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Chapter 6 Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types
• Pointer and Reference Types
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Introduction

• A data type defines a collection of data 
objects and a set of predefined operations 
on those objects

• A descriptor is the collection of the 
attributes of a variable

• An object represents an instance of a 
user-defined (abstract data) type

• One design issue for all data types: What 
operations are defined and how are they 
specified?
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Primitive Data Types

• Almost all programming languages provide 
a set of primitive data types

• Primitive data types: Those not defined in 
terms of other data types

• Some primitive data types are merely 
reflections of the hardware

• Others require little non-hardware support
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Primitive Data Types: Integer

• Almost always an exact reflection of the 
hardware so the mapping is trivial

• There may be as many as eight different 
integer types in a language 

• Java’s signed integer sizes: byte, short, 
int, long
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Primitive Data Types: Floating Point

• Model real numbers, but only as 
approximations

• Languages for scientific use support at 
least two floating-point types (e.g., float
and double; sometimes more

• Usually exactly like the hardware, but not 
always

• IEEE Floating-Point
Standard 754
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Primitive Data Types: Decimal

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits 
• Advantage: accuracy
• Disadvantages: limited range, wastes 

memory
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Primitive Data Types: Boolean

• Simplest of all
• Range of values: two elements, one for 

“true” and one for “false”
• Could be implemented as bits, but often as 

bytes
– Advantage: readability



Copyright © 2006 Jenhui Chen. All rights reserved. 1-9

Primitive Data Types: Character

• Stored as numeric codings
• Most commonly used coding: ASCII
• An alternative, 16-bit coding: Unicode

– Includes characters from most natural 
languages

– Originally used in Java
– C# and JavaScript also support Unicode
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Character String Types 

• Values are sequences of characters
• Design issues:

– Is it a primitive type or just a special kind of 
array?

– Should the length of strings be static or dynamic?
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Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)  
– Catenation
– Substring reference
– Pattern matching
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Character String Type in Certain 
Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions that 

provide operations
• SNOBOL4 (a string manipulation language)

– Primitive
– Many operations, including elaborate pattern 

matching
• Java

– Primitive via the String class
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Character String Length Options

• Static: COBOL, Java’s String class
• Limited Dynamic Length: C and C++

– In C-based language, a special character is used 
to indicate the end of a string’s characters, 
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl, 
JavaScript

• Ada supports all three string length options
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Character String Type Evaluation

• Aid to writability
• As a primitive type with static length, they 

are inexpensive to provide--why not have 
them?

• Dynamic length is nice, but is it worth the 
expense?
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Character String Implementation

• Static length: compile-time descriptor
• Limited dynamic length: may need a run-

time descriptor for length (but not in C and 
C++)

• Dynamic length: need run-time descriptor; 
allocation/de-allocation is the biggest 
implementation problem
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Compile- and Run-Time Descriptors

Compile-time 
descriptor for 
static strings

Run-time 
descriptor for 
limited dynamic 
strings
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User-Defined Ordinal Types

• An ordinal type is one in which the range of 
possible values can be easily associated 
with the set of positive integers

• Examples of primitive ordinal types in Java
– integer
– char
– boolean
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Enumeration Types

• All possible values, which are named 
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in 

more than one type definition, and if so, how is 
the type of an occurrence of that constant 
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?
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Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a 
color as a number

• Aid to reliability, e.g., compiler can check: 
– operations (don’t allow colors to be added) 
– No enumeration variable can be assigned a 

value outside its defined range
– Ada, C#, and Java 5.0 provide better support for 

enumeration than C++ because enumeration 
type variables in these languages are not 
coerced into integer types
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Subrange Types

• An ordered contiguous subsequence of an 
ordinal type
– Example: 12..18 is a subrange of integer type

• Ada’s code design
type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;
subtype Index is Integer range 1..100;

Day1: Days;
Day2: Weekday;
Day2 := Day1;
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Subrange Evaluation

