Programming Language Syntax

長庚大學資訊工程學系 陳仁暉 助理教授 Tel: (03) 211-8800 Ext: 5990 Email: jhchen@mail.cgu.edu.tw URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

Syntax of Programming Languages

- Formal Languages and Grammars
- Regular Grammars and Languages
- Context-free Grammars and Languages
- Context-sensitive Grammars and Languages
- Attribute Grammars

Formal Languages and Grammars

- Formal Languages
 - Programming languages are formal languages.
 - A formal language is a set of finite strings of symbols taken from some alphabet.
 - Example
 - Here are some languages over the alphabet {0,1}

 $\Box \quad L_3 = \text{the set of all binary strings ending in 10}$

= {10, 010, 110, 0010, 0110, 1010, 1110, ...}

 $\Box \quad L_4 = \text{the set of all binary strings}$

= { ε , 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, …}

Programming language C = the set of all syntactically correct C programs over C's alphabet

Grammars & Terminals

Grammars

- Grammars are used to define formal languages.
- A grammar consists of four parts:
 - 1. A set of terminal symbols
 - 2. A set of nonterminal symbols
 - 3. A set of rewriting rules (or production rules) of the form

 $\alpha \rightarrow \beta$

where α and β are strings of terminals and nonterminals, and α contains at least one nonterminal.

Terminals are symbols of the language being defined.
 Nonterminals are symbols of the defining language.

A rewriting rules specifies that the string α may produce or be rewritten as the string $\beta.$

The rewriting process begins with the start symbol.

Grammars & Terminals

- A grammar G generates a language L(G) defined by
 - L(G) = the set of all strings of terminals, called sentences, that can be derived from the start symbol through a sequence of applications of the rewriting rules of G.
- Example
 - Let G₁ be a grammar that consists of a terminal a, two terminals S and A, the start symbol S, and the rules:

$$S \rightarrow a$$
$$S \rightarrow aA$$
$$A \rightarrow aS$$

- Conventions
 - Small letters are terminals, and capital letters are nonterminals
 - The nonterminal in the left-hand side of the first rule is the start symbol.
 - The first two rules are usually abbreviated as

 $S \rightarrow a \mid aA$

Grammars & Terminals

Example (continued)

□ The string aaaaa is a sentence of the language generated by G.

$S \rightarrow aA \rightarrow aaS \rightarrow aaaA \rightarrow aaaaS \rightarrow aaaaa$

- This sequence is called a derivation of the sentence aaaaa.
- The symbol → means "derive in one step," whereas the symbol → means "produce".
- L(G₁) = the set of all strings containing odd number of a's = { aⁿ | n >= 1 is odd}
- A language may be generated by many different grammars. For example, the language L(G₁) may also be generated by the following grammars:

$$G_2$$
 $S \rightarrow a \mid aaS$ G_3 $S \rightarrow a \mid Saa$

 G_4 $S \rightarrow a \mid aSa$

Regular Grammars and Languages

Regular grammars and languages

A regular grammar is a left- or right-linear grammar whose production rules are of the form

$$\mathsf{A} \rightarrow \omega \mid \mathsf{B}\omega$$

← left-linear

or, $A \rightarrow \omega \mid \omega B$

 \leftarrow right-linear

where A and B are nonterminals, and ω is a (possibly empty) string of terminals.

Regular grammars generate regular languages.

Example

- The language of all binary strings ending in 10 is regular.
- **Right-linear grammar**

 $S \rightarrow 0S | 1S | 10$

Right-linear grammars generate sentences from the left end

$S \rightarrow 0S \rightarrow 01S \rightarrow 0110$

Regular Grammars and Languages

Example (Continued)

Left-linear grammar

 $S \rightarrow A10$

 $A \rightarrow A0 \mid A1 \mid \epsilon$

Left-linear grammars generate sentences from the right end

 $S \rightarrow A10 \rightarrow A110 \rightarrow A0110 \rightarrow 0110$

 Here is an equivalent left-linear grammar without rules that produce the empty string ε.

S → A10 | 10

 $A \rightarrow A0 \mid A1 \mid 0 \mid 1$

Regular Grammars and Languages

Lexical syntax

- The lexical syntax of a programming language (i.e., the syntax of tokens, including keywords, identifiers, numeric constants, etc), can be described by regular grammars.
- Example
 - The language of C's keywords is regular.

