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Preliminaries
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Chapter 1 Topics

• Reasons for Studying Concepts of 
Programming Languages

• Programming Domains
• Language Evaluation Criteria
• Influences on Language Design
• Language Categories
• Language Design Trade-Offs
• Implementation Methods
• Programming Environments
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Programming is an unnatural act

•Alan Perlis
•1922-1990
•First President of the ACM
•First Turing Award winner
•Member of the Algol-60 

design team
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An example of an early computer

– Harvard Mark I (IBM, Aiken, 1948)
• electro-mechanical 

– ENIAC is an electronic copy of Mark I design
• executed 3 operations each second (3 IPS)
• remained in use until 1959
• 51’ long, 8’ high, 3’ deep 
• 730,000 parts (relays, switches, wheels, shafts), 530 

miles of wiring, 18,000 vacuum tubes, ...
– How many programmers could one ‘buy’ with 

the price of one computer?
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An example of a new computer

• Sun Fire 15K
– 106 UltraSPARC III processors

• 900 MHz to 1.2 GHz clock speed
• 29 million transistors
• supports 4 Gb of memory

– 602,270 JBB operations per second
– list price $3,739,230.00 (72 processors)
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Picture of Mark I
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Computer Size

ENIAC then…

ENIAC today…

• With computers (small) size does matter!
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An example of an early program

• Euclid’s algorithm for GCD (greatest common divisor)
– actually this is for a quite new computer (MIPS R4000)

• Writing programs in this way is very expensive and hard
– but the early computers cost much much more
– even using the computer cost more than programming it
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With Mark II came the bugs
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Problems of machine code

• Programming = coding in the true meaning of the 
word

• Code is not
– reusable: monolithic ‘structure’
– relocatable: consider adding one instruction in the middle
– readable (more important)

• Practically impossible to create large programs
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Symbolic assembly language

• Assembler 
– translator from symbolic language to machine language 

(one-to-one mapping)
– tool to assemble the symbolic program in the machine

• Advantages
– relocatable & reusable (copy) programs
– macro expansion 

• first step towards higher-level programming
– larger programs (like operating systems) possible
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Euclid’s GCD program in MIPS assembly 
language
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Problems of assembler

• Each kind of computer has its own
• Programmers must learn to think like 

computers
• Maintenance of larger programs is difficult
• Higher-level languages

– portability
– natural notation (for anything)
– support to software development
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First high-level language

• Fortran (Backus, 1957)
– IBM Mathematical Formula Translator
– compilation instead of translation
– language for scientific computing

• most important task in those days
– efficiency important to replace assemblers
– introduced many important language concepts 

that are still in use

http://www.fortran.com/
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A Fortran program
• C  FORTRAN PROGRAM
• DIMENSION A(99)
• REAL MEAN

• READ(1,5) N
• 5 FORMAT(I2)

• READ(1,10) (A(I), I=1,N)
• 10 FORMAT(6F10.5)

• SUM = 0.0
• DO 15 I=1,N
• 15 SUM = SUM + A(I)

• MEAN = SUM/FLOAT(N)
• NUMBER = 0
• DO 20 I=1,N
• IF(A(I) .LE. MEAN) GOTO 20
• NUMBER = NUMBER + 1
• 20 CONTINUE

• WRITE(2,25) MEAN, NUMBER
• 25 FORMAT(8H MEAN = , F10.5, 5X, 20H NUMBERS OVER MEAN =, I5)
• STOP
• END
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What matters in programming?

• 1950s: cost and use of machines
• Nowadays

– problems other than efficiency are often more important
• performance gap between compiled and hand-tailored 

machine code has diminished
• modern hardware is too complicated for humans

– cost of labor has far surpassed the cost of machinery
• standard PC costs like NT 20,000

– software systems are getting more and more complex
– problems to solve are getting difficult even to define
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Why are there so many programming 
languages?

• Read the “Perlis quotes”
• Evolution

– CS is constantly finding ‘better’ ways to do things
– structured programming, modules, o-o, ...

• Special languages for special purposes
– Scientific applications, e.g. MATLAB, Mathematica, Fortran, 

ALGO 60 etc.
– Business applications, e.g. COBOL
– Artificial intelligence (AI), e.g. LISP, Ada
– Systems programming, e.g. PL/S, C/C++, Pascal
– Web software, e.g. HTML, XML, PHP, .NET, Java

• Personal preference
– We are not all driving a NISSON or TOYOTA!?

http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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Why are some programming languages 
more successful?

