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Chapter 4 Topics

• Introduction
• Lexical Analysis
• The Parsing Problem
• Recursive-Descent Parsing
• Bottom-Up Parsing
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Introduction

• Language implementation systems must 
analyze source code, regardless of the 
specific implementation approach

• Nearly all syntax analysis is based on a 
formal description of the syntax of the 
source language (BNF)
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Syntax Analysis

• The syntax analysis portion of a language 
processor nearly always consists of two 
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a 
regular grammar)

– A high-level part called a syntax analyzer, or 
parser (mathematically, a push-down 
automaton based on a context-free grammar, 
or BNF)
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Using BNF to Describe Syntax

• Provides a clear and concise syntax 
description

• The parser can be based directly on the BNF
• Parsers based on BNF are easy to maintain
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Reasons to Separate Lexical and Syntax 
Analysis

• Simplicity - less complex approaches can 
be used for lexical analysis; separating 
them simplifies the parser

• Efficiency - separation allows optimization 
of the lexical analyzer

• Portability - parts of the lexical analyzer 
may not be portable, but the parser always 
is portable
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Lexical Analysis

• A lexical analyzer is a pattern matcher for 
character strings

• A lexical analyzer is a “front-end” for the 
parser

• Identifies substrings of the source program 
that belong together - lexemes
– Lexemes match a character pattern, which is 

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT
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Lexical Analysis (continued)

• The lexical analyzer is usually a function that is 
called by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a 

software tool that constructs table-driven lexical 
analyzers given such a description

– Design a state diagram that describes the tokens and 
write a program that implements the state diagram

– Design a state diagram that describes the tokens and 
hand-construct a table-driven implementation of the 
state diagram
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State Diagram Design

– A naïve state diagram would have a transition 
from every state on every character in the 
source language - such a diagram would be 
very large!
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Lexical Analysis (cont.)

• In many cases, transitions can be combined 
to simplify the state diagram
– When recognizing an identifier, all uppercase 

and lowercase letters are equivalent
• Use a character class that includes all letters

– When recognizing an integer literal, all digits are 
equivalent - use a digit class
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Lexical Analysis (cont.)

• Reserved words and identifiers can be 
recognized together (rather than having a 
part of the diagram for each reserved word)
– Use a table lookup to determine whether a 

possible identifier is in fact a reserved word
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Lexical Analysis (cont.)

• Convenient utility subprograms:
– getChar - gets the next character of input, puts 

it in nextChar, determines its class and puts 
the class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated, 
lexeme

– lookup - determines whether the string in 
lexeme is a reserved word (returns a code)
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State Diagram
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Lexical Analysis (cont.)

Implementation (assume initialization):
int lex() {
getChar();
switch (charClass) {
case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT)
{
addChar();
getChar();

}
return lookup(lexeme);
break;

…
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Lexical Analysis (cont.)

…
case DIGIT: 

addChar();
getChar();
while (charClass == DIGIT) {

addChar();
getChar();

}
return INT_LIT;
break;

}  /* End of switch */
}  /* End of function lex */
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The Parsing Problem

• Goals of the parser, given an input program:
– Find all syntax errors; for each, produce an 

appropriate diagnostic message, and recover 
quickly

– Produce the parse tree, or at least a trace of the 
parse tree, for the program
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The Parsing Problem (cont.)

• Two categories of parsers
– Top down - produce the parse tree, beginning 

at the root
• Order is that of a leftmost derivation
• Traces or builds the parse tree in preorder

– Bottom up - produce the parse tree, beginning 
at the leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the 
input
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The Parsing Problem (cont.)

• Top-down Parsers
– Given a sentential form, xAα , the parser must 

choose the correct A-rule to get the next 
sentential form in the leftmost derivation, using 
only the first token produced by A

• The most common top-down parsing 
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation
– LL means `Left-to-right Leftmost derivation’
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The Parsing Problem (cont.)

• Bottom-up parsers
– Given a right sentential form, α, determine what 

substring of α is the right-hand side of the rule 
in the grammar that must be reduced to 
produce the previous sentential form in the 
right derivation

– The most common bottom-up parsing 
algorithms are in the LR family

– LR stands for `Left-to-right Rightmost 
derivation’
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The Parsing Problem (cont.)

