
ISBN 0-321-33025-0

Chapter 1

Preliminaries

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-2

Chapter 1 Topics

• Reasons for Studying Concepts of
Programming Languages

• Programming Domains
• Language Evaluation Criteria
• Influences on Language Design
• Language Categories
• Language Design Trade-Offs
• Implementation Methods
• Programming Environments

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-3

Programming is an unnatural act

•Alan Perlis
•1922-1990
•First President of the ACM
•First Turing Award winner
•Member of the Algol-60

design team

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-4

An example of an early computer

– Harvard Mark I (IBM, Aiken, 1948)
• electro-mechanical

– ENIAC is an electronic copy of Mark I design
• executed 3 operations each second (3 IPS)
• remained in use until 1959
• 51’ long, 8’ high, 3’ deep
• 730,000 parts (relays, switches, wheels, shafts), 530

miles of wiring, 18,000 vacuum tubes, ...
– How many programmers could one ‘buy’ with

the price of one computer?

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-5

An example of a new computer

• Sun Fire 15K
– 106 UltraSPARC III processors

• 900 MHz to 1.2 GHz clock speed
• 29 million transistors
• supports 4 Gb of memory

– 602,270 JBB operations per second
– list price $3,739,230.00 (72 processors)

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-6

Picture of Mark I

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-7

Computer Size

ENIAC then…

ENIAC today…

• With computers (small) size does matter!

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-8

An example of an early program

• Euclid’s algorithm for GCD (greatest common divisor)
– actually this is for a quite new computer (MIPS R4000)

• Writing programs in this way is very expensive and hard
– but the early computers cost much much more
– even using the computer cost more than programming it

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-9

With Mark II came the bugs

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-10

Problems of machine code

• Programming = coding in the true meaning of the
word

• Code is not
– reusable: monolithic ‘structure’
– relocatable: consider adding one instruction in the middle
– readable (more important)

• Practically impossible to create large programs

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-11

Symbolic assembly language

• Assembler
– translator from symbolic language to machine language

(one-to-one mapping)
– tool to assemble the symbolic program in the machine

• Advantages
– relocatable & reusable (copy) programs
– macro expansion

• first step towards higher-level programming
– larger programs (like operating systems) possible

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-12

Euclid’s GCD program in MIPS assembly
language

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-13

Problems of assembler

• Each kind of computer has its own
• Programmers must learn to think like

computers
• Maintenance of larger programs is difficult
• Higher-level languages

– portability
– natural notation (for anything)
– support to software development

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-14

First high-level language

• Fortran (Backus, 1957)
– IBM Mathematical Formula Translator
– compilation instead of translation
– language for scientific computing

• most important task in those days
– efficiency important to replace assemblers
– introduced many important language concepts

that are still in use

http://www.fortran.com/

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-15

A Fortran program
• C FORTRAN PROGRAM
• DIMENSION A(99)
• REAL MEAN

• READ(1,5) N
• 5 FORMAT(I2)

• READ(1,10) (A(I), I=1,N)
• 10 FORMAT(6F10.5)

• SUM = 0.0
• DO 15 I=1,N
• 15 SUM = SUM + A(I)

• MEAN = SUM/FLOAT(N)
• NUMBER = 0
• DO 20 I=1,N
• IF(A(I) .LE. MEAN) GOTO 20
• NUMBER = NUMBER + 1
• 20 CONTINUE

• WRITE(2,25) MEAN, NUMBER
• 25 FORMAT(8H MEAN = , F10.5, 5X, 20H NUMBERS OVER MEAN =, I5)
• STOP
• END

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-16

What matters in programming?

• 1950s: cost and use of machines
• Nowadays

– problems other than efficiency are often more important
• performance gap between compiled and hand-tailored

machine code has diminished
• modern hardware is too complicated for humans

– cost of labor has far surpassed the cost of machinery
• standard PC costs like NT 20,000

– software systems are getting more and more complex
– problems to solve are getting difficult even to define

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-17

Why are there so many programming
languages?

• Read the “Perlis quotes”
• Evolution

– CS is constantly finding ‘better’ ways to do things
– structured programming, modules, o-o, ...

• Special languages for special purposes
– Scientific applications, e.g. MATLAB, Mathematica, Fortran,

ALGO 60 etc.
– Business applications, e.g. COBOL
– Artificial intelligence (AI), e.g. LISP, Ada
– Systems programming, e.g. PL/S, C/C++, Pascal
– Web software, e.g. HTML, XML, PHP, .NET, Java

• Personal preference
– We are not all driving a NISSON or TOYOTA!?

http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-18

Why are some programming languages
more successful?