• Expressive power
– in principle, all languages are Turing-complete
– has a huge effect on programmer’s ability to

• write, read, and maintain
• understand and analyze

– abstraction facilities (for computation & data)
• Ease of use

– low learning curve (Basic, Logo, Pascal)
• Ease of implementation

– Pascal & p-code (forefather of Java VM) made it easy to port 
compilers

– free availability in general
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More reasons for success

• Excellent compilers and tools
– fast compiled code (Fortran)
– debugging tools
– project management tools
– teamwork tools

• Economics, inertia
– 10000000 lines of Cobol is hard to rewrite
– 100000 Cobol programmers are hard to re-train

• Patronage
– many languages have powerful ‘sponsors’

• Cobol, PL/I, Ada, Visual Basic, C#
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Reasons for Studying Concepts of 
Programming Languages

• Increased ability to express ideas
• Improved background for choosing 

appropriate languages
• Increased ability to learn new languages
• Better understanding of significance of 

implementation
• Overall advancement of computing
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Programming Domains

• Scientific applications
– Large number of floating point computations
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Software
– Eclectic collection of languages: markup (e.g., XHTML), 

scripting (e.g., PHP), general-purpose (e.g., Java)
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Language Evaluation Criteria

• Readability: the ease with which 
programs can be read and understood

• Writability: the ease with which a 
language can be used to create programs

• Reliability: conformance to specifications 
(i.e., performs to its specifications) 

• Cost: the ultimate total cost
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Evaluation Criteria: Readability
• Overall simplicity

– A manageable set of features and constructs
– Few feature multiplicity (means of doing the same operation)
– Minimal operator overloading

• Orthogonality 
– A relatively small set of primitive constructs can be combined in 

a relatively small number of ways
– Every possible combination is legal

• Control statements
– The presence of well-known control structures (e.g., while

statement)
• Data types and structures

– The presence of adequate facilities for defining data structures
• Syntax considerations

– Identifier forms: flexible composition 
– Special words and methods of forming compound statements
– Form and meaning: self-descriptive constructs, meaningful 

keywords
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Evaluation Criteria: Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives, 
a small set of rules for combining them

• Support for abstraction
– The ability to define and use complex 

structures  or operations in ways that allow 
details to be ignored

• Expressivity
– A set of relatively convenient ways of 

specifying operations
– Example: the inclusion of for statement in 

many modern languages
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Evaluation Criteria: Reliability

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods for 

the same memory location
• Readability and writability

– A language that does not support “natural” ways of 
expressing an algorithm will necessarily use “unnatural”
approaches, and hence reduced reliability



Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-26

Evaluation Criteria: Cost

• Training programmers to use language
• Writing programs (closeness to particular 

applications)
• Compiling programs
• Executing programs
• Language implementation system: 

availability of free compilers
• Reliability: poor reliability leads to high 

costs
• Maintaining programs
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Evaluation Criteria: Others

• Portability
– The ease with which programs can be moved 

from one implementation to another
• Generality

– The applicability to a wide range of applications
• Well-definedness

– The completeness and precision of the 
language’s official definition
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Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent 

computer architecture, known as the von 
Neumann architecture

• Programming Methodologies
– New software development methodologies (e.g., 

object-oriented software development) led to 
new programming paradigms and by extension, 
new programming languages
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Computer Architecture Influence

• Well-known computer architecture: Von Neumann 
• Imperative languages, most dominant, because of 

von Neumann computers
– Data and programs stored in memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Basis for imperative languages

• Variables model memory cells
• Assignment statements model piping
• Iteration is efficient
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The von Neumann Architecture
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Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry 
about machine efficiency

• Late 1960s: People efficiency became important; 
readability, better control structures
– structured programming
– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism
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Language Categories

• Imperative
– Central features are variables, assignment statements, and 

iteration
– Examples: C, Pascal

• Functional
– Main means of making computations is by applying functions to 

given parameters
– Examples: LISP, Scheme

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Object-oriented
– Data abstraction, inheritance, late binding
– Examples: Java, C++

• Markup 
– New; not a programming per se, but used to specify the layout 

of information in Web documents
– Examples: XHTML, XML
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Language Design Trade-Offs

• Reliability vs. cost of execution
– Conflicting criteria
– Example: Java demands all references to array elements 

be checked for proper indexing but that leads to 
increased execution costs

• Readability vs. writability
– Another conflicting criteria
– Example: APL provides many powerful operators (and a 

large number of new symbols), allowing complex 
computations to be written in a compact program but at 
the cost of poor readability

