
ISBN 0-321-33025-0

Chapter 6
Data Type

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
E-mail: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

Copyright © 2006 Jenhui Chen. All rights reserved. 1-2

Chapter 6 Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types

Copyright © 2006 Jenhui Chen. All rights reserved. 1-3

Introduction

• A data type defines a collection of data
objects and a set of predefined operations
on those objects

• A descriptor is the collection of the
attributes of a variable

• An object represents an instance of a
user-defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-4

Primitive Data Types

• Almost all programming languages provide
a set of primitive data types

• Primitive data types: Those not defined in
terms of other data types

• Some primitive data types are merely
reflections of the hardware

• Others require little non-hardware support

Copyright © 2006 Jenhui Chen. All rights reserved. 1-5

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different
integer types in a language

• Java’s signed integer sizes: byte, short,
int, long

Copyright © 2006 Jenhui Chen. All rights reserved. 1-6

Primitive Data Types: Floating Point

• Model real numbers, but only as
approximations

• Languages for scientific use support at
least two floating-point types (e.g., float
and double; sometimes more

• Usually exactly like the hardware, but not
always

• IEEE Floating-Point
Standard 754

Copyright © 2006 Jenhui Chen. All rights reserved. 1-7

Primitive Data Types: Decimal

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits
• Advantage: accuracy
• Disadvantages: limited range, wastes

memory

Copyright © 2006 Jenhui Chen. All rights reserved. 1-8

Primitive Data Types: Boolean

• Simplest of all
• Range of values: two elements, one for

“true” and one for “false”
• Could be implemented as bits, but often as

bytes
– Advantage: readability

Copyright © 2006 Jenhui Chen. All rights reserved. 1-9

Primitive Data Types: Character

• Stored as numeric codings
• Most commonly used coding: ASCII
• An alternative, 16-bit coding: Unicode

– Includes characters from most natural
languages

– Originally used in Java
– C# and JavaScript also support Unicode

Copyright © 2006 Jenhui Chen. All rights reserved. 1-10

Character String Types

• Values are sequences of characters
• Design issues:

– Is it a primitive type or just a special kind of
array?

– Should the length of strings be static or dynamic?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-11

Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

Copyright © 2006 Jenhui Chen. All rights reserved. 1-12

Character String Type in Certain
Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions that

provide operations
• SNOBOL4 (a string manipulation language)

– Primitive
– Many operations, including elaborate pattern

matching
• Java

– Primitive via the String class

Copyright © 2006 Jenhui Chen. All rights reserved. 1-13

Character String Length Options

• Static: COBOL, Java’s String class
• Limited Dynamic Length: C and C++

– In C-based language, a special character is used
to indicate the end of a string’s characters,
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length options

Copyright © 2006 Jenhui Chen. All rights reserved. 1-14

Character String Type Evaluation

• Aid to writability
• As a primitive type with static length, they

are inexpensive to provide--why not have
them?

• Dynamic length is nice, but is it worth the
expense?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-15

Character String Implementation

• Static length: compile-time descriptor
• Limited dynamic length: may need a run-

time descriptor for length (but not in C and
C++)

• Dynamic length: need run-time descriptor;
allocation/de-allocation is the biggest
implementation problem

Copyright © 2006 Jenhui Chen. All rights reserved. 1-16

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

Copyright © 2006 Jenhui Chen. All rights reserved. 1-17

User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated
with the set of positive integers

• Examples of primitive ordinal types in Java
– integer
– char
– boolean

Copyright © 2006 Jenhui Chen. All rights reserved. 1-18

Enumeration Types

• All possible values, which are named
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-19

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a
color as a number

• Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added)
– No enumeration variable can be assigned a

value outside its defined range
– Ada, C#, and Java 5.0 provide better support for

enumeration than C++ because enumeration
type variables in these languages are not
coerced into integer types

Copyright © 2006 Jenhui Chen. All rights reserved. 1-20

Subrange Types

• An ordered contiguous subsequence of an
ordinal type
– Example: 12..18 is a subrange of integer type