• The Complexity of Parsing
– Parsers that work for any unambiguous 

grammar are complex and inefficient ( O(n3), 
where n is the length of the input )

– Compilers use parsers that only work for a 
subset of all unambiguous grammars, but do it 
in linear time ( O(n), where n is the length of the 
input )
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Recursive-Descent Parsing

• There is a subprogram for each 
nonterminal in the grammar, which can 
parse sentences that can be generated by 
that nonterminal

• EBNF is ideally suited for being the basis for 
a recursive-descent parser, because EBNF  
minimizes the number of nonterminals



Copyright © 2006 Jenhui Chen. All rights reserved. 1-22

Recursive-Descent Parsing (cont.)

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | ( <expr> )
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Recursive-Descent Parsing (cont.)

• Assume we have a lexical analyzer named 
lex, which puts the next token code in 
nextToken

• The coding process when there is only one 
RHS:
– For each terminal symbol in the RHS, compare it 

with the next input token; if they match, 
continue, else there is an error

– For each nonterminal symbol in the RHS, call its 
associated parsing subprogram
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Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language
generated by the rule:
<expr> → <term> {(+ | -) <term>}

*/

void expr() {

/* Parse the first term */

term(); 
…
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Recursive-Descent Parsing (cont.)

/* As long as the next token is + or -, call 
lex to get the next token, and parse the 
next term */

while (nextToken == PLUS_CODE || 
nextToken == MINUS_CODE){

lex();
term();  

}
}

• This particular routine does not detect errors
• Convention: Every parsing routine leaves the next 

token in nextToken
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Recursive-Descent Parsing (cont.)

• A nonterminal that has more than one RHS 
requires an initial process to determine 
which RHS it is to parse
– The correct RHS is chosen on the basis of the 

next token of input (the lookahead)
– The next token is compared with the first token 

that can be generated by each RHS until a match 
is found

– If no match is found, it is a syntax error
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Recursive-Descent Parsing (cont.)

/* Function factor
Parses strings in the language
generated by the rule: 
<factor> -> id  |  (<expr>)  */

void factor() {

/* Determine which RHS */

if (nextToken) == ID_CODE)

/* For the RHS id, just call lex */

lex();
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Recursive-Descent Parsing (cont.)

/* If the RHS is (<expr>) – call lex to pass 
over the left parenthesis, call expr, and
check for the right parenthesis */

else if (nextToken == LEFT_PAREN_CODE) {
lex();
expr();
if (nextToken == RIGHT_PAREN_CODE)

lex();
else

error();
}  /* End of else if (nextToken == ...  */

else error(); /* Neither RHS matches */
}
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Recursive-Descent Parsing (cont.)

• The LL Grammar Class
– The Left Recursion Problem

• If a grammar has left recursion, either direct or 
indirect, it cannot be the basis for a top-down 
parser

– A grammar can be modified to remove left recursion
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Recursive-Descent Parsing (cont.)

• The other characteristic of grammars that 
disallows top-down parsing is the lack of 
pairwise disjointness
– The inability to determine the correct RHS on 

the basis of one token of lookahead
– Def: FIRST(α) = {a | α =>* aβ }

(If α =>* ε, ε is in FIRST(α))
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Recursive-Descent Parsing (cont.)

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that 

has more than one RHS, for each pair of rules, A 
→ αi and A → αj, it must be true that 

FIRST(αi) ∩ FIRST(αj) = φ
• Examples:

A → a  |  bB |  cAb
A → a  |  aB
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Recursive-Descent Parsing (cont.)

• Left factoring can resolve the problem
Replace

<variable> → identifier  |  identifier [<expression>]
with

<variable> → identifier <new>
<new> → ε |  [<expression>]

or
<variable> → identifier [[<expression>]]
(the outer brackets are metasymbols of EBNF)
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FIRST Sets

• FIRST(α) is the set of all terminal symbols 
that can begin some sentential form that 
starts with α

• FIRST(α) = {a in Vt | α * aβ } U { ε } if α * 
ε

• Example: 
<stmt> simple | begin <stmts> end
FIRST(<stmt>) = {simple, begin}
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Computing FIRST sets