 $S \rightarrow if | while | for | int | long | double | ...$

 The language of C's identifiers (a letter or _followed by any number of letters, digits, or _) is regular, too.
 Right-linear grammar

$$S \rightarrow aA | \dots | zA | `A'A | \dots | `Z'A | _A$$
$$A \rightarrow aA | \dots | zA | `A'A | \dots | `Z'A | _A$$
$$0A | \dots | 9A | \varepsilon$$

Context-free Grammars and Languages

- Context-free grammars and language
- A context-free grammar (CFG) has production rules of the form

 $A \rightarrow \alpha$

where A is a nonterminal, $\boldsymbol{\alpha}$ is a (possibly empty) string of terminals and nonterminals.

- Context-free grammars generate context-free language (CFL).
- Context-free grammars are so called because the rewriting of a nonterminal is independent of its context.
- A regular grammar (language) is also a CFG (CFL) but a CFG (CFL) may not be a regular grammar (language).

Context-free Grammars and Languages

Example (Continued)

- Consider the following language
 - L = the set all nested balanced parentheses

 $= \{ \epsilon, (), (()), (()), ... \} \\= \{ (n)^n \mid n \ge 0 \}$

- It can be shown that L is not a regular language, i.e., no regular grammars can generate L.
- That L is not regular implies that programming languages are not regular, since nested balanced parentheses are parts of expression syntax, e.g., (((x+((2))))).

Context-free Grammars and Languages

- Parse tree (derivation tree)
 - A parse tree is a graphical representation of derivations.
 - Example
 - Let the CFG be $S \rightarrow (S) | \varepsilon$
 - Derivation
 - $\mathsf{S} \bigstar (\mathsf{S}) \bigstar ((\mathsf{S})) \bigstar (())$

S

S

3

Parse tree
 S

- Leaves, from left to right, contain the sentence (())
- Every sentence has a single derivation and a single parse tree.

Specifying Syntax

Regular expression

 Any set of strings that can be defined in terms of the first three rules (concatenation, alternation (choice among a finite set of alternatives), and socalled "Kleene closure" (repetition an arbitrary number of times)) is called a *regular set*, or sometimes a *regular language*.

Context-Free Grammars

 Any set of strings that can be defined if we add recursion is called a *context-free language* (CFL).

Tokens and Regular Expressions

- Tokens are the basic building blocks of programs.
 - Pascal, for example, has 64 kinds of tokens, including 21 symbols (+, -, ;, :=, ..., etc.), 35 keywords (begin, end, div, record, while, etc.), integer literals (e.g., 137), real (floating-point) literals (e.g., 6.022e23), character/string literals (e.g., `snerk').
- To specify tokens, we use the notation of regular expressions. A regular expression is one of the following:
 - □ 1. a character
 - \square 2. the empty string, denoted ϵ
 - 3. two regular expressions next to each other, meaning any string generated by the first one followed by (concatenated with) any string generated by the second one
 - 4. two regular expressions separated by a vertical bar (|), meaning any string generated by the first one or any string generated by the second one
 - 5. a regular expression followed by a Kleene star, meaning the concatenation of zero or more strings generated by the expression in front of the star

Tokens and Regular Expressions

- digit \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- unsigned_integer → digit digit*
- unsigned_number → unsigned_integer ((. unsigned_integer) | ε) ((e (+ | - | ε) unsigned_integer) | ε)

Context-Free Grammar

- CFG can help us to specify nested constructs, which are central to programming languages.
 - a express → identifier | number | expression | (expression) | expression operator expression
 - □ operator \rightarrow + | | * | /
 - Each of the rules in a context-free grammar is known as a production.
 - The symbols on the left-hand sides of the productions are known as variables, or *nonterminals*.
 - Symbols that are to make up the strings derived from the grammar are know as *terminals*.
 - One of the nonterminals, usually the one on the left-hand side of the first production, is called the start symbol.

Context-Free Grammar

- The notation for context-free grammars is sometimes called Backus-Naur Form (BNF), in honor of John Backus and Peter Naur, who devised it for the definition of the Algol-60 programming language [NBB⁺ 63].
- The vertical bar, Kleene star, and meta-level parentheses of regular expressions are not allowed in BNF.
- These extra operators, the notation is often called extended BNF (EBNF).

