
1

Programming Language
Syntax

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
Email: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

2

Syntax of Programming Languages

Formal Languages and Grammars
Regular Grammars and Languages
Context-free Grammars and Languages
Context-sensitive Grammars and Languages
Attribute Grammars

3

Formal Languages and Grammars
Formal Languages

Programming languages are formal languages.
A formal language is a set of finite strings of symbols taken
from some alphabet.
Example

Here are some languages over the alphabet {0,1}
L1 = {}
L2 = {0,1}
L3 = the set of all binary strings ending in 10

= {10, 010, 110, 0010, 0110, 1010, 1110, …}
L4 = the set of all binary strings

= {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, …}
Programming language C = the set of all syntactically correct C
programs over C’s alphabet

4

Grammars & Terminals

Grammars
Grammars are used to define formal languages.
A grammar consists of four parts:

1. A set of terminal symbols
2. A set of nonterminal symbols
3. A set of rewriting rules (or production rules) of the form

α β
where α and β are strings of terminals and nonterminals, and α
contains at least one nonterminal.

Terminals are symbols of the language being defined.
Nonterminals are symbols of the defining language.
A rewriting rules specifies that the string α may produce or be
rewritten as the string β.
The rewriting process begins with the start symbol.

5

Grammars & Terminals
A grammar G generates a language L(G) defined by

L(G) = the set of all strings of terminals, called sentences, that
can be derived from the start symbol through a sequence of
applications of the rewriting rules of G.

Example
Let G1 be a grammar that consists of a terminal a, two terminals S
and A, the start symbol S, and the rules:

S a
S aA
A aS

Conventions
Small letters are terminals, and capital letters are nonterminals
The nonterminal in the left-hand side of the first rule is the start
symbol.
The first two rules are usually abbreviated as

S a | aA

6

Grammars & Terminals

Example (continued)
The string aaaaa is a sentence of the language generated by G.

S aA aaS aaaA aaaaS aaaaa
This sequence is called a derivation of the sentence aaaaa.
The symbol means “derive in one step,” whereas the symbol
means “produce”.

L(G1) = the set of all strings containing odd number of a’s = { an |
n >= 1 is odd}
A language may be generated by many different grammars. For
example, the language L(G1) may also be generated by the
following grammars:

G2 S a | aaS
G3 S a | Saa
G4 S a | aSa

7

Regular Grammars and Languages

Regular grammars and languages
A regular grammar is a left- or right-linear grammar whose
production rules are of the form

A ω | Bω left-linear
or, A ω | ωB right-linear
where A and B are nonterminals, and ω is a (possibly
empty) string of terminals.
Regular grammars generate regular languages.
Example

The language of all binary strings ending in 10 is regular.
Right-linear grammar

S 0S | 1S | 10
Right-linear grammars generate sentences from the left
end

S 0S 01S 0110

8

Regular Grammars and Languages

Example (Continued)
Left-linear grammar

S A10
A A0 | A1 | ε

Left-linear grammars generate sentences from the right
end

S A10 A110 A0110 0110
Here is an equivalent left-linear grammar without rules
that produce the empty string ε.

S A10 | 10
A A0 | A1 | 0 | 1

9

Regular Grammars and Languages

Lexical syntax
The lexical syntax of a programming language (i.e., the
syntax of tokens, including keywords, identifiers, numeric
constants, etc), can be described by regular grammars.
Example

The language of C’s keywords is regular.
S if | while | for | int | long | double | …

The language of C’s identifiers (a letter or _followed by
any number of letters, digits, or _) is regular, too.
Right-linear grammar

S aA | … | zA | `A’A | … | `Z’A | _A
A aA | … | zA | `A’A | … | `Z’A | _A

0A | … | 9A | ε

10

Context-free Grammars and Languages
Context-free grammars and language
A context-free grammar (CFG) has production rules of the form

A α

where A is a nonterminal, α is a (possibly empty) string of terminals and
nonterminals.
Context-free grammars generate context-free language (CFL).
Context-free grammars are so called because the rewriting of a
nonterminal is independent of its context.
A regular grammar (language) is also a CFG (CFL) but a CFG (CFL)
may not be a regular grammar (language).

Regular languages

Context-free languages

11

Context-free Grammars and Languages

Example (Continued)
Consider the following language

L = the set all nested balanced parentheses
= {ε, (), (()), ((())), …}
= { (n)n | n ≧ 0}

It can be shown that L is not a regular language, i.e., no
regular grammars can generate L.
That L is not regular implies that programming
languages are not regular, since nested balanced
parentheses are parts of expression syntax, e.g.,
(((x+((2))))).

12

Context-free Grammars and Languages
Parse tree (derivation tree)

A parse tree is a graphical representation of derivations.
Example

Let the CFG be
S (S) | ε

Derivation
S (S) ((S)) (())

Parse tree S

(S)

(S)

ε
Leaves, from left to right, contain the sentence (())

Every sentence has a single derivation and a single parse tree.

13

Specifying Syntax

Regular expression
Any set of strings that can be defined in terms of
the first three rules (concatenation, alternation
(choice among a finite set of alternatives), and so-
called “Kleene closure” (repetition an arbitrary
number of times)) is called a regular set, or
sometimes a regular language.

Context-Free Grammars
Any set of strings that can be defined if we add
recursion is called a context-free language (CFL).

14

Tokens and Regular Expressions
Tokens are the basic building blocks of programs.

Pascal, for example, has 64 kinds of tokens, including 21
symbols (+, -, ;, :=, .., etc.), 35 keywords (begin, end, div, record,
while, etc.), integer literals (e.g., 137), real (floating-point) literals
(e.g., 6.022e23), character/string literals (e.g., `snerk’).