• Writability (flexibility) vs. reliability
– Another conflicting criteria
– Example: C++ pointers are powerful and very flexible but 

not reliably used
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Implementation Methods

• Compilation
– Programs are translated into machine 

language
• Pure Interpretation

– Programs are interpreted by another 
program known as an interpreter

• Hybrid Implementation Systems
– A compromise between compilers and 

pure interpreters
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Layered View of Computer
The operating system 
and language 
implementation are 
layered over 
Machine interface of a 
computer
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Compilation

• Translate high-level program (source language) 
into machine code (machine language)

• Slow translation, fast execution
• Compilation process has several phases: 

– lexical analysis: converts characters in the source program 
into lexical units

– syntax analysis: transforms lexical units into parse trees 
which represent the syntactic structure of program

– Semantics analysis: generate intermediate code
– code generation: machine code is generated
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The Compilation Process
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Additional Compilation Terminologies

• Load module (executable image): the user 
and system code together

• Linking and loading: the process of 
collecting system program and linking 
them to user program
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Execution of Machine Code

• Fetch-execute-cycle (on a von Neumann 
architecture)

initialize the program counter
repeat forever
fetch the instruction pointed by the counter
increment the counter
decode the instruction
execute the instruction

end repeat
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Von Neumann Bottleneck

• Connection speed between a computer’s 
memory and its processor determines the 
speed of a computer

• Program instructions often can be executed 
a lot faster than the above connection 
speed; the connection speed thus results in 
a bottleneck

• Known as von Neumann bottleneck; it is the 
primary limiting factor in the speed of 
computers
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Pure Interpretation

• No translation
• Easier implementation of programs (run-

time errors can easily and immediately 
displayed)

• Slower execution (10 to 100 times slower 
than compiled programs)

• Often requires more space
• Becoming rare on high-level languages
• Significant comeback with some Web 

scripting languages (e.g., JavaScript)
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Pure Interpretation Process
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Hybrid Implementation Systems

• A compromise between compilers and pure 
interpreters

• A high-level language program is 
translated to an intermediate language that 
allows easy interpretation

• Faster than pure interpretation
• Examples

– Perl programs are partially compiled to detect errors 
before interpretation

– Initial implementations of Java were hybrid; the 
intermediate form, byte code, provides portability to any 
machine that has a byte code interpreter and a run-time 
system (together, these are called Java Virtual Machine)
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Hybrid Implementation Process
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Pascal, P-code & bootstrapping

• Wirth tools (1972) for porting Pascal
– Pascal compiler PaToP-C.Pa

• written in Pascal, generating P-code
– PaToP-C.P-C

• i.e. PaToP-C.Pa compiled with itself on some computer
– P-C.Pa: P-code interpreter written in Pascal

• Porting the compiler to machine M (bootstrapping)
– translate P-C.Pa by hand to a local language, say C
– compile the result, say P-C.C, obtain an interpreter P-C.M
– modify (by hand) PaToP-C.Pa to PaToM.Pa
– compile PaToM.Pa (run PaToP-C.P-C on P-C.M) to 

PaToM.P-C
– compile PaToM.Pa (run PaToM.P-C on P-C.M) to PaToM.M

http://www.cs.inf.ethz.ch/~wirth/
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Porting a Pascal Compiler to M

MA

Pa-to-A.APa-to-P-C.Pa
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Pa-to-P-C.P-C
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C
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Just-in-Time Implementation Systems

• Initially translate programs to an 
intermediate language

• Then compile intermediate language into 
machine code

• Machine code version is kept for 
subsequent calls

• JIT systems are widely used for Java 
programs

• .NET languages are implemented with a JIT 
system
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Preprocessors

• Preprocessor macros (instructions) are 
commonly used to specify that code from 
another file is to be included

• A preprocessor processes a program 
immediately before the program is 
compiled to expand embedded  
preprocessor macros

• A well-known example: C preprocessor
– expands #include, #define, and similar 

macros
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Programming Environments

• The collection of tools used in software 
development

• UNIX
– An older operating system and tool collection
– Nowadays often used through a GUI (e.g., CDE, KDE, or 

GNOME) that run on top of UNIX
• Borland JBuilder

– An integrated development environment for Java
• Microsoft Visual Studio.NET

– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET, Jscript, J#, or 

C++
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Summary

• The study of programming languages is valuable for 
a number of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming 
languages include:
– Readability, writability, reliability, cost

• Major influences on language design have been 
machine architecture and software development 
methodologies

• The major methods of implementing programming 
languages are: compilation, pure interpretation, and 
hybrid implementation
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