Derivations and Parse Trees

- Parsing the string "slope * x + intercept"
- - → expr op id
 - → expr + id
 - → expr op expr + id
 - → expr op id + id
 - → expr * id + id
 - → id * id + id

Ambiguous

- The above example chooses at each step to replace the right-most nonterminal with the *right-most* derivation, also called a *canonical* derivation.
- There are many other possible derivations, including *left-most* and options in-between.

Parse Tree

Parse tree for 3+4*5, with precedence.

- □ expr \rightarrow term | expr add_op term
- □ term → factor | term mult_op factor
- □ factor \rightarrow id | number | factor | (expr)
- □ add_op \rightarrow + | -
- □ mult_op \rightarrow * | /

Another Example of Parse Tree

The subtraction groups more tightly to the left, so that 10 – 4 – 3 would evaluated to 3, rather than to 9. (Grammar shown in page 38)

Another example of ambiguity

Two (or more) parse trees or leftmost derivations for the *same string*

- $E \rightarrow E + E$
- $E \rightarrow E E$ $E \rightarrow 0 | \dots | 9$

Two leftmost derivations

- E \rightarrow E + E $E \rightarrow$ E E \rightarrow E E + E \rightarrow 2 E \rightarrow 2 E + E \rightarrow 2 E + E \rightarrow 2 3 + 4 \rightarrow 2 3 + 4
- An ambiguous grammar can sometimes be made unambiguous
- $E \rightarrow E + T | E T | T$

 $T \rightarrow 0 \mid \dots \mid 9$

Recognizing Syntax: Scanners & Parsers

- The scanner and parser for a programming language are responsible for discovering the syntactic structure of a given program.
- The parser is the heart of a typical compiler.
- Parser calls the scanner to obtain the tokens of the input program, assembles the tokens together into a parse tree, and passes the tree (perhaps one subroutine at a time) to the later phases of the compiler, which perform semantic analysis and code generation and improvement.

Recognizing Syntax: Scanners & Parsers

- Scanner
 - It dramatically reduces the number of individual items.
 - Typically remove comments (so the parser doesn't have to worry about them appearing throughout the context-free grammar).
- Scanners normally deal only with nonrecursive constructs, nested comments require special treatment.
- In theoretical parlance, a scanner is a deterministic finite automaton (DFA) that recognize the tokens of a programming language.
- A parser is a deterministic push-down automaton (PDA) that recognizes the language' context-free syntax.
- This task is performed by tools such as Unix's lex and yacc.
 - At many sites, lex and yacc have been superseded by the GNU flex and bison tools. These independently developed, noncommercial alternatives are available without charge from the Free Software Foundation at <u>www.fsf.org/software</u>.

Scanning

- Please refer to textbook on page 40.
- This algorithm is a pseudo code of scanner for Pascal.
- It is not difficult to flesh out the algorithm above by hand, to produce code in some programming language.
- We can write the code by hand (this option basically amounts to a highly stylized ad hoc scanner), or we can use a scanner *generator* (e.g., lex) to build it automatically from a set of regular expressions.

Top-Down and Bottom-Up Parsing

- A context-free grammar (CFG) is a generator for a CF language.
- A parser is a language *recognizer*.
- LL stands for "Left-to-right, Left-most derivation." LR parser is called "top-down," or "predictive" parser.
- LR stands for "Left-to-right, Right-most derivation." LR parser is called "bottom-up" parser.

Common Orderings

Top-down

- Start with the root
- Traverse the parse tree depth-first, left-to-right (leftmost derivation)
- LL(k)
- Bottom-up
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse(!)
 - LR(k) and subsets (Look Ahead Left Recursive, LALR(k), Simple Left Recursive, SLR(k), etc.)

