
ISBN 0-321-33025-0

Chapter 8
Statement-Level Control
Structures

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
E-mail: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

Copyright © 2006 Jenhui Chen. All rights reserved. 1-2

Chapter 8 Topics

• Introduction
• Selection Statements
• Iterative Statements
• Unconditional Branching
• Guarded Commands
• Conclusions

Copyright © 2006 Jenhui Chen. All rights reserved. 1-3

Levels of Control Flow

– Within expressions
– Among program units
– Among program statements

Copyright © 2006 Jenhui Chen. All rights reserved. 1-4

Control Statements: Evolution

• FORTRAN I control statements were based
directly on IBM 704 hardware

• Much research and argument in the 1960s
about the issue
– One important result: It was proven that all

algorithms represented by flowcharts can be
coded with only two-way selection and pretest
logical loops

Copyright © 2006 Jenhui Chen. All rights reserved. 1-5

Control Structure

• A control structure is a control statement
and the statements whose execution it
controls

• Design question
– Should a control structure have multiple entries?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-6

Selection Statements

• A selection statement provides the means
of choosing between two or more paths of
execution

• Two general categories:
– Two-way selectors
– Multiple-way selectors

Copyright © 2006 Jenhui Chen. All rights reserved. 1-7

Two-Way Selection Statements

• General form:
if control_expression
then clause
else clause

• Design Issues:
– What is the form and type of the control

expression?
– How are the then and else clauses specified?
– How should the meaning of nested selectors be

specified?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-8

Two-Way Selection: Examples

• FORTRAN: IF (boolean_expr) statement
• Problem: can select only a single statement; to

select more, a GOTO must be used, as in the
following example

IF (.NOT. condition) GOTO 20

...
20 CONTINUE

• Negative logic is bad for readability
• This problem was solved in FORTRAN 77
• Most later languages allow compounds for the

selectable segment of their single-way selectors

Copyright © 2006 Jenhui Chen. All rights reserved. 1-9

Two-Way Selection: Examples

• ALGOL 60:
if (boolean_expr)

then statement (then clause)
else statement (else clause)

• The statements could be single or
compound

Copyright © 2006 Jenhui Chen. All rights reserved. 1-10

Nesting Selectors

• Java example
if (sum == 0)

if (count == 0)
result = 0;

else result = 1;

• Which if gets the else?
• Java's static semantics rule: else matches

with the nearest if

Copyright © 2006 Jenhui Chen. All rights reserved. 1-11

Nesting Selectors (continued)

• To force an alternative semantics,
compound statements may be used:

if (sum == 0) {

if (count == 0)
result = 0;

}
else result = 1;

• The above solution is used in C, C++, and C#
• Perl requires that all then and else clauses to be

compound

Copyright © 2006 Jenhui Chen. All rights reserved. 1-12

Multiple-Way Selection Statements

• Allow the selection of one of any number
of statements or statement groups

• Design Issues:
1. What is the form and type of the control

expression?
2. How are the selectable segments specified?
3. Is execution flow through the structure

restricted to include just a single selectable
segment?

4. What is done about unrepresented expression
values?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-13

Multiple-Way Selection: Examples

• Early multiple selectors:
– FORTRAN arithmetic IF (a three-way selector)
IF (arithmetic expression) N1, N2, N3
– Segments require GOTOs
– Not encapsulated (selectable segments could be

anywhere)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-14

Multiple-Way Selection: Examples

• Modern multiple selectors
– C’s switch statement

switch (expression) {
case const_expr_1: stmt_1;
…
case const_expr_n: stmt_n;
[default: stmt_n+1]

}

Copyright © 2006 Jenhui Chen. All rights reserved. 1-15

Multiple-Way Selection: Examples

• Design choices for C’s switch statement
1. Control expression can be only an integer type
2. Selectable segments can be statement sequences,

blocks, or compound statements
3. Any number of segments can be executed in one

execution of the construct (there is no implicit
branch at the end of selectable segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement does
nothing)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-16

Multiple-Way Selection: Examples

• The Ada case statement
case expression is

when choice list => stmt_sequence;
…
when choice list => stmt_sequence;
when others => stmt_sequence;]

end case;
• More reliable than C’s switch (once a

stmt_sequence execution is completed, control is
passed to the first statement after the case
statement

Copyright © 2006 Jenhui Chen. All rights reserved. 1-17

Multiple-Way Selection Using if

• Multiple Selectors can appear as direct
extensions to two-way selectors, using
else-if clauses, for example in Ada:

if ...
then ...

elsif ...
then ...

elsif ...
then ...
else ...

end if

Copyright © 2006 Jenhui Chen. All rights reserved. 1-18

Iterative Statements

• The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

• General design issues for iteration control
statements:
1. How is iteration controlled?
2. Where is the control mechanism in the loop?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-19

Counter-Controlled Loops

• A counting iterative statement has a loop
variable, and a means of specifying the initial
and terminal, and stepsize values

• Design Issues:
1. What are the type and scope of the loop variable?
2. What is the value of the loop variable at loop

termination?
3. Should it be legal for the loop variable or loop

parameters to be changed in the loop body, and if so,
does the change affect loop control?