Initially FIRST(A) is empty
1. For productions A a β, where a in Vt

Add { a } to FIRST(A) 
2. For productions A ε

Add { ε } to FIRST(A)
3. For productions A α B β, where α * ε and 

NOT (B ε)
Add FIRST(αB) to FIRST(A)

4. For productions A α, where α * ε
Add FIRST(α) and { ε } to FIRST(A)
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To compute FIRST across strings of 
terminals and non-terminals:

FIRST(ε) = { ε }
FIRST(Aα) = A   if A is a terminal

= FIRST(A) U FIRST(α)
if A ε

= FIRST(A) otherwise
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Example 1

• S a S e
• S B
• B b B e
• B C
• C c C e
• C d

• FIRST(C) =
• FIRST(B) =
• FIRST(S) =
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Example 1

• S a S e
• S B
• B b B e
• B C
• C c C e
• C d

• FIRST(C) = {c,d}
• FIRST(B) = {b,c,d}
• FIRST(S) = {a,b,c,d}
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Example 2

• P i  | c | n T S
• Q P | a S | b S c S T
• R b | ε
• S c | R n | ε
• T R S q

• FIRST(P) = 
• FIRST(Q) =
• FIRST(R) =
• FIRST(S) =
• FIRST(T) =
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Example 2

• P i  | c | n T S
• Q P | a S | b S c S T
• R b | ε
• S c | R n | ε
• T R S q

• FIRST(P) = {i,c,n}
• FIRST(Q) = {i,c,n,a,b}
• FIRST(R) = {b, ε}
• FIRST(S) = {c,b,n, ε}
• FIRST(T) = {b,c,n,q}
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Example 3

• S a S e | S T S
• T R S e | Q
• R r S r | ε
• Q S T | ε

• FIRST(S) =
• FIRST(R) =
• FIRST(T) =
• FIRST(Q) =
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Example 3

• S a S e | S T S
• T R S e | Q
• R r S r | ε
• Q S T | ε

• FIRST(S) = {a}
• FIRST(R) = {r, ε}
• FIRST(T) = {r,a, ε}
• FIRST(Q) = {a, ε}
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FOLLOW Sets

• FOLLOW(A) is the set of terminals (including 
end of file) that may follow non-terminal A
in some sentential form.

• FOLLOW(A) = {a in Vt | S + …Aa…} U {$ 
(end of file)} if S + …A

• For example, consider L + (())(L)L --
Both ‘)’ and end of file can follow L
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Computing FOLLOW(A)

1. If S is a start symbol, put $ in FOLLOW(S)
2. Productions of the form B α A a, then

add { a } to FOLLOW(A)
3. Productions of the form B α A β,

Add FIRST(β) – {ε} to FOLLOW(A)
INTUITION:  Suppose B AX and FIRST(X) = {c}
S + α B β α A X β + α A c δ β
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4. Productions of the form B α A
or B α A β where β * ε
Add FOLLOW(B) to FOLLOW(A)
INTUITION: 
– Suppose B Y A

S + α B β α Y A β
– Suppose B A X and X ε

S + α B β α A X β α A β

NOTE: ε never in FOLLOW sets
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Example 4

• S a S e | B
• B b B C f | C
• C c C g | d |  ε

• FIRST(C) = {c,d, ε}
• FIRST(B) = {b,c,d, ε}
• FIRST(S) = {a,b,c,d, ε}

• FOLLOW(C) = 

• FOLLOW(B) = 

• FOLLOW(S) =        
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Example 4

• S a S e | B
• B b B C f | C
• C c C g | d |  ε

• FIRST(C) = {c,d, ε}
• FIRST(B) = {b,c,d, ε}
• FIRST(S) = {a,b,c,d, ε}

• FOLLOW(C) = 

• FOLLOW(B) = 

• FOLLOW(S) = {$, e }

g,f

c,d,f
FOLLOW(B) = {c,d,f,$,e}

FOLLOW(C) = {c,d,e,f,g,$}
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Example 5

• S ( A) | ε
• A T E
• E , T E | ε
• T ( A ) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {‘,’, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(E) =
• FOLLOW(T) =
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Example 5

• S ( A) | ε
• A T E
• E , T E | ε
• T ( A ) | a | b | c

• FIRST(T) = {(,a,b,c}
• FIRST(E) = {‘,’, ε }
• FIRST(A) = {(,a,b,c}
• FIRST(S) = {(, ε}