• Expressive power
– in principle, all languages are Turing-complete
– has a huge effect on programmer’s ability to

• write, read, and maintain
• understand and analyze

– abstraction facilities (for computation & data)
• Ease of use

– low learning curve (Basic, Logo, Pascal)
• Ease of implementation

– Pascal & p-code (forefather of Java VM) made it easy to port
compilers

– free availability in general

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-19

More reasons for success

• Excellent compilers and tools
– fast compiled code (Fortran)
– debugging tools
– project management tools
– teamwork tools

• Economics, inertia
– 10000000 lines of Cobol is hard to rewrite
– 100000 Cobol programmers are hard to re-train

• Patronage
– many languages have powerful ‘sponsors’

• Cobol, PL/I, Ada, Visual Basic, C#

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-20

Reasons for Studying Concepts of
Programming Languages

• Increased ability to express ideas
• Improved background for choosing

appropriate languages
• Increased ability to learn new languages
• Better understanding of significance of

implementation
• Overall advancement of computing

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-21

Programming Domains

• Scientific applications
– Large number of floating point computations
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated
– LISP

• Systems programming
– Need efficiency because of continuous use
– C

• Web Software
– Eclectic collection of languages: markup (e.g., XHTML),

scripting (e.g., PHP), general-purpose (e.g., Java)

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-22

Language Evaluation Criteria

• Readability: the ease with which
programs can be read and understood

• Writability: the ease with which a
language can be used to create programs

• Reliability: conformance to specifications
(i.e., performs to its specifications)

• Cost: the ultimate total cost

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-23

Evaluation Criteria: Readability
• Overall simplicity

– A manageable set of features and constructs
– Few feature multiplicity (means of doing the same operation)
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be combined in

a relatively small number of ways
– Every possible combination is legal

• Control statements
– The presence of well-known control structures (e.g., while

statement)
• Data types and structures

– The presence of adequate facilities for defining data structures
• Syntax considerations

– Identifier forms: flexible composition
– Special words and methods of forming compound statements
– Form and meaning: self-descriptive constructs, meaningful

keywords

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-24

Evaluation Criteria: Writability
• Simplicity and orthogonality

– Few constructs, a small number of primitives,
a small set of rules for combining them

• Support for abstraction
– The ability to define and use complex

structures or operations in ways that allow
details to be ignored

• Expressivity
– A set of relatively convenient ways of

specifying operations
– Example: the inclusion of for statement in

many modern languages

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-25

Evaluation Criteria: Reliability

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods for

the same memory location
• Readability and writability

– A language that does not support “natural” ways of
expressing an algorithm will necessarily use “unnatural”
approaches, and hence reduced reliability

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-26

Evaluation Criteria: Cost

• Training programmers to use language
• Writing programs (closeness to particular

applications)
• Compiling programs
• Executing programs
• Language implementation system:

availability of free compilers
• Reliability: poor reliability leads to high

costs
• Maintaining programs

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-27

Evaluation Criteria: Others

• Portability
– The ease with which programs can be moved

from one implementation to another
• Generality

– The applicability to a wide range of applications
• Well-definedness

– The completeness and precision of the
language’s official definition

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-28

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Programming Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-29

Computer Architecture Influence

• Well-known computer architecture: Von Neumann
• Imperative languages, most dominant, because of

von Neumann computers
– Data and programs stored in memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Basis for imperative languages

• Variables model memory cells
• Assignment statements model piping
• Iteration is efficient

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-30

The von Neumann Architecture

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-31

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry
about machine efficiency

• Late 1960s: People efficiency became important;
readability, better control structures
– structured programming
– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented
– data abstraction

• Middle 1980s: Object-oriented programming
– Data abstraction + inheritance + polymorphism

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-32

Language Categories

• Imperative
– Central features are variables, assignment statements, and

iteration
– Examples: C, Pascal

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Object-oriented
– Data abstraction, inheritance, late binding
– Examples: Java, C++

• Markup
– New; not a programming per se, but used to specify the layout

of information in Web documents
– Examples: XHTML, XML

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-33

Language Design Trade-Offs

• Reliability vs. cost of execution
– Conflicting criteria
– Example: Java demands all references to array elements

be checked for proper indexing but that leads to
increased execution costs

• Readability vs. writability
– Another conflicting criteria
– Example: APL provides many powerful operators (and a

large number of new symbols), allowing complex
computations to be written in a compact program but at
the cost of poor readability

• Writability (flexibility) vs. reliability
– Another conflicting criteria
– Example: C++ pointers are powerful and very flexible but

not reliably used

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-34

Implementation Methods

• Compilation
– Programs are translated into machine

language
• Pure Interpretation

– Programs are interpreted by another
program known as an interpreter

• Hybrid Implementation Systems
– A compromise between compilers and

pure interpreters

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-35

Layered View of Computer
The operating system
and language
implementation are
layered over
Machine interface of a
computer

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-36

Compilation

• Translate high-level program (source language)
into machine code (machine language)

• Slow translation, fast execution
• Compilation process has several phases:

– lexical analysis: converts characters in the source program
into lexical units

– syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

– Semantics analysis: generate intermediate code
– code generation: machine code is generated

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-37

The Compilation Process

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-38

Additional Compilation Terminologies

• Load module (executable image): the user
and system code together

• Linking and loading: the process of
collecting system program and linking
them to user program