Top-down vs. bottom-up

- Consider the grammar (Scott, p. 49)
 id_list → *i* d *id_list_tail id_list* → *i* d *id_list_tail*
 - \Box id_list_tail \rightarrow , i d id_list_tail
 - \Box id_list_tail \rightarrow ;
- And input text:
 A, B, C;

Top-down vs. bottom-up Parsing

Disadvantage of Bottom-Up Parsing

- The problem with previous grammar, for the purpose of bottom-up parsing, is that it forces the compiler to shift all the tokens of an id_list into its forest before it can reduce any of them.
 - id_list \rightarrow id_list_prefix;
 - id_list_prefix \rightarrow id_list_prefix, id | id
- This grammar cannot be parsed top-down, because when we see an id on the input and we're expecting an id_list_prefix, we have no way to tell which of the two possible productions we should predict.

Bottom-up Revision

Recursive Descent

An example of "calculate" language.
 read A
 read B
 sum := A + B
 write sum
 write sum / 2

Sum-and-average program

FIRST Sets

- FIRST(α) is the set of all terminal symbols that can begin some sentential form that starts with α
- FIRST(α) = {a in V_t | $\alpha \rightarrow * a\beta$ } U { ϵ } if $\alpha \rightarrow * \epsilon$
- Example:

<stmt> → simple | begin <stmts> end FIRST(<stmt>) = {simple, begin}

Computing FIRST sets

Initially FIRST(A) is empty

- 1. For productions A \rightarrow a β , where a in V_t Add { a } to FIRST(A)
- 2. For productions $A \rightarrow \varepsilon$ Add { ε } to FIRST(A)
- 3. For productions $A \rightarrow \alpha B \beta$, where $\alpha \rightarrow^* \varepsilon$ and NOT ($B \rightarrow \varepsilon$) Add FIRST(αB) to FIRST(A)
- 4. For productions $A \rightarrow \alpha$, where $\alpha \rightarrow^* \varepsilon$ Add FIRST(α) and { ε } to FIRST(A)

To compute FIRST across strings of terminals and non-terminals:

$$FIRST(\varepsilon) = \{\varepsilon\}$$

$$FIRST(A\alpha) = A \text{ if A is a terminal}$$

$$= FIRST(A) \cup FIRST(\alpha)$$

$$= IRST(A) \cup FIRST(\alpha)$$

- $S \rightarrow a S e$
- $S \rightarrow B$
- B → b B e
- $B \rightarrow C$
- $C \rightarrow c C e$
- $C \rightarrow d$

- FIRST(C) =
- FIRST(B) =
- FIRST(S) =

- S → a S e
- $S \rightarrow B$
- B → b B e
- $B \rightarrow C$
- $C \rightarrow c C e$
- $C \rightarrow d$

- FIRST(C) = {c,d}
- FIRST(B) = {b,c,d}
- FIRST(S) = {a,b,c,d}

- $P \rightarrow i | c | n T S$
- $Q \rightarrow P | a S | b S c S T$
- R → b | ε
- S → c | R n | ε
- $T \rightarrow R S q$

- FIRST(P) =
- FIRST(Q) =
- FIRST(R) =
- FIRST(S) =
- FIRST(T) =

- $P \rightarrow i | c | n T S$
- $Q \rightarrow P | a S | b S c S T$
- R → b | ε
- $S \rightarrow c | R n | ε$
- $T \rightarrow R S q$

- FIRST(P) = {i,c,n}
- FIRST(Q) = {i,c,n,a,b}
- FIRST(R) = {b, ε}
- FIRST(S) = {c,b,n, ε}
- FIRST(T) = {b,c,n,q}

- S → a S e | S T S
- T → R S e | Q
- $\blacksquare R \rightarrow r S r | \varepsilon$
- $Q \rightarrow ST | \varepsilon$

- FIRST(S) =
- FIRST(R) =
- FIRST(T) =
- FIRST(Q) =

- S → a S e | S T S
- T → R S e | Q
- $\blacksquare R \rightarrow r S r | \varepsilon$
- Q → S T | ε

- FIRST(S) = {a}
- FIRST(R) = {r, ε}
- FIRST(T) = {r,a, ε}
- FIRST(Q) = {a, ε}

FOLLOW Sets

- FOLLOW(A) is the set of terminals (including end of file) that may follow non-terminal A in some sentential form.
- FOLLOW(A) = {a in V_t | S →+ ...Aa...} U {\$ (end of file)} if S →+ ...A
- For example, consider L →+ (())(L)L --Both ')' and end of file can follow L

Computing FOLLOW(A)