• FOLLOW(S) = {$}
• FOLLOW(A) = { ) }
• FOLLOW(E) = { ) }
• FOLLOW(T) = {‘,’, )}
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Example 6

• E T E’
• E’ + T E’ | ε
• T F T’
• T’ * F T’ | ε
• F ( E ) | id

• FIRST(F) = FIRST(T) = 
FIRST(E)  = {(,id}

• FIRST(T’) = {*,ε}
• FIRST(E’) = {+,ε}

• FOLLOW(E) =
• FOLLOW(E’) =
• FOLLOW(T) =
• FOLLOW(T’) =
• FOLLOW(F) =
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Example 6

• E T E’
• E’ + T E’ | ε
• T F T’
• T’ * F T’ | ε
• F ( E ) | id

• FIRST(F) = FIRST(T) = FIRST(E)  = {(,id}
• FIRST(T’) = {*,ε}
• FIRST(E’) = {+,ε}

• FOLLOW(E) = {$,)}
• FOLLOW(E’) = {$,)}
• FOLLOW(T) = {+,$,)}
• FOLLOW(T’) = {+,$,)}
• FOLLOW(F) = {*,+,$,)}
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Example 7

• S A B C | A D
• A a | a A
• B b | c | ε
• C D a C
• D b b | c c

• FIRST(D) = FIRST(C)  = {b,c}
• FIRST(B) = {b,c,ε}
• FIRST(A) = FIRST(S) = {a}

• FOLLOW(S) =
• FOLLOW(A) =
• FOLLOW(B) =
• FOLLOW(C) =
• FOLLOW(D) =
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Example 7

• S A B C | A D
• A a | a A
• B b | c | ε
• C D a C
• D b b | c c

• FIRST(D) = FIRST(C)  = {b,c}
• FIRST(B) = {b,c,ε}
• FIRST(A) = FIRST(S) = {a}

• FOLLOW(S) = {$}
• FOLLOW(A) = {b,c}
• FOLLOW(B) = {b,c}
• FOLLOW(C) = {$}
• FOLLOW(D) = {a,$}
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Writing an LL(1) Grammar

• The two most common obstacles to “LL(1)-
ness” are
– Left recursion
– Common prefixes
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

SS

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

S

SS

SS

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

S

SS

SS

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

S S SS

SS

SS

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

S S SS

SS

SS

P
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Top Down (LL) Parsing

begin       simplestmt ;     simplestmt ;      end      $

S S SS

SS

ε

SS

P
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Grammar

S  a B
|  b C

B  b b C 
C  c c

Two strings in the language: abbcc and bcc
Can choose between them based on the first 

character of the input.
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LL(k) parsing

• Process input k symbols at a time.
• Initially, current non-terminal is start symbol.
• Algorithm

– Given next k input tokens and current non-terminal T, choose 
a rule R (T …)

– For each element X in rule R from left to right, 
if X is a non-terminal, call function for X
else if symbol X is a terminal, see if next input symbol 
matches X; if so, update from the input

• Typically, we consider LL(1)
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Two Approaches

• Recursive Descent parsing 
– Code tailored to the grammar

• Table Driven – predictive parsing
– Table tailored to the grammar
– General Algorithm
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Writing a Recursive Descent Parser

• Procedure for each non-terminal.  
Use next token (lookahead) to choose which production to 
mimic.
– for non-terminal X, call procedure X()
– for terminals X, call ‘match(X)’

• match(symbol) {
if (symbol = lookahead) 

lookahead = yylex()
else error()  }

• Call yylex() before the first call to get first 
lookahead.
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Back to grammar

S() {
if (lookahead==a) { match(a);B(); }

else if (lookahead == b) { match(b); 
C(); }

else error(“expecting a or b”);
}
B() {match(b); match(b); C();}
C() { match(c) ; match(c) ;}

main() {
lookahead==yylex();

S();
}

S      a B
|  b C

B b b C
C c c
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Parsing abbcc

S Remaining input: abbcc
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Parsing abbcc

S

a B

Remaining input: bbcc
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Parsing abbcc

S

a B

b    b C

Remaining input: cc
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Parsing abbcc

S

a B

b    b C

c    c

Remaining input:
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How do we find the lookaheads?

