIRST}(\mathrm{T})=\{(, \mathrm{id}\}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}$	$=\operatorname{FIRST}(\mathrm{T})=\{(, \mathrm{id}\}$
$\mathrm{T} \rightarrow \mathrm{F}$	$=\operatorname{FIRST}(\mathrm{F})=\{(, \mathrm{id}\}$
$\mathrm{F} \rightarrow$ id	$=\{\mathrm{id}\}$
$\mathrm{F} \rightarrow(\mathrm{E})$	$=\{(\}$

- $\operatorname{FIRST}(\mathrm{F})=\{(, \mathrm{id}\}$
-FIRST(T) $=\{(, i d\}$
-FIRST(E) $=\{(, \mathrm{id}\}$
- $\operatorname{FIRST}(\mathrm{T})=\{*, \varepsilon\}$
- FIRST(E’) $=\{+, \varepsilon\}$
-FOLLOW(E) = \{\$,) $\}$
-FOLLOW(E') = \{\$, $)\}$
- FOLLOW (T) = $\{+$,,) $\}$
- $\left.\operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\{+, \$),\right\}$
-FOLLOW(F) = $\{*,+, \$)$,
Two problems: E and T

Making a non-LL(1) grammar LL(1)

- Eliminate common prefixes

$$
\text { Ex: A } \rightarrow \text { B aCD|BaCE }
$$

- Transform left recursion to right recursion Ex: E \rightarrow E + T I T

Eliminate Common Prefixes

- $A \rightarrow \alpha \beta \mid \alpha \delta$

Can become:

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime} \\
& A^{\prime} \rightarrow \beta \mid \delta
\end{aligned}
$$

Doesn't always remove the problem. Why?

Why is left recursion a problem?

Remove Left Recursion

$A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| \ldots\left|\beta_{1}\right| \beta_{2} \mid \ldots$
becomes

$$
\begin{aligned}
& A \rightarrow \beta_{1} A^{\prime}\left|\beta_{2} A^{\prime}\right| \ldots \\
& A^{\prime} \rightarrow \alpha_{1} A^{\prime}\left|\alpha_{2} A^{\prime}\right| \ldots \mid \varepsilon
\end{aligned}
$$

The left recursion becomes right recursion
$\mathrm{A} \rightarrow \mathrm{A} \alpha \mid \beta$ becomes $\mathrm{A} \rightarrow \beta \mathrm{B}, \mathrm{B} \rightarrow \alpha \mathrm{B} \mid \varepsilon$

Bottom-up Parsing

- The parsing problem is finding the correct RHS in a right-sentential form to reduce to get the previous right-sentential form in the derivation

Bottom-up Parsing (cont.)

- Intuition about handles:
- Def: β is the handle of the right sentential form $\gamma=\alpha \beta w$ if and only if $S=>^{*} r m \alpha A w=>r m \alpha \beta w$
- Def: β is a phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2}=>+\alpha_{1} \beta \alpha_{2}$
- Def: β is a simple phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2}=>\alpha_{1} \beta \alpha_{2}$

Bottom-up Parsing (cont.)

- Intuition about handles:
- The handle of a right sentential form is its leftmost simple phrase
- Given a parse tree, it is now easy to find the handle
- Parsing can be thought of as handle pruning

Bottom-up Parsing (cont.)

- Shift-Reduce Algorithms
- Reduce is the action of replacing the handle on the top of the parse stack with its corresponding LHS
- Shift is the action of moving the next token to the top of the parse stack

Bottom-up Parsing (cont.)

- Advantages of LR parsers:
- They will work for nearly all grammars that describe programming languages.
- They work on a larger class of grammars than other bottom-up algorithms, but are as efficient as any other bottom-up parser.
- They can detect syntax errors as soon as it is possible.
- The LR class of grammars is a superset of the class parsable by LL parsers.

Bottom-up Parsing (cont.)

- LR parsers must be constructed with a tool
- Knuth's insight: A bottom-up parser could use the entire history of the parse, up to the current point, to make parsing decisions
- There were only a finite and relatively small number of different parse situations that could have occurred, so the history could be stored in a parser state, on the parse stack

Bottom-up Parsing (cont.)

- An LR configuration stores the state of an LR parser

$$
\left(S_{0} X_{1} S_{1} X_{2} S_{2} \ldots X_{m} S_{m}, a_{i} a_{i}+1 \ldots a_{n} \$\right)
$$

Bottom-up Parsing (cont.)

- LR parsers are table driven, where the table has two components, an ACTION table and a GOTO table
- The ACTION table specifies the action of the parser, given the parser state and the next token
- Rows are state names; columns are terminals
- The GOTO table specifies which state to put on top of the parse stack after a reduction action is done
- Rows are state names; columns are nonterminals

Structure of An LR Parser

Bottom-up Parsing (cont.)

- Initial configuration: $\left(S_{0}, a_{1} \ldots a_{n} \$\right)$
- Parser actions:
- If ACTION[S $\left.{ }_{m}, a_{i}\right]=$ Shift S, the next configuration is:

$$
\left(S_{0} X_{1} S_{1} X_{2} S_{2} \ldots X_{m} S_{m} a_{i} S, a_{i+1} \ldots a_{n} \$\right)
$$

- If ACTION $\left[S_{m}, a_{i}\right]=$ Reduce $A \rightarrow \beta$ and $S=$ GOTO[$\left.S_{m-r}, A\right]$, where $r=$ the length of β, the next configuration is

$$
\left(S_{0} X_{1} S_{1} X_{2} S_{2} \ldots X_{m-r} S_{m-r} A S, a_{i} a_{i+1} \ldots a_{n} \$\right)
$$

Bottom-up Parsing (cont.)

- Parser actions (continued):
- If ACTION $\left[S_{m}, a_{i}\right]=$ Accept, the parse is complete and no errors were found.
- If ACTION $\left[S_{m}, a_{i}\right]=$ Error, the parser calls an error-handling routine.

LR Parsing Table

	Action						Goto			
State	id	+	$*$	$($	$)$	$\$$	E	T	F	
0	S5		S4				1	2	3	
1		S6				accept				
2		R2	S7		R2	R2				
3		R4	R4		R4	R4				
4	S5			S4			8	2	3	
5		R6	R6		R6	R6				
6	S5			S4				9	3	
7	S5			S4					10	
8		S6			S11					
9		R1	S7		R1	R1				
10		R3	R3		R3	R3				
11		R5	R5		R5	R5				

Bottom-up Parsing (cont.)

- A parser table can be generated from a given grammar with a tool, e.g., yacc

Summary

- Syntax analysis is a common part of language implementation
- A lexical analyzer is a pattern matcher that isolates small-scale parts of a program
- Detects syntax errors
- Produces a parse tree
- A recursive-descent parser is an LL parser
- EBNF
- Parsing problem for bottom-up parsers: find the substring of current sentential form
- The LR family of shift-reduce parsers is the most common bottom-up parsing approach