- If S is a start symbol, put \$ in FOLLOW(S)
- Productions of the form $B \rightarrow \alpha A a$, then add { a } to FOLLOW(A)
- Productions of the form $B \rightarrow \alpha A \beta$, Add FIRST(β) – { ϵ } to FOLLOW(A) INTUITION: Suppose $B \rightarrow AX$ and FIRST(X) = {c} $S \rightarrow^+ \alpha B \beta \rightarrow \alpha A X \beta \rightarrow^+ \alpha A c \delta \beta$

- Productions of the form $B \rightarrow \alpha A$ or $B \rightarrow \alpha A \beta$ where $\beta \rightarrow^* \varepsilon$ Add FOLLOW(B) to FOLLOW(A) INTUITION:
 - □ Suppose $B \rightarrow Y A$ S → + $\alpha B \beta \rightarrow \alpha Y A \beta$
 - □ Suppose $B \rightarrow A X$ and $X \rightarrow \varepsilon$
 - $\mathsf{S} \clubsuit^{\scriptscriptstyle +} \alpha \: \mathsf{B} \: \beta \clubsuit \alpha \: \mathsf{A} \: \mathsf{X} \: \beta \clubsuit \alpha \: \mathsf{A} \: \beta$

NOTE: ε *never* in FOLLOW sets

- S → a S e | B
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$

- FOLLOW(C) =
- FOLLOW(B) =

- FIRST(C) = {c,d, ε}
- FIRST(B) = {b,c,d, ε}
- FIRST(S) = {a,b,c,d, ε}

FOLLOW(S) =

- S → a S e | B
- $B \rightarrow b B C f | C$
- $C \rightarrow c C g | d | \epsilon$
- FIRST(C) = {c,d, ε}
- FIRST(B) = {b,c,d, ε}
- FIRST(S) = {a,b,c,d, ε}

- FOLLOW(C) = g,fFOLLOW(C) = {c,d,e,f,g,\$}
- FOLLOW(B) = c,d,fFOLLOW(B) = {c,d,e,f,}
- FOLLOW(S) = { \$, e }

- FIRST(S) = {(, ε}
- FIRST(A) = {(,a,b,c}
- FIRST(E) = {', ', ε }
- FIRST(T) = {(,a,b,c}
- E → , T E | ε
 T → (A) | a | b | c
- S → (A) | ε

FOLLOW(T) =

- FOLLOW(E) =
- FOLLOW(A) =
- FOLLOW(S) =

- FIRST(S) = {(, ε}
- FIRST(A) = {(,a,b,c}
- FIRST(E) = {', ', ε }
- FIRST(T) = {(,a,b,c}
- E → , T E | ε
 T → (A) | a | b | c
- $A \rightarrow T E$
- S → (A) | ε

FOLLOW(E) = $\{ , \}$ FOLLOW(T) = $\{ , , , \}$

- FOLLOW(E) = {) }
- FOLLOW(A) = {) }
- FOLLOW(S) = {\$}

- FIRST(E') = {+,ε}
- FIRST(T') = {*,ε}
- FIRST(F) = FIRST(T) = FIRST(E) = {(,id}
- $F \rightarrow (E) | id$
- T' → * F T' | ε
- $T \rightarrow F T'$
- E' → + T E' | ε
- $E \rightarrow T E'$

- FOLLOW(T') =
 FOLLOW(F) =
- FOLLOW(T) =
- FOLLOW(E') =
- FOLLOW(E) =

- FIRST(E') = {+,ε}
- FIRST(T') = {*,ε}
- FIRST(F) = FIRST(T) = FIRST(E) = {(,id}
- $F \rightarrow (E) | id$
- T' → * F T' | ε
- E' → + T E' | ε ■ T → F T'
- $E \rightarrow T E'$

- FOLLOW(T') = {+,\$,)}
 FOLLOW(F) = {*,+,\$,)}
- FOLLOW(E') = {\$,)}
 FOLLOW(T) = {+,\$,}}
- FOLLOW(E) = {\$,)}

- FIRST(A) = FIRST(S) = {a}
- FIRST(B) = {b,c,ε}
- FIRST(D) = FIRST(C) = {b,c}
- $D \rightarrow b b | c c$
- B→b|c|ε ■ C→DaC
- A → a | a A
- $S \rightarrow A B C | A D$

