Chapter 7
Expressions and

Assignment Statements

EAXE T E£E) MU B IE g
Tel: (03) 211-8800 Ext: 5990

E-mail: jhchen@mail.cgu.edu.tw

URL: http://www.csie.cgu.edu.tw/jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

ISBN 0-321-33025-0

Chapter 7 Topics

- Introduction

. Arithmetic Expressions

- Overloaded Operators

- Type Conversions

- Relational and Boolean Expressions
. Short-Circuit Evaluation

- Assignment Statements

- Mixed-Mode Assignment

Copyright © 2006 Jenhui Chen. All rights reserved.

1-2

Introduction

- Expressions are the fundamental means of
specifying computations in a programming
language

- To understand expression evaluation, need

to be familiar with the orders of operator
and operand evaluation

- Essence of imperative languages is
dominant role of assignment statements

Copyright © 2006 Jenhui Chen. All rights reserved.

1-3

Arithmetic Expressions

- Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

- Arithmetic expressions consist of operators,
operands, parentheses, and function calls

Copyright © 2006 Jenhui Chen. All rights reserved. 1-4

Arithmetic Expressions: Design Issues

- Design issues for arithmetic expressions
- operator precedence rules
- operator associativity rules
- order of operand evaluation
- operand evaluation side effects
- operator overloading
- mode mixing expressions

Copyright © 2006 Jenhui Chen. All rights reserved.

1-5

Arithmetic Expressions: Operators

- A unary operator has one operand
- A binary operator has two operands
- A ternary operator has three operands

Copyright © 2006 Jenhui Chen. All rights reserved. 1-6

Arithmetic Expressions: Operator
Precedence Rules

- The operator precedence rules for
expression evaluation define the order in
which “adjacent” operators of different
precedence levels are evaluated

- Typical precedence levels
- parentheses
- unary operators
- ** (if the language supports it)

_*!/
- 4+, -

Copyright © 2006 Jenhui Chen. All rights reserved.

1-7

Arithmetic Expressions: Operator
Associativity Rule

- The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

. Typical associativity rules
- Left to right, except **, which is right to left

- Sometimes unary operators associate right to left (e.g., in
FORTRAN)

- APL is different; all operators have equal
precedence and all operators associate right to left

- Precedence and associativity rules can be
overridden with parentheses

Copyright © 2006 Jenhui Chen. All rights reserved. 1-8

Arithmetic Expressions: Conditional

ExEressions

- Conditional Expressions
- C-based languages (e.g., C, C++)

- An example:
average = (count == 0)? 0 : sum / count

- Evaluates as if written like
iIT (count == 0) average = O
else average = sum /count

Copyright © 2006 Jenhui Chen. All rights reserved. 1-9

Arithmetic Expressions: Operand
Evaluation Order

Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

Copyright © 2006 Jenhui Chen. All rights reserved. 1-10

Arithmetic Expressions: Potentials for
Side Effects

Functional side effects: when a function changes a
two-way parameter or a non-local variable

Problem with functional side effects:

- When a function referenced in an expression alters
another operand of the expression; e.g., for a parameter
change:

a = 10;
/* assume that fun changes i1ts parameter */

b = a + fun(a);

Copyright © 2006 Jenhui Chen. All rights reserved. 1-11

Functional Side Effects

- Two possible solutions to the problem

1. Write the language definition to disallow
functional side effects
No two-way parameters in functions
No non-local references in functions
Advantage: it works!

Disadvantage: inflexibility of two-way parameters
and non-local references

2. Write the language definition to demand that
operand evaluation order be fixed

Disadvantage: limits some compiler optimizations

Copyright © 2006 Jenhui Chen. All rights reserved. 1-12

Overloaded Operators

- Use of an operator for more than one
purpose is called operator overloading

- Some are common (e.g., + for int and
float)

- Some are potential trouble (e.g., * in C and
C++)
- Loss of compiler error detection (omission of an
operand should be a detectable error)
- Some loss of readability

- Can be avoided by introduction of new symbols
(e.g., Pascal’s div for integer division)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-13

Overloaded Operators (continued)

- C++ and Ada allow user-defined
overloaded operators
- Potential problems:

- Users can define nonsense operations

- Readability may suffer, even when the operators
make sense

Copyright © 2006 Jenhui Chen. All rights reserved. 1-14

Type Conversions

- A narrowing conversion is one that converts
an object to a type that cannot include all
of the values of the original type e.qg.,
float to Int

- A widening conversion is one in which an
object is converted to a type that can

include at least approximations to all of the
values of the original type
e.g., int to float

Copyright © 2006 Jenhui Chen. All rights reserved. 1-15

Type Conversions: Mixed Mode

- A mixed-mode expression is one that has
operands of different types

- A coercionis an implicit type conversion

Disadvantage of coercions:

- They decrease in the type error detection ability of the
compiler

In most languages, all numeric types are coerced
in expressions, using widening conversions

In Ada, there are virtually no coercions in
expressions

Copyright © 2006 Jenhui Chen. All rights reserved. 1-16

Explicit Type Conversions

- Explicit Type Conversions
- Called casting in C-based language

- Examples
- C: (int) angle
- Ada: Float (sum)