• Aid to readability
– Make it clear to the readers that variables of 

subrange can store only certain range of values
• Reliability

– Assigning a value to a subrange variable that is 
outside the specified range is detected as an 
error
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Implementation of User-Defined 
Ordinal Types

• Enumeration types are implemented as 
integers

• Subrange types are implemented like the 
parent types with code inserted (by the 
compiler) to restrict assignments to 
subrange variables
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Array Types

• An array is an aggregate of homogeneous 
data elements in which an individual 
element is identified by its position in the 
aggregate, relative to the first element.
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Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element 

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of 

subscripts?
• Can array objects be initialized?
• Are any kind of slices allowed?
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Array Indexing

• Indexing (or subscripting) is a mapping 
from indices to elements
array_name (index_value_list) → an element

• Index Syntax
– FORTRAN, PL/I, Ada use parentheses

• Ada explicitly uses parentheses to show uniformity 
between array references and function calls because 
both are mappings

– Most other languages use brackets, such as C
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Arrays Index (Subscript) Types

• FORTRAN, C: integer only
• Pascal: any ordinal type (integer, Boolean, 

char, enumeration)
• Ada: integer or enumeration (includes 

Boolean and char)
• Java: integer types only
• C, C++, Perl, and Fortran do not specify 

range checking
• Java, ML, C# specify range checking
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Subscript Binding and Array Categories

• Static : subscript ranges are statically 
bound and storage allocation is static 
(before run-time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic : subscript ranges are 
statically bound, but the allocation is done 
at declaration time
– Advantage: space efficiency
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Subscript Binding and Array Categories 
(continued)

• Stack-dynamic : subscript ranges are 
dynamically bound and the storage 
allocation is dynamic (done at run-time)
– Advantage: flexibility (the size of an array need 

not be known until the array is to be used)
• Fixed heap-dynamic : similar to fixed 

stack-dynamic: storage binding is dynamic 
but fixed after allocation (i.e., binding is 
done when requested and storage is 
allocated from heap, not stack)
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Subscript Binding and Array Categories 
(continued)

• Heap-dynamic: binding of subscript ranges 
and storage allocation is dynamic and can 
change any number of times
– Advantage: flexibility (arrays can grow or shrink 

during program execution)
– For example, Queue and Link List
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Subscript Binding and Array Categories 
(continued)
• C and C++ arrays that include static

modifier are static
• C and C++ arrays without static modifier 

are fixed stack-dynamic
• Ada arrays can be stack-dynamic
• C and C++ provide fixed heap-dynamic 

arrays
• C# includes a second array class ArrayList

that provides fixed heap-dynamic
• Perl and JavaScript support heap-dynamic 

arrays



Copyright © 2006 Jenhui Chen. All rights reserved. 1-31

Array Initialization

• Some language allow initialization at the 
time of storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83} 
– Character strings in C and C++
char name [] = “freddie”;
– Arrays of strings in C and C++
char *names [] = {“Bob”, “Jake”, “Joe”];
– Java initialization of String objects
String[] names = {“Bob”, “Jake”, “Joe”};



Copyright © 2006 Jenhui Chen. All rights reserved. 1-32

Arrays Operations

• APL provides the most powerful array 
processing operations for vectors and 
matrixes as well as unary operators (for 
example, to reverse column elements)

• Ada allows array assignment but also 
catenation

• Fortran provides elemental operations 
because they are between pairs of array 
elements
– For example, + operator between two arrays 

results in an array of the sums of the element 
pairs of the two arrays
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Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned 
array in which all of the rows have the same 
number of elements and all columns have 
the same number of elements

• A jagged matrix has rows with varying 
number of elements
– Possible when multi-dimensioned arrays 

actually appear as arrays of arrays
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Slices

• A slice is some substructure of an array; 
nothing more than a referencing 
mechanism

• Slices are only useful in languages that 
have array operations    
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Slice Examples

• Fortran 95
Integer, Dimension (10) :: Vector
Integer, Dimension (3, 3) :: Mat
Integer, Dimension (3, 3, 4) :: Cube