- FOLLOW(D) =
- FOLLOW(C) =
- FOLLOW(B) =
- FOLLOW(A) =
- FOLLOW(S) =

55

- FIRST(A) = FIRST(S) = $\{a\}$
- FIRST(B) = {b,c,ε}
- FIRST(D) = FIRST(C) = {b,c}
- D→bb|cc
- B→b|c|ε ■ C→DaC
- A → a | a A
- $S \rightarrow A B C | A D$

- FOLLOW(D) = {a,\$}
- FOLLOW(C) = $\{\$\}$
- FOLLOW(B) = $\{b,c\}$
- FOLLOW(A) = $\{b,c\}$
- FOLLOW(S) = {\$}

Writing an LL(1) Grammar

- The two most common obstacles to "LL(1)ness" are
 - Left recursion
 - Common prefixes

Ρ

begin simplestmt ; simplestmt ; end \$

S → a B | b C B → b b C C → c c

Two strings in the language: abbcc and bcc Can choose between them based on the first character of the input.

LL(k) parsing

- Process input k symbols at a time.
- Initially, current non-terminal is start symbol.

Algorithm

- Given next k input tokens and current non-terminal T, choose a rule R (T \rightarrow ...)
- For each element X in rule R from left to right,
 if X is a non-terminal, call function for X
 else if symbol X is a terminal, see if next input symbol matches X;
 if so, update from the input
- Typically, we consider LL(1)

Two Approaches

- Recursive Descent parsing
 - Code tailored to the grammar
- Table Driven predictive parsing
 - Table tailored to the grammar
 - General Algorithm

Writing a Recursive Descent Parser

Procedure for each non-terminal.

```
Use next token (lookahead) to choose which production to mimic.
```

- for non-terminal X, call procedure X()
- for terminals X, call 'match(X)'
- match(symbol) {

```
if (symbol = lookahead)
```

```
lookahead = yylex()
```

```
else error() }
```

Call yylex() before the first call to get first lookahead.

Back to grammar

```
S() {
    if (lookahead==a) { match(a);B(); }
    else if (lookahead == b) { match(b);
        C(); }
    else error("expecting a or b");
}
B() {match(b); match(b); C();}
C() { match(c) ; match(c) ;}
main() {
```

lookahead==yylex();

S();

}

```
S → a B
| b C
B → b b C
C → c c
```


S

Remaining input: abbcc

Remaining input: bbcc

Remaining input: cc

Remaining input:

How do we find the lookaheads?

- Can compute PREDICT sets from FIRST and FOLLOW
- PREDICT(A $\rightarrow \alpha$) =

FIRST(α) – { ϵ } U FOLLOW(A) if ϵ in FIRST(α) FIRST(α) if ϵ not in FIRST(α)

NOTE: ε never in PREDICT sets For LL(*k*) grammars, the PREDICT sets for a given non-terminal will be disjoint.

Example

Production	Predict
$E \rightarrow T E'$	= FIRST(T) = {(,id}
$E' \rightarrow + T E'$	{+}
E' → ε	$= FOLLOW(E') = \{\$, \}$
$T \rightarrow F T'$	= FIRST(F) = {(,id}
$T' \rightarrow * F T'$	{*}
Τ ' → ε	$= FOLLOW(T') = \{+, \$, \}$
F → id	{id}
$F \rightarrow (E)$	{(}

•FIRST(F) = $\{(,id)\}$ •FIRST(T) = {(,id} •FIRST(E) = {(,id} •FIRST(T') = {*, ϵ } •FIRST(E') = $\{+, \varepsilon\}$ •FOLLOW(E) = $\{\$, \}$ •FOLLOW(E') = $\{\$, \}$ •FOLLOW(T) = $\{+\$, \}$ •FOLLOW(T') = $\{+, \$, \}$ •FOLLOW(F) = $\{*, +, \$, \}$

```
E() {

if (lookahead in {(,id}) T(); E_prime(); }

else error("(E) expecting ( or identifier");

}

E \rightarrow T E'
```

```
E_prime() {
```

```
if (lookahead in {+}) {match(+); T(); E_prime();} E' \rightarrow + T E'
else if (lookahead in {),end_of_file}) return; E' \rightarrow \epsilon
else error("(E') expecting +, ) or end of file");
}
```

```
T() {

if (lookahead in {(,id}) F(); T_prime(); }

else error("(T) expecting ( or identifier");

}

T \rightarrow F T'
```