• Ada’s code design
type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;
subtype Index is Integer range 1..100;

Day1: Days;
Day2: Weekday;
Day2 := Day1;

Copyright © 2006 Jenhui Chen. All rights reserved. 1-21

Subrange Evaluation

• Aid to readability
– Make it clear to the readers that variables of

subrange can store only certain range of values
• Reliability

– Assigning a value to a subrange variable that is
outside the specified range is detected as an
error

Copyright © 2006 Jenhui Chen. All rights reserved. 1-22

Implementation of User-Defined
Ordinal Types

• Enumeration types are implemented as
integers

• Subrange types are implemented like the
parent types with code inserted (by the
compiler) to restrict assignments to
subrange variables

Copyright © 2006 Jenhui Chen. All rights reserved. 1-23

Array Types

• An array is an aggregate of homogeneous
data elements in which an individual
element is identified by its position in the
aggregate, relative to the first element.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-24

Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of

subscripts?
• Can array objects be initialized?
• Are any kind of slices allowed?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-25

Array Indexing

• Indexing (or subscripting) is a mapping
from indices to elements
array_name (index_value_list) → an element

• Index Syntax
– FORTRAN, PL/I, Ada use parentheses

• Ada explicitly uses parentheses to show uniformity
between array references and function calls because
both are mappings

– Most other languages use brackets, such as C

Copyright © 2006 Jenhui Chen. All rights reserved. 1-26

Arrays Index (Subscript) Types

• FORTRAN, C: integer only
• Pascal: any ordinal type (integer, Boolean,

char, enumeration)
• Ada: integer or enumeration (includes

Boolean and char)
• Java: integer types only
• C, C++, Perl, and Fortran do not specify

range checking
• Java, ML, C# specify range checking

Copyright © 2006 Jenhui Chen. All rights reserved. 1-27

Subscript Binding and Array Categories

• Static : subscript ranges are statically
bound and storage allocation is static
(before run-time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic : subscript ranges are
statically bound, but the allocation is done
at declaration time
– Advantage: space efficiency

Copyright © 2006 Jenhui Chen. All rights reserved. 1-28

Subscript Binding and Array Categories
(continued)

• Stack-dynamic : subscript ranges are
dynamically bound and the storage
allocation is dynamic (done at run-time)
– Advantage: flexibility (the size of an array need

not be known until the array is to be used)
• Fixed heap-dynamic : similar to fixed

stack-dynamic: storage binding is dynamic
but fixed after allocation (i.e., binding is
done when requested and storage is
allocated from heap, not stack)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-29

Subscript Binding and Array Categories
(continued)

• Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times
– Advantage: flexibility (arrays can grow or shrink

during program execution)
– For example, Queue and Link List

Copyright © 2006 Jenhui Chen. All rights reserved. 1-30

Subscript Binding and Array Categories
(continued)
• C and C++ arrays that include static

modifier are static
• C and C++ arrays without static modifier

are fixed stack-dynamic
• Ada arrays can be stack-dynamic
• C and C++ provide fixed heap-dynamic

arrays
• C# includes a second array class ArrayList

that provides fixed heap-dynamic
• Perl and JavaScript support heap-dynamic

arrays

Copyright © 2006 Jenhui Chen. All rights reserved. 1-31

Array Initialization

• Some language allow initialization at the
time of storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}
– Character strings in C and C++
char name [] = “freddie”;
– Arrays of strings in C and C++
char *names [] = {“Bob”, “Jake”, “Joe”];
– Java initialization of String objects
String[] names = {“Bob”, “Jake”, “Joe”};

Copyright © 2006 Jenhui Chen. All rights reserved. 1-32

Arrays Operations

• APL provides the most powerful array
processing operations for vectors and
matrixes as well as unary operators (for
example, to reverse column elements)