Vector (3:6) is a four element array, element 3, 
4, 5, 6.
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Slices Examples in Fortran 95
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Implementation of Arrays

• Access function maps subscript expressions 
to an address in the array 

• Access function for single-dimensioned 
arrays:
address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)
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Accessing Multi-dimensioned Arrays

• Two common ways:
– Row major order (by rows) – used in most 

languages
– column major order (by columns) – used in 

Fortran
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Locating an Element in a Multi-
dimensioned Array
•General format

Location (a[I,j]) = address of a [row_lb,col_lb] + 
(((I - row_lb) * n) + (j - col_lb)) * element_size
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Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array
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Associative Arrays

• An associative array is an unordered 
collection of data elements that are 
indexed by an equal number of values 
called keys
– User defined keys must be stored

• Design issues: What is the form of 
references to elements
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Associative Arrays in Perl

• Names begin with %; literals are delimited 
by parentheses
%salaries = (“Gary" => 75000, “Perry" => 
57000, “Mary” => 55750, …);

• Subscripting is done using braces and keys
$salaries{“Perry"} = 58850;
– Elements can be removed with delete
delete $salaries{“Gary"};
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Record Types

• A record is a possibly heterogeneous 
aggregate of data elements in which the 
individual elements are identified by names

• Design issues:
– What is the syntactic form of references to the 

field? 
– Are elliptical references allowed
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Definition of Records

• COBOL uses level numbers to show nested 
records; others use recursive definition

• Record Field References
1. COBOL
field_name OF record_name_1 OF ... OF 

record_name_n
2. Others (dot notation)
record_name_1.record_name_2. ... 

record_name_n.field_name
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Definition of Records in COBOL

• COBOL uses level numbers to show nested 
records; others use recursive definition
01 EMP-REC.

02 EMP-NAME.
05 FIRST PIC IS X(20).
05 MID   PIC IS X(10).
05 LAST  PIC IS X(20).

02 HOURLY-RATE PIC IS 99V99.
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Definition of Records in Ada

• Record structures are indicated in an 
orthogonal way
type Emp_Rec_Type is record

First: String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly_Rate: Float;

end record;
Emp_Rec: Emp_Rec_Type;
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References to Records

• Most language use dot notation
Emp_Rec.Name

• Fully qualified references must include all 
record names

• Elliptical references allow leaving out record 
names as long as the reference is 
unambiguous, for example in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST of 
EMP-REC are elliptical references to the 
employee’s first name
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Operations on Records

• Assignment is very common if the types are 
identical

• Ada allows record comparison
• Ada records can be initialized with 

aggregate literals
• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the 
corresponding field in the target record
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Evaluation and Comparison to Arrays

• Straight forward and safe design
• Records are used when collection of data 

values is heterogeneous
• Access to array elements is much slower 

than access to record fields, because 
subscripts are dynamic (field names are 
static)

• Dynamic subscripts could be used with 
record field access, but it would disallow 
type checking and it would be much slower
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Implementation of Record Type

Offset address relative to 
the beginning of the records 
is associated with each field
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Unions Types

• A union is a type whose variables are 
allowed to store different type values at 
different times during execution

• Design issues 
– Should type checking be required?
– Should unions be embedded in records?
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Discriminated vs. Free Unions

• Fortran, C, and C++ provide union 
constructs in which there is no language 
support for type checking; the union in 
these languages is called free union

• Type checking of unions require that each 
union include a type indicator called a 
discriminant
– Supported by Ada
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Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;
end case;

end record;
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Ada Union Type Illustrated

A discriminated union of three shape variables
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Evaluation of Unions

• Potentially unsafe construct
– Do not allow type checking

• Java and C# do not support unions
– Reflective of growing concerns for safety in 

programming language
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Pointer and Reference Types

• A pointer type variable has a range of 
values that consists of memory addresses 
and a special value, nil 

• Provide the power of indirect addressing
• Provide a way to manage dynamic memory
• A pointer can be used to access a location 

in the area where storage is dynamically 
created (usually called a heap)
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Design Issues of Pointers

• What are the scope of and lifetime of a 
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of 
value to which they can point?