T_prime() {

if (lookahead in {*}) {match(*); F(); T_prime();} $T' \rightarrow * F T'$ else if (lookahead in {),end_of_file}) return; $T' \rightarrow \varepsilon$ else error("(T') expecting *,) or end of file"); }

F() {

if (lookahead in {id}) match(id); $F \rightarrow id$ else if (lookahead in {(}) match({); E(); match (}); } $F \rightarrow (E)$ else error("(F) expecting (or identifier");}

E

Remaining input: a+b*c

Remaining input: a+b*c

Remaining input: a+b*c

Remaining input: +b*c

Remaining input: +b*c

Remaining input: b*c

Remaining input: b*c

Remaining input: *c

Remaining input: c

Remaining input:

Remaining input:

Remaining input:

Stacks in Recursive Descent Parsing

E h Runtime stack

 Procedure activations correspond to a path in parse tree from root to some interior node

LL(1) Predictive Parse Tables

An LL(1) Parse table is a mapping T: $V_n \times V_t \rightarrow$ production P or error

- 1. For all productions $A \rightarrow \alpha$ do
 - For each terminal a in Predict(A $\rightarrow \alpha$), T[A][a] = A $\rightarrow \alpha$
- 2. Every undefined table entry is an error.

Using LL(1) Parse Tables

ALGORITHM

- INPUT: token sequence to be parsed, followed by '\$' (end of file)
- DATA STRUCTURES:
- Parse stack: Initialized by pushing '\$' and then pushing the start symbol
- Parse table T

```
push($); push(start_symbol); lookahead = yylex()
repeat
```

```
X = pop(stack)
```

if X is a terminal symbol or \$ then

if X = lookahead then

```
lookahead = yylex()
```

else error()

```
else /* X is non-terminal */

if T[X][lookahead] = X \rightarrow Y_1 Y_2 ... Y_m

push(Y<sub>m</sub>) ... push (Y<sub>1</sub>)

else error()

until X = $ token
```

Expression Grammar

NT/T	+	*	()	ID	\$
E			→ T E'		→ T E'	
E'	\rightarrow + T E'			3 ←		3 ←
Т			\rightarrow F T'		\rightarrow F T'	
Τ'	→ ε	→ * F T'		3 ←		3 ←
F			\rightarrow (E)		→ ID	

Parsing a + b * c

Stack	Input	Action
\$E	a+b*c\$	$E \rightarrow T E'$
\$E'T	a+b*c\$	$T \rightarrow F T'$
\$E'T'F	a+b*c\$	$F \rightarrow id$
\$E'T'id	a+b*c\$	match
\$E'T'	+b*c\$	T' → ε
\$E'	+b*c\$	$E' \rightarrow + T E'$
\$E'T+	+b*c\$	match
\$E'T	b*c\$	$T \rightarrow F T'$

Stack	Input	Action
\$E'T'F	b*c\$	$F \rightarrow id$
\$E'T'id	b*c\$	match
\$E'T'	*c\$	$T' \rightarrow * F T'$
\$E'T'F*	*c\$	match
\$E'T'F	c\$	$F \rightarrow id$
\$E'T'id	c\$	match
\$E'T'	\$	T' → ε
\$E'	\$	E' → ε
\$	\$	accept

Stack in Predictive Parsing

- Algorithm data structure
- Holds terminals and non-terminals from the grammar
 - terminals still need to be matched from the input
 - non-terminals still need to be expanded

Making a grammar LL(1)

- Not all context free languages have LL(1) grammars
- Can show a grammar is not LL(1) by looking at the predict sets
 - For LL(a) grammars, the PREDICT sets for a given non-terminal will be disjoint.