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-39

Execution of Machine Code

• Fetch-execute-cycle (on a von Neumann
architecture)

initialize the program counter
repeat forever
fetch the instruction pointed by the counter
increment the counter
decode the instruction
execute the instruction

end repeat

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-40

Von Neumann Bottleneck

• Connection speed between a computer’s
memory and its processor determines the
speed of a computer

• Program instructions often can be executed
a lot faster than the above connection
speed; the connection speed thus results in
a bottleneck

• Known as von Neumann bottleneck; it is the
primary limiting factor in the speed of
computers

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-41

Pure Interpretation

• No translation
• Easier implementation of programs (run-

time errors can easily and immediately
displayed)

• Slower execution (10 to 100 times slower
than compiled programs)

• Often requires more space
• Becoming rare on high-level languages
• Significant comeback with some Web

scripting languages (e.g., JavaScript)

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-42

Pure Interpretation Process

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-43

Hybrid Implementation Systems

• A compromise between compilers and pure
interpreters

• A high-level language program is
translated to an intermediate language that
allows easy interpretation

• Faster than pure interpretation
• Examples

– Perl programs are partially compiled to detect errors
before interpretation

– Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time
system (together, these are called Java Virtual Machine)

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-44

Hybrid Implementation Process

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-45

Pascal, P-code & bootstrapping

• Wirth tools (1972) for porting Pascal
– Pascal compiler PaToP-C.Pa

• written in Pascal, generating P-code
– PaToP-C.P-C

• i.e. PaToP-C.Pa compiled with itself on some computer
– P-C.Pa: P-code interpreter written in Pascal

• Porting the compiler to machine M (bootstrapping)
– translate P-C.Pa by hand to a local language, say C
– compile the result, say P-C.C, obtain an interpreter P-C.M
– modify (by hand) PaToP-C.Pa to PaToM.Pa
– compile PaToM.Pa (run PaToP-C.P-C on P-C.M) to

PaToM.P-C
– compile PaToM.Pa (run PaToM.P-C on P-C.M) to PaToM.M

http://www.cs.inf.ethz.ch/~wirth/

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-46

Porting a Pascal Compiler to M

MA

Pa-to-A.APa-to-P-C.Pa

Pa-to-P-C.A

Pa-to-P-C.P-C

1

23

4

P-C.Pa P-C.C
hand

P-C.M

C-to-M.M

Pa-to-M.Pa

hand

Pa-to-P-C.P-C
+

Pa-to-M.P-C + P-C.M

5

8

7
6

9

Pa-to-M.M

8

9

(text file)

(text file)

(machine code)

Pascal
P-Code
A

C
M

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-47

Just-in-Time Implementation Systems

• Initially translate programs to an
intermediate language

• Then compile intermediate language into
machine code

• Machine code version is kept for
subsequent calls

• JIT systems are widely used for Java
programs

• .NET languages are implemented with a JIT
system

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-48

Preprocessors

• Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

• A preprocessor processes a program
immediately before the program is
compiled to expand embedded
preprocessor macros

• A well-known example: C preprocessor
– expands #include, #define, and similar

macros

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-49

Programming Environments

• The collection of tools used in software
development

• UNIX
– An older operating system and tool collection
– Nowadays often used through a GUI (e.g., CDE, KDE, or

GNOME) that run on top of UNIX
• Borland JBuilder

– An integrated development environment for Java
• Microsoft Visual Studio.NET

– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET, Jscript, J#, or

C++

Copyright © 2006 Dr. Jenhui Chen. All rights reserved. 1-50

Summary

• The study of programming languages is valuable for
a number of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming
languages include:
– Readability, writability, reliability, cost

• Major influences on language design have been
machine architecture and software development
methodologies

• The major methods of implementing programming
languages are: compilation, pure interpretation, and
hybrid implementation

	Chapter 1
	Chapter 1 Topics
	Programming is an unnatural act
	An example of an early computer
	An example of a new computer
	Picture of Mark I
	Computer Size
	An example of an early program
	With Mark II came the bugs
	Problems of machine code
	Symbolic assembly language
	Euclid’s GCD program in MIPS assembly language
	Problems of assembler
	First high-level language
	A Fortran program
	What matters in programming?
	Why are there so many programming languages?
	Why are some programming languages more successful?
	More reasons for success
	Reasons for Studying Concepts of Programming Languages
	Programming Domains
	Language Evaluation Criteria
	Evaluation Criteria: Readability
	Evaluation Criteria: Writability
	Evaluation Criteria: Reliability
	Evaluation Criteria: Cost
	Evaluation Criteria: Others
	Influences on Language Design
	Computer Architecture Influence
	The von Neumann Architecture
	Programming Methodologies Influences
	Language Categories
	Language Design Trade-Offs
	Implementation Methods
	Layered View of Computer
	Compilation
	The Compilation Process
	Additional Compilation Terminologies
	Execution of Machine Code
	Von Neumann Bottleneck
	Pure Interpretation
	Pure Interpretation Process
	Hybrid Implementation Systems
	Hybrid Implementation Process
	Pascal, P-code & bootstrapping
	Porting a Pascal Compiler to M
	Just-in-Time Implementation Systems
	Preprocessors
	Programming Environments
	Summary