• Ada allows array assignment but also
catenation

• Fortran provides elemental operations
because they are between pairs of array
elements
– For example, + operator between two arrays

results in an array of the sums of the element
pairs of the two arrays

Copyright © 2006 Jenhui Chen. All rights reserved. 1-33

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned
array in which all of the rows have the same
number of elements and all columns have
the same number of elements

• A jagged matrix has rows with varying
number of elements
– Possible when multi-dimensioned arrays

actually appear as arrays of arrays

Copyright © 2006 Jenhui Chen. All rights reserved. 1-34

Slices

• A slice is some substructure of an array;
nothing more than a referencing
mechanism

• Slices are only useful in languages that
have array operations

Copyright © 2006 Jenhui Chen. All rights reserved. 1-35

Slice Examples

• Fortran 95
Integer, Dimension (10) :: Vector
Integer, Dimension (3, 3) :: Mat
Integer, Dimension (3, 3, 4) :: Cube

Vector (3:6) is a four element array, element 3,
4, 5, 6.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-36

Slices Examples in Fortran 95

Copyright © 2006 Jenhui Chen. All rights reserved. 1-37

Implementation of Arrays

• Access function maps subscript expressions
to an address in the array

• Access function for single-dimensioned
arrays:
address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-38

Accessing Multi-dimensioned Arrays

• Two common ways:
– Row major order (by rows) – used in most

languages
– column major order (by columns) – used in

Fortran

Copyright © 2006 Jenhui Chen. All rights reserved. 1-39

Locating an Element in a Multi-
dimensioned Array
•General format

Location (a[I,j]) = address of a [row_lb,col_lb] +
(((I - row_lb) * n) + (j - col_lb)) * element_size

Copyright © 2006 Jenhui Chen. All rights reserved. 1-40

Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

Copyright © 2006 Jenhui Chen. All rights reserved. 1-41

Associative Arrays

• An associative array is an unordered
collection of data elements that are
indexed by an equal number of values
called keys
– User defined keys must be stored

• Design issues: What is the form of
references to elements

Copyright © 2006 Jenhui Chen. All rights reserved. 1-42

Associative Arrays in Perl

• Names begin with %; literals are delimited
by parentheses
%salaries = (“Gary" => 75000, “Perry" =>
57000, “Mary” => 55750, …);

• Subscripting is done using braces and keys
$salaries{“Perry"} = 58850;
– Elements can be removed with delete
delete $salaries{“Gary"};

Copyright © 2006 Jenhui Chen. All rights reserved. 1-43

Record Types

• A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

• Design issues:
– What is the syntactic form of references to the

field?
– Are elliptical references allowed

Copyright © 2006 Jenhui Chen. All rights reserved. 1-44

Definition of Records

• COBOL uses level numbers to show nested
records; others use recursive definition

• Record Field References
1. COBOL
field_name OF record_name_1 OF ... OF

record_name_n
2. Others (dot notation)
record_name_1.record_name_2. ...

record_name_n.field_name

Copyright © 2006 Jenhui Chen. All rights reserved. 1-45

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition
01 EMP-REC.

02 EMP-NAME.
05 FIRST PIC IS X(20).
05 MID PIC IS X(10).
05 LAST PIC IS X(20).

02 HOURLY-RATE PIC IS 99V99.

Copyright © 2006 Jenhui Chen. All rights reserved. 1-46

Definition of Records in Ada

• Record structures are indicated in an
orthogonal way
type Emp_Rec_Type is record

First: String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly_Rate: Float;

end record;
Emp_Rec: Emp_Rec_Type;

Copyright © 2006 Jenhui Chen. All rights reserved. 1-47

References to Records

• Most language use dot notation
Emp_Rec.Name

• Fully qualified references must include all
record names

• Elliptical references allow leaving out record
names as long as the reference is
unambiguous, for example in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST of
EMP-REC are elliptical references to the
employee’s first name

Copyright © 2006 Jenhui Chen. All rights reserved. 1-48

Operations on Records

• Assignment is very common if the types are
identical

• Ada allows record comparison
• Ada records can be initialized with

aggregate literals
• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the
corresponding field in the target record