Example

Production	Predict
$E \rightarrow E + T$	= FIRST(E) = {(,id}
$E \rightarrow T$	= FIRST(T) = {(,id}
$T \rightarrow T * F$	= FIRST(T) = {(,id}
$T \rightarrow F$	= FIRST(F) = {(,id}
$F \rightarrow id$	= {id}
$F \rightarrow (E)$	= {(}

Two problems: E and T

•FIRST(F) = $\{(,id)\}$ •FIRST(T) = {(,id} •FIRST(E) = {(,id} •FIRST(T) = {*, ε } •FIRST(E') = $\{+, \varepsilon\}$ •FOLLOW(E) = $\{\$, \}$ •FOLLOW(E') = $\{\$, \}$ •FOLLOW(T) = $\{+\$, \}$ •FOLLOW(T') = $\{+, \$, \}$ •FOLLOW(F) = $\{*, +, \$, \}$

Making a non-LL(1) grammar LL(1)

- Eliminate common prefixes
 - $\mathsf{Ex:} \mathsf{A} \xrightarrow{} \mathsf{B} \mathrel{\mathsf{a}} \mathsf{C} \mathsf{D} \mid \mathsf{B} \mathrel{\mathsf{a}} \mathsf{C} \mathsf{E}$
- Transform left recursion to right recursion Ex: $E \rightarrow E + T | T$

Eliminate Common Prefixes

• $A \rightarrow \alpha \beta \mid \alpha \delta$ Can become: $A \rightarrow \alpha A'$ $A' \rightarrow \beta \mid \delta$

Doesn't always remove the problem. Why?

Why is left recursion a problem?

Remove Left Recursion

$$\begin{array}{l} \mathsf{A} \xrightarrow{} \mathsf{A} \alpha_1 \mid \mathsf{A} \alpha_2 \mid \dots \mid \beta_1 \mid \beta_2 \mid \dots \\ \text{becomes} \\ \mathsf{A} \xrightarrow{} \beta_1 \mid \mathsf{A}' \mid \beta_2 \mid \mathsf{A}' \mid \dots \\ \mathsf{A}' \xrightarrow{} \alpha_1 \mid \mathsf{A}' \mid \alpha_2 \mid \mathsf{A}' \mid \dots \mid \varepsilon \end{array}$$

The left recursion becomes right recursion

 $A \rightarrow A \alpha \mid \beta$ becomes $A \rightarrow \beta B, B \rightarrow \alpha B \mid \lambda$

Expression Grammar

E → E + T | T T → T * F | F F → id | (E) NOT LL(1) Eliminate left recursion: E → T E', E' → + T E' | ε T → F T', T' → * F T' | ε

 $F \rightarrow id \mid (E)$

Non-Immediate Left Recursion

• Ex: $A_1 \rightarrow A_2 a \mid b$

 $A_2 \rightarrow A_1 c \mid A_2 d$

- Convert to immediate left recursion
- Substitute A₁ in second set of productions by A₁'s definition:

$$A_1 \rightarrow A_2 a \mid b$$
$$A_2 \rightarrow A_2 a c \mid b c \mid A_2 c$$

Eliminate recursion:

$$A_{1} \rightarrow A_{2} a \mid b$$

$$A_{2} \rightarrow b c A_{3}$$

$$A_{3} \rightarrow a c A_{3} \mid d A_{3} \mid \epsilon$$

Example

- $\bullet A \rightarrow B c \mid d$
 - $B \rightarrow C f | B f$
 - $C \rightarrow A e \mid g$
- Rewrite: replace C in B
 - $B \rightarrow A e f | g f | B f$
- Rewrite: replace A in B
 - $B \rightarrow Bcef|def|gf|Bf$

- Now grammar is:
 - $A \rightarrow Bc \mid d$
 - $B \rightarrow Bcef|def|gf|Bf$
 - $C \rightarrow A e \mid g$
- Get rid of left recursion (and C if A is start) $A \rightarrow B c | d$
 - $B \rightarrow defB' | gfB'$
 - $B' \rightarrow c e f B' | f B' | \varepsilon$

Error Recovery in LL parsing

- Simple option: When see an error, print a message and halt
- "Real" error recovery
 - Insert "expected" token and continue can have a problem with termination
 - Deleting tokens for an error for non-terminal F, keep deleting tokens until see a token in follow(F).

For example:

```
E() {

if (lookahead in {(,id}) T(); E_prime(); } E \rightarrow T E'

else { printf("(E) expecting ( or identifier"); Follow(E) = $ )

while (lookahead != ( or $) lookahead = yylex();

}
```