4. Should the loop parameters be evaluated only once, or
once for every iteration?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-20

Iterative Statements: Examples

• FORTRAN 90 syntax
DO label var = start, finish [, stepsize]

• Stepsize can be any value but zero
• Parameters can be expressions
• Design choices:

1. Loop variable must be INTEGER
2. Loop variable always has its last value
3. The loop variable cannot be changed in the loop, but the

parameters can; because they are evaluated only once, it
does not affect loop control

4. Loop parameters are evaluated only once

Copyright © 2006 Jenhui Chen. All rights reserved. 1-21

Iterative Statements: Examples

• FORTRAN 95 : a second form:
[name:] DO variable = initial, terminal
[,stepsize]

…
END DO [name]

– Loop variable must be an INTEGER

Copyright © 2006 Jenhui Chen. All rights reserved. 1-22

Iterative Statements

• Pascal’s for statement
for variable := initial (to|downto) final do

statement

• Design choices:
1. Loop variable must be an ordinal type of usual scope
2. After normal termination, loop variable is undefined
3. The loop variable cannot be changed in the loop; the

loop parameters can be changed, but they are evaluated
just once, so it does not affect loop control

4. Just once

Copyright © 2006 Jenhui Chen. All rights reserved. 1-23

Iterative Statements: Examples

• Ada
for var in [reverse] discrete_range
loop ...
end loop

• A discrete range is a sub-range of an
integer or enumeration type

• Scope of the loop variable is the range of
the loop

• Loop variable is implicitly undeclared after
loop termination

Copyright © 2006 Jenhui Chen. All rights reserved. 1-24

Iterative Statements: Examples

• C’s for statement
for ([expr_1] ; [expr_2] ; [expr_3]) statement

• The expressions can be whole statements, or even
statement sequences, with the statements
separated by commas
– The value of a multiple-statement expression is the value

of the last statement in the expression
• There is no explicit loop variable
• Everything can be changed in the loop
• The first expression is evaluated once, but the

other two are evaluated with each iteration

Copyright © 2006 Jenhui Chen. All rights reserved. 1-25

Iterative Statements: Examples

• C++ differs from C in two ways:
1. The control expression can also be Boolean
2. The initial expression can include variable

definitions (scope is from the definition to the
end of the loop body)

• Java and C#
– Differs from C++ in that the control

expression must be Boolean

Copyright © 2006 Jenhui Chen. All rights reserved. 1-26

Iterative Statements: Logically-
Controlled Loops

• Repetition control is based on a Boolean
• Design issues:

– Pre-test or post-test?
– Should the logically controlled loop be a

special case of the counting loop statement ?
expression rather than a counter

• General forms:
while (ctrl_expr) do

loop body loop body
while (ctrl_expr)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-27

Iterative Statements: Logically-
Controlled Loops: Examples

• Pascal has separate pre-test and post-test
logical loop statements (while-do and
repeat-until)

• C and C++ also have both, but the control
expression for the post-test version is
treated just like in the pre-test case (while-
do and do- while)

• Java is like C, except the control expression
must be Boolean (and the body can only be
entered at the beginning -- Java has no
goto

Copyright © 2006 Jenhui Chen. All rights reserved. 1-28

Iterative Statements: Logically-
Controlled Loops: Examples

• Ada has a pretest version, but no post-test
• FORTRAN 77 and 90 have neither
• Perl has two pre-test logical loops, while

and until, but no post-test logical loop

Copyright © 2006 Jenhui Chen. All rights reserved. 1-29

Iterative Statements: User-Located
Loop Control Mechanisms

• Sometimes it is convenient for the
programmers to decide a location for loop
control (other than top or bottom of the
loop)

• Simple design for single loops (e.g., break)
• Design issues for nested loops

1. Should the conditional be part of the exit?
2. Should control be transferable out of more

than one loop?