Copyright © 2006 Jenhui Chen. All rights reserved. 1-49

Evaluation and Comparison to Arrays

• Straight forward and safe design
• Records are used when collection of data

values is heterogeneous
• Access to array elements is much slower

than access to record fields, because
subscripts are dynamic (field names are
static)

• Dynamic subscripts could be used with
record field access, but it would disallow
type checking and it would be much slower

Copyright © 2006 Jenhui Chen. All rights reserved. 1-50

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

Copyright © 2006 Jenhui Chen. All rights reserved. 1-51

Unions Types

• A union is a type whose variables are
allowed to store different type values at
different times during execution

• Design issues
– Should type checking be required?
– Should unions be embedded in records?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-52

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union
constructs in which there is no language
support for type checking; the union in
these languages is called free union

• Type checking of unions require that each
union include a type indicator called a
discriminant
– Supported by Ada

Copyright © 2006 Jenhui Chen. All rights reserved. 1-53

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;
end case;

end record;

Copyright © 2006 Jenhui Chen. All rights reserved. 1-54

Ada Union Type Illustrated

A discriminated union of three shape variables

Copyright © 2006 Jenhui Chen. All rights reserved. 1-55

Evaluation of Unions

• Potentially unsafe construct
– Do not allow type checking

• Java and C# do not support unions
– Reflective of growing concerns for safety in

programming language

Copyright © 2006 Jenhui Chen. All rights reserved. 1-56

Pointer and Reference Types

• A pointer type variable has a range of
values that consists of memory addresses
and a special value, nil

• Provide the power of indirect addressing
• Provide a way to manage dynamic memory
• A pointer can be used to access a location

in the area where storage is dynamically
created (usually called a heap)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-57

Design Issues of Pointers

• What are the scope of and lifetime of a
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of
value to which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-58

Pointer Operations

• Two fundamental operations: assignment
and dereferencing

• Assignment is used to set a pointer
variable’s value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
j = *ptr
sets j to the value located at ptr

Copyright © 2006 Jenhui Chen. All rights reserved. 1-59

Pointer Assignment Illustrated

The assignment operation j = *ptr

Copyright © 2006 Jenhui Chen. All rights reserved. 1-60

Problems with Pointers

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable

that has been de-allocated
• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no
longer accessible to the user program (often
called garbage)

• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly
created heap-dynamic variable

Copyright © 2006 Jenhui Chen. All rights reserved. 1-61

Pointers in Ada

• Some dangling pointers are disallowed
because dynamic objects can be
automatically de-allocated at the end of
pointer's type scope

• The lost heap-dynamic variable problem is
not eliminated by Ada

Copyright © 2006 Jenhui Chen. All rights reserved. 1-62

Pointers in C and C++

• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of

when it was allocated
• Used for dynamic storage management and

addressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators
• Domain type need not be fixed (void *)
• void * can point to any type and can be type

checked (cannot be de-referenced)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-63

Pointer Arithmetic in C and C++

float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

Copyright © 2006 Jenhui Chen. All rights reserved. 1-64

Reference Types

• C++ includes a special kind of pointer type
called a reference type that is used
primarily for formal parameters
– Advantages of both pass-by-reference and

pass-by-value
• Java extends C++’s reference variables and

allows them to replace pointers entirely
– References refer to call instances

• C# includes both the references of Java and
the pointers of C++

Copyright © 2006 Jenhui Chen. All rights reserved. 1-65

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the
range of cells that can be accessed by a
variable

• Pointers or references are necessary for
dynamic data structures--so we can't
design a language without them

