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Introduction

- Expressions are the fundamental means of
specifying computations in a programming
language

- To understand expression evaluation, need

to be familiar with the orders of operator
and operand evaluation

- Essence of imperative languages is
dominant role of assignment statements
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Arithmetic Expressions

- Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

- Arithmetic expressions consist of operators,
operands, parentheses, and function calls
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Arithmetic Expressions: Design Issues

- Design issues for arithmetic expressions
- operator precedence rules
- operator associativity rules
- order of operand evaluation
- operand evaluation side effects
- operator overloading
- mode mixing expressions
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Arithmetic Expressions: Operators

- A unary operator has one operand
- A binary operator has two operands
- A ternary operator has three operands
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Arithmetic Expressions: Operator
Precedence Rules

- The operator precedence rules for
expression evaluation define the order in
which “adjacent” operators of different
precedence levels are evaluated

- Typical precedence levels
- parentheses
- unary operators
- ** (if the language supports it)

_*!/
- 4+, -
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Arithmetic Expressions: Operator
Associativity Rule

- The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

. Typical associativity rules
- Left to right, except **, which is right to left

- Sometimes unary operators associate right to left (e.g., in
FORTRAN)

- APL is different; all operators have equal
precedence and all operators associate right to left

- Precedence and associativity rules can be
overridden with parentheses
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Arithmetic Expressions: Conditional

ExEressions

- Conditional Expressions
- C-based languages (e.g., C, C++)

- An example:
average = (count == 0)? 0 : sum / count

- Evaluates as if written like
iIT (count == 0) average = O
else average = sum /count
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Arithmetic Expressions: Operand
Evaluation Order

Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first
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Arithmetic Expressions: Potentials for
Side Effects

Functional side effects: when a function changes a
two-way parameter or a non-local variable

Problem with functional side effects:

- When a function referenced in an expression alters
another operand of the expression; e.g., for a parameter
change:

a = 10;
/* assume that fun changes i1ts parameter */

b = a + fun(a);
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Functional Side Effects

- Two possible solutions to the problem

1. Write the language definition to disallow
functional side effects
No two-way parameters in functions
No non-local references in functions
Advantage: it works!

Disadvantage: inflexibility of two-way parameters
and non-local references

2. Write the language definition to demand that
operand evaluation order be fixed

Disadvantage: limits some compiler optimizations
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Overloaded Operators

- Use of an operator for more than one
purpose is called operator overloading

- Some are common (e.g., + for int and
float)

- Some are potential trouble (e.g., * in C and
C++)
- Loss of compiler error detection (omission of an
operand should be a detectable error)
- Some loss of readability

- Can be avoided by introduction of new symbols
(e.g., Pascal’s div for integer division)
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Overloaded Operators (continued)

- C++ and Ada allow user-defined
overloaded operators
- Potential problems:

- Users can define nonsense operations

- Readability may suffer, even when the operators
make sense
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Type Conversions

- A narrowing conversion is one that converts
an object to a type that cannot include all
of the values of the original type e.qg.,
float to Int

- A widening conversion is one in which an
object is converted to a type that can

include at least approximations to all of the
values of the original type
e.g., int to float
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Type Conversions: Mixed Mode

- A mixed-mode expression is one that has
operands of different types

- A coercionis an implicit type conversion

Disadvantage of coercions:

- They decrease in the type error detection ability of the
compiler

In most languages, all numeric types are coerced
in expressions, using widening conversions

In Ada, there are virtually no coercions in
expressions
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Explicit Type Conversions

- Explicit Type Conversions
- Called casting in C-based language

- Examples
- C: (int) angle
- Ada: Float (sum)

Note that Ada’s syntax is similar to function
calls
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Type Conversions: Errors in Expressions

- Causes

- Inherent limitations of arithmetic
e.g., division by zero

- Limitations of computer arithmetic
e.g. overflow

Often ignored by the run-time system
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Relational and Boolean Expressions

- Relational Expressions

- Use relational operators and operands of
various types

- Evaluate to some Boolean representation

- Operator symbols used vary somewhat among
languages (1=, /=, _NE., <>, #)
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Relational and Boolean Expressions

- Boolean Expressions

- Operands are Boolean and the result is Boolean
- Example operators

FORTRAN 77 FORTRAN 90 C Ada

_AND. and && and
-OR. or |1 or
_NOT. not ! not

Xor
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Relational and Boolean Expressions: No
Boolean Type in C

- C has no Boolean type--it uses int type
with O for false and nonzero for true

- One odd characteristic of C’s expressions:
a < b < c is alegal expression, but the
result is not what you might expect:

- Left operator is evaluated, producing 0 or 1

- The evaluation result is then compared with the
third operand (i.e., c)
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Relational and Boolean Expressions:

Operator Precedence

- Precedence of C-based operators
postfix ++, —-
unary +, -, prefix ++, —-,

High

Low
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Short Circuit Evaluation

- An expression in which the result is
determined without evaluating all of the
operands and/or operators

- Example: (13*a) * (b/13-1)
If a is zero, there is no need to evaluate (b/13-1)
- Problem with non-short-circuit evaluation
Index = 1;
while (index <= length) && (LIST[iIndex] !'= value)
Index++;

- When index=length, LIST [index] will cause an

indexing problem (assuming LI1ST has length -1
elements)
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Short Circuit Evaluation (continued)

- C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and | |), but also
provide bitwise Boolean operators that are not
short circuit (& and |)

- Ada: programmer can specify either (short-circuit
is specified with and then and or else)

- Short-circuit evaluation exposes the potential
problem of side effects in expressions
eg.(a >b) || (b++ 7 3)
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Assighment Statements

- The general syntax
<target var> <assign_operator> <expression>

- The assignment operator
= FORTRAN, BASIC, PL/I, C, C++, Java
= ALGOLs, Pascal, Ada

- = can be bad when it is overloaded for the
relational operator for equality
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Assignment Statements: Conditional

Targets

- Conditional targets (C, C++, and Java)
(flag)? countl - count2 =0

Which is equivalent to

it (flag)
countl = O
else
count2 = 0
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Assignment Statements: Compound

OEe rators

- A shorthand method of specifying a
commonly needed form of assignment

- Introduced in ALGOL; adopted by C
- Example

a=-a-+b
IS written as

a+=>b
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Assignment Statements: Unary

Assignment OEerators

- Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

- Examples

sum = ++count (count incremented first and
then added to sum)

sum = count++ (count added to sum first and
then incremented)

count++ (count incremented)
—count++ (count incremented then negated)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-28



Assignment as an Expression

- In C, C++, and Java, the assignment
statement produces a result and can be
used as operands

- An example:
while ((ch = getchar())!'= EOF){...}

ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional
value for the while statement
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Mixed-Mode Assignment

Assignment statements can also be
mixed-mode, for example

int a, b;

float c;

c =a/ b;

In Pascal, integer variables can be

assigned to real variables, but real
variables cannot be assigned to integers

In Java, only widening assignment
coercions are done

In Ada, there is no assignment coercion
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Summary

Expressions

Operator precedence and associativity
Operator overloading

Mixed-type expressions

Various forms of assignment
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