• Are pointers used for dynamic storage 
management, indirect addressing, or both?

• Should the language support pointer types, 
reference types, or both?
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Pointer Operations

• Two fundamental operations: assignment 
and dereferencing

• Assignment is used to set a pointer 
variable’s value to some useful address

• Dereferencing yields the value stored at the 
location represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
j = *ptr
sets j to the value located at ptr
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Pointer Assignment Illustrated

The assignment operation j = *ptr
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Problems with Pointers 

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic variable 

that has been de-allocated
• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no 
longer accessible to the user program (often 
called garbage)

• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly 
created heap-dynamic variable
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Pointers in Ada

• Some dangling pointers are disallowed 
because dynamic objects can be 
automatically de-allocated at the end of 
pointer's type scope

• The lost heap-dynamic variable problem is 
not eliminated by Ada
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Pointers in C and C++

• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of 

when it was allocated
• Used for dynamic storage management and 

addressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators
• Domain type need not be fixed (void *) 
• void * can point to any type and can be type 

checked (cannot be de-referenced)
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Pointer Arithmetic in C and C++

float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and  p[5]
*(p+i) is equivalent to stuff[i] and  p[i]
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Reference Types

• C++ includes a special kind of pointer type 
called a reference type that is used 
primarily for formal parameters
– Advantages of both pass-by-reference and 

pass-by-value
• Java extends C++’s reference variables and 

allows them to replace pointers entirely
– References refer to call instances

• C# includes both the references of Java and 
the pointers of C++
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Evaluation of Pointers

• Dangling pointers and dangling objects are 
problems as is heap management

• Pointers are like goto's--they widen the 
range of cells that can be accessed by a 
variable

• Pointers or references are necessary for 
dynamic data structures--so we can't 
design a language without them
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Representations of Pointers

• Large computers use single values
• Intel microprocessors use segment and 

offset
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Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the 
heap-dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone 

remains but set to nil
– Costly in time and space

. Locks-and-keys: Pointer values are represented as 
(key, address) pairs
– Heap-dynamic variables are represented as variable plus 

cell for integer lock value
– When heap-dynamic variable allocated, lock value is 

created and placed in lock cell and key cell of pointer 
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Heap Management

• A very complex run-time process
• Single-size cells vs. variable-size cells
• Two approaches to reclaim garbage

– Reference counters (eager approach): 
reclamation is gradual

– Garbage collection (lazy approach): reclamation 
occurs when the list of variable space becomes 
empty
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Reference Counter

• Reference counters: maintain a counter in 
every cell that store the number of pointers 
currently pointing at the cell
– Disadvantages: space required, execution time 

required, complications for cells connected 
circularly
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Garbage Collection

• The run-time system allocates storage cells as 
requested and disconnects pointers from cells 
as necessary; garbage collection then begins
– Every heap cell has an extra bit used by collection 

algorithm 
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells 

marked as not garbage
– All garbage cells returned to list of available cells
– Disadvantages: when you need it most, it works worst

(takes most time when program needs most of cells in 
heap)
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Marking Algorithm
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Variable-Size Cells

• All the difficulties of single-size cells plus 
more

• Required by most programming languages
• If garbage collection is used, additional 

problems occur
– The initial setting of the indicators of all cells in 

the heap is difficult
– The marking process in nontrivial
– Maintaining the list of available space is another 

source of overhead
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Summary

• The data types of a language are a large part of 
what determines that language’s style and 
usefulness

• The primitive data types of most imperative 
languages include numeric, character, and Boolean 
types

• The user-defined enumeration and subrange types 
are convenient and add to the readability and 
reliability of programs

• Arrays and records are included in most languages
• Pointers are used for addressing flexibility and to 

control dynamic storage management
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