Copyright © 2006 Jenhui Chen. All rights reserved. 1-66

Representations of Pointers

• Large computers use single values
• Intel microprocessors use segment and

offset

Copyright © 2006 Jenhui Chen. All rights reserved. 1-67

Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone

remains but set to nil
– Costly in time and space

. Locks-and-keys: Pointer values are represented as
(key, address) pairs
– Heap-dynamic variables are represented as variable plus

cell for integer lock value
– When heap-dynamic variable allocated, lock value is

created and placed in lock cell and key cell of pointer

Copyright © 2006 Jenhui Chen. All rights reserved. 1-68

Heap Management

• A very complex run-time process
• Single-size cells vs. variable-size cells
• Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Garbage collection (lazy approach): reclamation
occurs when the list of variable space becomes
empty

Copyright © 2006 Jenhui Chen. All rights reserved. 1-69

Reference Counter

• Reference counters: maintain a counter in
every cell that store the number of pointers
currently pointing at the cell
– Disadvantages: space required, execution time

required, complications for cells connected
circularly

Copyright © 2006 Jenhui Chen. All rights reserved. 1-70

Garbage Collection

• The run-time system allocates storage cells as
requested and disconnects pointers from cells
as necessary; garbage collection then begins
– Every heap cell has an extra bit used by collection

algorithm
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells

marked as not garbage
– All garbage cells returned to list of available cells
– Disadvantages: when you need it most, it works worst

(takes most time when program needs most of cells in
heap)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-71

Marking Algorithm

Copyright © 2006 Jenhui Chen. All rights reserved. 1-72

Variable-Size Cells

• All the difficulties of single-size cells plus
more

• Required by most programming languages
• If garbage collection is used, additional

problems occur
– The initial setting of the indicators of all cells in

the heap is difficult
– The marking process in nontrivial
– Maintaining the list of available space is another

source of overhead

Copyright © 2006 Jenhui Chen. All rights reserved. 1-73

Summary

• The data types of a language are a large part of
what determines that language’s style and
usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages
• Pointers are used for addressing flexibility and to

control dynamic storage management

	Chapter 6�Data Type
	Chapter 6 Topics
	Introduction
	Primitive Data Types
	Primitive Data Types: Integer
	Primitive Data Types: Floating Point
	Primitive Data Types: Decimal
	Primitive Data Types: Boolean
	Primitive Data Types: Character
	Character String Types
	Character String Types Operations
	Character String Type in Certain Languages
	Character String Length Options
	Character String Type Evaluation
	Character String Implementation
	Compile- and Run-Time Descriptors
	User-Defined Ordinal Types
	Enumeration Types
	Evaluation of Enumerated Type
	Subrange Types
	Subrange Evaluation
	Implementation of User-Defined Ordinal Types
	Array Types
	Array Design Issues
	Array Indexing
	Arrays Index (Subscript) Types
	Subscript Binding and Array Categories
	Subscript Binding and Array Categories (continued)
	Subscript Binding and Array Categories (continued)
	Subscript Binding and Array Categories (continued)
	Array Initialization
	Arrays Operations
	Rectangular and Jagged Arrays
	Slices
	Slice Examples
	Slices Examples in Fortran 95
	Implementation of Arrays
	Accessing Multi-dimensioned Arrays
	Locating an Element in a Multi-dimensioned Array
	Compile-Time Descriptors
	Associative Arrays
	Associative Arrays in Perl
	Record Types
	Definition of Records
	Definition of Records in COBOL
	Definition of Records in Ada
	References to Records
	Operations on Records
	Evaluation and Comparison to Arrays
	Implementation of Record Type
	Unions Types
	Discriminated vs. Free Unions
	Ada Union Types
	Ada Union Type Illustrated
	Evaluation of Unions
	Pointer and Reference Types
	Design Issues of Pointers
	Pointer Operations
	Pointer Assignment Illustrated
	Problems with Pointers
	Pointers in Ada
	Pointers in C and C++
	Pointer Arithmetic in C and C++
	Reference Types�
	Evaluation of Pointers
	Representations of Pointers
	Dangling Pointer Problem
	Heap Management
	Reference Counter
	Garbage Collection
	Marking Algorithm
	Variable-Size Cells
	Summary