• Can compute PREDICT sets from FIRST and 
FOLLOW

• PREDICT(A α) = 
FIRST(α) – {ε} U FOLLOW(A) if ε in FIRST(α)
FIRST(α) if ε not in FIRST(α)

NOTE: ε never in PREDICT sets
For LL(k) grammars, the PREDICT sets for a given 

non-terminal will be disjoint.
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Example

Production Predict
E T E’ = FIRST(T) = {(,id}

E’ + T E’ {+}

E’ ε = FOLLOW(E’) = {$,)}

T F T’ = FIRST(F) = {(,id}

T’ * F T’ {*}

T’ ε = FOLLOW(T’) = {+,$,)}

F id {id}

F ( E ) {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E)  = {(,id}
•FIRST(T’) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}
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Parsing a + b * c

E Remaining input: a+b*c
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Parsing a + b * c

E Remaining input:
T      E’

a+b*c
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Parsing a + b * c

E Remaining input:
T E’

F      T’

a+b*c
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Parsing a + b * c

E Remaining input:
T E’

F T’

id
a

+b*c
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Parsing a + b * c

E Remaining input:
T E’

F      T’

id
a

ε

+b*c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T    E’

id
a

ε

b*c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T E’

id
a

ε F     T’

b*c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T E’

id
a

id
b

ε F T’

*c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T E’

id
a

* F    T’id
b

ε F     T’

c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T E’

id
a

* F T’id
b

ε F     T’

id
c
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T E’

id
a

* F    T’id
b

ε F     T’

id
c

ε
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Parsing a + b * c

E Remaining input:
T      E’

F      T’ + T    E’

id
a

* F    T’id
b

ε F     T’ ε

id
c

ε
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Stacks in Recursive Descent Parsing

• Runtime stack
• Procedure activations 

correspond to a path in 
parse tree from root to 
some interior node

E

E’

T

id
b

F     
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LL(1) Predictive Parse Tables

An LL(1) Parse table is a mapping T: Vn x Vt
production P or error

1. For all productions A α do
• For each terminal a in Predict(A α), 

T[A][a] = A α

2. Every undefined table entry is an error.



Copyright © 2006 Jenhui Chen. All rights reserved. 1-86

Using LL(1) Parse Tables

ALGORITHM
INPUT: token sequence to be parsed, followed 

by ‘$’ (end of file)
DATA STRUCTURES:
• Parse stack: Initialized by pushing ‘$’ and 

then pushing the start symbol
• Parse table T
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push($); push(start_symbol); lookahead = yylex()
repeat

X = pop(stack)
if X is a terminal symbol or $ then

if X = lookahead then
lookahead = yylex()

else error()
else  /* X is non-terminal */

if T[X][lookahead] = X Y1 Y2 …Ym

push(Ym) … push (Y1)
else error()

until X = $ token
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Expression Grammar

NT/T + * ( ) ID $

E T E’ T E’

E’ + T E’ ε ε

T F T’ F T’

T’ ε * F T’ ε ε

F ( E ) ID
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Parsing a + b * c

Stack Input Action
$E a+b*c$ E T E’

$E’T a+b*c$ T F T’

$E’T’F a+b*c$ F id
$E’T’id a+b*c$ match
$E’T’ +b*c$ T’ ε

$E’ +b*c$ E’ + T E’

$E’T+ +b*c$ match
$E’T b*c$ T F T’

Stack Input Action
$E’T’F b*c$ F id
$E’T’id b*c$ match
$E’T’ *c$ T’ * F T’

$E’T’F* *c$ match
$E’T’F c$ F id
$E’T’id c$ match

$E’ $ E’ ε

$E’T’ $ T’ ε

$ $ accept
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Stack in Predictive Parsing

• Algorithm data structure
• Holds terminals and non-terminals from 

the grammar
– terminals – still need to be matched from the 

input
– non-terminals – still need to be expanded
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Making a grammar LL(1)

• Not all context free languages have LL(1) 
grammars

• Can show a grammar is not LL(1) by looking 
at the predict sets
– For LL(a) grammars, the PREDICT sets for a 

given non-terminal will be disjoint.
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Example

Production Predict
E E + T = FIRST(E) = {(,id}

E T = FIRST(T) = {(,id}

T T * F = FIRST(T) = {(,id}

T F = FIRST(F) = {(,id}

F id = {id}

F ( E ) = {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E)  = {(,id}
•FIRST(T) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}

Two problems: E and T
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Making a non-LL(1) grammar LL(1)

• Eliminate common prefixes
Ex: A B a C D |  B a C E

• Transform left recursion to right recursion
Ex: E E + T | T
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Eliminate Common Prefixes

• A α β | α δ
Can become:

A α A’
A’ β |  δ

Doesn’t always remove the problem. Why?
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Why is left recursion a problem?