Copyright © 2006 Jenhui Chen. All rights reserved. 1-30

Iterative Statements: User-Located Loop
Control Mechanisms break and continue

• C , C++, and Java: break statement
• Unconditional; for any loop or switch; one

level only
• Java and C# have a labeled break statement:

control transfers to the label
• An alternative: continue statement; it

skips the remainder of this iteration, but
does not exit the loop (see p.361)

Copyright © 2006 Jenhui Chen. All rights reserved. 1-31

Iterative Statements: Iteration Based on
Data Structures

• Number of elements of in a data structure
control loop iteration

• Control mechanism is a call to an iterator
function that returns the next element in
some chosen order, if there is one; else
loop is terminate

• C's for can be used to build a user-defined
iterator:
for (p=root; p==NULL; traverse(p)){
} boolean

Copyright © 2006 Jenhui Chen. All rights reserved. 1-32

Iterative Statements: Iteration Based on
Data Structures (continued)

• C#’s foreach statement iterates on the
elements of arrays and other collections:

Strings[] = strList = {“Bob”, “Carol”, “Ted”};

foreach (Strings name in strList)
Console.WriteLine (“Name: {0}”, name);

• The notation {0} indicates the position in
the string to be displayed

Copyright © 2006 Jenhui Chen. All rights reserved. 1-33

Unconditional Branching

• Transfers execution control to a specified place in
the program

• Represented one of the most heated debates in
1960’s and 1970’s

• Well-known mechanism: goto statement
• Major concern: Readability
• Some languages do not support goto statement

(e.g., Module-2 and Java)
• C# offers goto statement (can be used in switch

statements)
• Loop exit statements are restricted and somewhat

camouflaged goto’s

Copyright © 2006 Jenhui Chen. All rights reserved. 1-34

Guarded Commands

• Suggested by Dijkstra
• Purpose: to support a new programming

methodology that supported verification
(correctness) during development

• Basis for two linguistic mechanisms for
concurrent programming (in CSP and Ada)

• Basic Idea: if the order of evaluation is not
important, the program should not specify
one

Copyright © 2006 Jenhui Chen. All rights reserved. 1-35

Selection Guarded Command

• Form
if <Boolean exp> -> <statement>
[] <Boolean exp> -> <statement>
...

[] <Boolean exp> -> <statement>
fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically
– If none are true, it is a runtime error

Copyright © 2006 Jenhui Chen. All rights reserved. 1-36

Selection Guarded Command:
Illustrated

Copyright © 2006 Jenhui Chen. All rights reserved. 1-37

Loop Guarded Command

• Form
do <Boolean> -> <statement>
[] <Boolean> -> <statement>
...
[] <Boolean> -> <statement>
od

• Semantics: for each iteration
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically; then start loop again
– If none are true, exit loop

Copyright © 2006 Jenhui Chen. All rights reserved. 1-38

Loop Guarded Command: Illustrated

Copyright © 2006 Jenhui Chen. All rights reserved. 1-39

Guarded Commands: Rationale

• Connection between control statements
and program verification is intimate

• Verification is impossible with goto
statements

• Verification is possible with only selection
and logical pretest loops

• Verification is relatively simple with only
guarded commands

Copyright © 2006 Jenhui Chen. All rights reserved. 1-40

Conclusion

• Variety of statement-level structures
• Choice of control statements beyond

selection and logical pretest loops is a
trade-off between language size and
writability

• Functional and logic programming
languages are quite different control
structures

	Chapter 8�Statement-Level Control Structures
	Chapter 8 Topics
	Levels of Control Flow
	Control Statements: Evolution
	Control Structure
	Selection Statements
	Two-Way Selection Statements
	Two-Way Selection: Examples
	Two-Way Selection: Examples
	Nesting Selectors
	Nesting Selectors (continued)
	Multiple-Way Selection Statements
	Multiple-Way Selection: Examples
	Multiple-Way Selection: Examples
	Multiple-Way Selection: Examples
	Multiple-Way Selection: Examples
	Multiple-Way Selection Using if
	Iterative Statements
	Counter-Controlled Loops
	Iterative Statements: Examples
	Iterative Statements: Examples
	Iterative Statements
	Iterative Statements: Examples
	Iterative Statements: Examples
	Iterative Statements: Examples
	Iterative Statements: Logically-Controlled Loops
	Iterative Statements: Logically-Controlled Loops: Examples
	Iterative Statements: Logically-Controlled Loops: Examples
	Iterative Statements: User-Located Loop Control Mechanisms
	Iterative Statements: User-Located Loop Control Mechanisms break and continue
	Iterative Statements: Iteration Based on Data Structures
	Iterative Statements: Iteration Based on Data Structures (continued)
	Unconditional Branching
	Guarded Commands
	Selection Guarded Command
	Selection Guarded Command: Illustrated
	Loop Guarded Command
	Loop Guarded Command: Illustrated
	Guarded Commands: Rationale
	Conclusion