Note that Ada’s syntax is similar to function
calls

Copyright © 2006 Jenhui Chen. All rights reserved. 1-17

Type Conversions: Errors in Expressions

- Causes

- Inherent limitations of arithmetic
e.g., division by zero

- Limitations of computer arithmetic
e.g. overflow

Often ignored by the run-time system

Copyright © 2006 Jenhui Chen. All rights reserved. 1-18

Relational and Boolean Expressions

- Relational Expressions

- Use relational operators and operands of
various types

- Evaluate to some Boolean representation

- Operator symbols used vary somewhat among
languages (1=, /=, _NE., <>, #)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-19

Relational and Boolean Expressions

- Boolean Expressions

- Operands are Boolean and the result is Boolean
- Example operators

FORTRAN 77 FORTRAN 90 C Ada

_AND. and && and
-OR. or |1 or
_NOT. not ! not

Xor

Copyright © 2006 Jenhui Chen. All rights reserved. 1-20

Relational and Boolean Expressions: No
Boolean Type in C

- C has no Boolean type--it uses int type
with O for false and nonzero for true

- One odd characteristic of C’s expressions:
a < b < c is alegal expression, but the
result is not what you might expect:

- Left operator is evaluated, producing 0 or 1

- The evaluation result is then compared with the
third operand (i.e., c)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-21

Relational and Boolean Expressions:

Operator Precedence

- Precedence of C-based operators
postfix ++, —-
unary +, -, prefix ++, —-,

High

Low

Copyright © 2006 Jenhui Chen. All rights reserved.

*,/,%
binary +, -
<, >, <=, >=

&&
|

1-22

Short Circuit Evaluation

- An expression in which the result is
determined without evaluating all of the
operands and/or operators

- Example: (13*a) * (b/13-1)
If a is zero, there is no need to evaluate (b/13-1)
- Problem with non-short-circuit evaluation
Index = 1;
while (index <= length) && (LIST[iIndex] !'= value)
Index++;

- When index=length, LIST [index] will cause an

indexing problem (assuming LI1ST has length -1
elements)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-23

Short Circuit Evaluation (continued)

- C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and | |), but also
provide bitwise Boolean operators that are not
short circuit (& and |)

- Ada: programmer can specify either (short-circuit
is specified with and then and or else)

- Short-circuit evaluation exposes the potential
problem of side effects in expressions
eg.(a >b) || (b++ 7 3)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-24

Assighment Statements

- The general syntax
<target var> <assign_operator> <expression>

- The assignment operator
= FORTRAN, BASIC, PL/I, C, C++, Java
= ALGOLs, Pascal, Ada

- = can be bad when it is overloaded for the
relational operator for equality

Copyright © 2006 Jenhui Chen. All rights reserved. 1-25

Assignment Statements: Conditional

Targets

- Conditional targets (C, C++, and Java)
(flag)? countl - count2 =0

Which is equivalent to

it (flag)
countl = O
else
count2 = 0

Copyright © 2006 Jenhui Chen. All rights reserved. 1-26

Assignment Statements: Compound

OEe rators

- A shorthand method of specifying a
commonly needed form of assignment

- Introduced in ALGOL; adopted by C
- Example

a=-a-+b
IS written as

a+=>b

Copyright © 2006 Jenhui Chen. All rights reserved. 1-27

Assignment Statements: Unary

Assignment OEerators

- Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

- Examples

sum = ++count (count incremented first and
then added to sum)

sum = count++ (count added to sum first and
then incremented)

count++ (count incremented)
—count++ (count incremented then negated)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-28

Assignment as an Expression

- In C, C++, and Java, the assignment
statement produces a result and can be
used as operands

- An example:
while ((ch = getchar())!'= EOF){...}

ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional
value for the while statement

Copyright © 2006 Jenhui Chen. All rights reserved. 1-29

Mixed-Mode Assignment

Assignment statements can also be
mixed-mode, for example

int a, b;

float c;

c =a/ b;

In Pascal, integer variables can be

assigned to real variables, but real
variables cannot be assigned to integers

In Java, only widening assignment
coercions are done

In Ada, there is no assignment coercion

Copyright © 2006 Jenhui Chen. All rights reserved.

1-30

Summary

Expressions

Operator precedence and associativity
Operator overloading

Mixed-type expressions

Various forms of assignment

Copyright © 2006 Jenhui Chen. All rights reserved. 1-31

	Chapter 7�Expressions and �Assignment Statements
	Chapter 7 Topics
	Introduction
	Arithmetic Expressions
	Arithmetic Expressions: Design Issues
	Arithmetic Expressions: Operators
	Arithmetic Expressions: Operator Precedence Rules
	Arithmetic Expressions: Operator Associativity Rule
	Arithmetic Expressions: Conditional Expressions
	Arithmetic Expressions: Operand Evaluation Order
	Arithmetic Expressions: Potentials for Side Effects
	Functional Side Effects
	Overloaded Operators
	Overloaded Operators (continued)
	Type Conversions
	Type Conversions: Mixed Mode
	Explicit Type Conversions
	Type Conversions: Errors in Expressions
	Relational and Boolean Expressions
	Relational and Boolean Expressions
	Relational and Boolean Expressions: No Boolean Type in C
	Relational and Boolean Expressions: Operator Precedence
	Short Circuit Evaluation
	Short Circuit Evaluation (continued)
	Assignment Statements
	Assignment Statements: Conditional Targets
	Assignment Statements: Compound Operators
	Assignment Statements: Unary Assignment Operators
	Assignment as an Expression
	Mixed-Mode Assignment
	Summary