A

A      α

A      α

A      α
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Remove Left Recursion

A A α1 | A α2 |  … | β1 | β2 | …
becomes
A β1 A’| β2 A’| …
A’ α1 A’ | α2 A’ | … | ε

Τhe left recursion becomes right recursion
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A

A      α

A      α

A      α

A A α | β  becomes  A β B, B α B |

β

A

β       Β

α       Β

α       Β

α       Β

ε

ε
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Bottom-up Parsing

• The parsing problem is finding the correct 
RHS in a right-sentential form to reduce to 
get the previous right-sentential form in 
the derivation
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Bottom-up Parsing (cont.)

•Intuition about handles:
– Def: β is the handle of the right sentential form

γ = αβw if and only if S =>*rm αAw =>rm αβw
– Def: β is a phrase of the right sentential form

γ if and only if S =>* γ = α1Aα2 =>+ α1βα2
– Def: β is a simple phrase of the right sentential 

form γ if and only if S =>* γ = α1Aα2 => α1βα2
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Bottom-up Parsing (cont.)

• Intuition about handles:
– The handle of a right sentential form is its 

leftmost simple phrase
– Given a parse tree, it is now easy to find the 

handle
– Parsing can be thought of as handle pruning
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Bottom-up Parsing (cont.)

• Shift-Reduce Algorithms
– Reduce is the action of replacing the handle on 

the top of the parse stack with its 
corresponding LHS

– Shift is the action of moving the next token to 
the top of the parse stack
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Bottom-up Parsing (cont.)

• Advantages of LR parsers:
– They will work for nearly all grammars that 

describe programming languages.
– They work on a larger class of grammars than 

other bottom-up algorithms, but are as efficient 
as any other bottom-up parser.

– They can detect syntax errors as soon as it is 
possible.

– The LR class of grammars is a superset of the  
class parsable by LL parsers.
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Bottom-up Parsing (cont.)

• LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could 

use the entire history of the parse, up to 
the current point, to make parsing 
decisions
– There were only a finite and relatively small 

number of different parse situations that could 
have occurred, so the history could be stored in 
a parser state, on the parse stack
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Bottom-up Parsing (cont.)

• An LR configuration stores the state of an 
LR parser

(S0X1S1X2S2…XmSm, aiai+1…an$)
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Bottom-up Parsing (cont.)

• LR parsers are table driven, where the 
table has two components, an ACTION 
table and a GOTO  table
– The ACTION table specifies the action of the 

parser, given the parser state and the next 
token

• Rows are state names; columns are terminals
– The GOTO table specifies which state to put 

on top of the parse stack after a reduction 
action is done

• Rows are state names; columns are nonterminals
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Structure of An LR Parser
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Bottom-up Parsing (cont.)

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next 
configuration is:  
(S0X1S1X2S2…XmSmaiS, ai+1…an$)

– If ACTION[Sm, ai] = Reduce A → β and S = 
GOTO[Sm-r, A], where r = the length of β, the 
next configuration is
(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)
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Bottom-up Parsing (cont.)

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is 

complete and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an 

error-handling routine.
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LR Parsing Table
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Bottom-up Parsing (cont.)

• A parser table can be generated from a 
given grammar with a tool, e.g., yacc
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Summary

• Syntax analysis is a common part of language 
implementation

• A lexical analyzer is a pattern matcher that isolates 
small-scale parts of a program
– Detects syntax errors
– Produces a parse tree

• A recursive-descent parser is an LL parser
– EBNF

• Parsing problem for bottom-up parsers: find the 
substring of current sentential form

• The LR family of shift-reduce parsers is the most 
common bottom-up parsing approach
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