To specify tokens, we use the notation of regular expressions. A
regular expression is one of the following:

1. a character
2. the empty string, denoted ε
3. two regular expressions next to each other, meaning any string
generated by the first one followed by (concatenated with) any
string generated by the second one
4. two regular expressions separated by a vertical bar (|),
meaning any string generated by the first one or any string
generated by the second one
5. a regular expression followed by a Kleene star, meaning the
concatenation of zero or more strings generated by the
expression in front of the star

15

Tokens and Regular Expressions

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
unsigned_integer digit digit*
unsigned_number unsigned_integer ((.
unsigned_integer) | ε) ((e (+ | - | ε)
unsigned_integer) | ε)

16

Context-Free Grammar

CFG can help us to specify nested constructs, which
are central to programming languages.

express identifier | number | - expression | (expression)
| expression operator expression
operator + | - | * | /
Each of the rules in a context-free grammar is known as a
production.
The symbols on the left-hand sides of the productions are
known as variables, or nonterminals.
Symbols that are to make up the strings derived from the
grammar are know as terminals.
One of the nonterminals, usually the one on the left-hand
side of the first production, is called the start symbol.

17

Context-Free Grammar

The notation for context-free grammars is
sometimes called Backus-Naur Form (BNF), in
honor of John Backus and Peter Naur, who
devised it for the definition of the Algol-60
programming language [NBB+ 63].
The vertical bar, Kleene star, and meta-level
parentheses of regular expressions are not
allowed in BNF.
These extra operators, the notation is often
called extended BNF (EBNF).

18

Derivations and Parse Trees

Parsing the string “slope * x + intercept”
expr expr op expr

expr op id
expr + id
expr op expr + id
expr op id + id
expr * id + id
id * id + id

19

Ambiguous

The above example chooses at each step to replace the
right-most nonterminal with the right-most derivation,
also called a canonical derivation.
There are many other possible derivations, including left-
most and options in-between.

20

Parse Tree
Parse tree for 3+4*5, with precedence.

expr term | expr add_op term
term factor | term mult_op factor
factor id | number | - factor | (expr)
add_op + | -
mult_op * | /

21

Another Example of Parse Tree

The subtraction groups more tightly to the left,
so that 10 – 4 – 3 would evaluated to 3,
rather than to 9. (Grammar shown in page 38)

22

Another example of ambiguity

Two (or more) parse trees or leftmost
derivations for the same string

E E + E
E E – E
E 0 | … | 9

E

E + E

E - E E + E

E - E

E

2 3

4 2

3 4

23

Two leftmost derivations
E E + E E E – E

E – E + E 2 – E
2 – E + E 2 – E + E
2 – 3 + E 2 – 3 + E
2 – 3 + 4 2 – 3 + 4

An ambiguous grammar can sometimes
be made unambiguous

E E + T | E – T | T
T 0 | … | 9

24

Recognizing Syntax: Scanners & Parsers

The scanner and parser for a programming
language are responsible for discovering the
syntactic structure of a given program.
The parser is the heart of a typical compiler.
Parser calls the scanner to obtain the tokens of the
input program, assembles the tokens together into a
parse tree, and passes the tree (perhaps one
subroutine at a time) to the later phases of the
compiler, which perform semantic analysis and code
generation and improvement.

25

Recognizing Syntax: Scanners & Parsers
Scanner

It dramatically reduces the number of individual items.
Typically remove comments (so the parser doesn’t have to worry
about them appearing throughout the context-free grammar).

Scanners normally deal only with nonrecursive constructs,
nested comments require special treatment.
In theoretical parlance, a scanner is a deterministic finite
automaton (DFA) that recognize the tokens of a programming
language.
A parser is a deterministic push-down automaton (PDA) that
recognizes the language’ context-free syntax.
This task is performed by tools such as Unix’s lex and yacc.

At many sites, lex and yacc have been superseded by the GNU flex
and bison tools. These independently developed, noncommercial
alternatives are available without charge from the Free Software
Foundation at www.fsf.org/software.

http://www.fsf.org/software

26

Scanning

Please refer to textbook on page 40.
This algorithm is a pseudo code of scanner for
Pascal.
It is not difficult to flesh out the algorithm above by
hand, to produce code in some programming
language.
We can write the code by hand (this option basically
amounts to a highly stylized ad hoc scanner), or we
can use a scanner generator (e.g., lex) to build it
automatically from a set of regular expressions.

27

Scanning

Pictorial
representation
of (part of) a
Pascal
scanner as a
finite
automaton.

28

Top-Down and Bottom-Up Parsing

A context-free grammar (CFG) is a generator
for a CF language.
A parser is a language recognizer.
LL stands for “Left-to-right, Left-most
derivation.” LR parser is called “top-down,” or
“predictive” parser.
LR stands for “Left-to-right, Right-most
derivation.” LR parser is called “bottom-up”
parser.

29

Common Orderings

Top-down
Start with the root
Traverse the parse tree depth-first, left-to-right (leftmost
derivation)
LL(k)

Bottom-up
Start at leaves and build up to the root

Effectively a rightmost derivation in reverse(!)
LR(k) and subsets (Look Ahead Left Recursive, LALR(k),
Simple Left Recursive, SLR(k), etc.)

30

Top-down vs. bottom-up

Consider the grammar (Scott, p. 49)
id_list id id_list_tail
id_list_tail , id id_list_tail
id_list_tail ;

And input text:
A, B, C;

31

Top-down vs. bottom-up Parsing

32

Disadvantage of Bottom-Up Parsing

The problem with previous grammar, for the purpose
of bottom-up parsing, is that it forces the compiler to
shift all the tokens of an id_list into its forest before it
can reduce any of them.
id_list id_list_prefix;
id_list_prefix id_list_prefix, id | id
This grammar cannot be parsed top-down, because
when we see an id on the input and we’re expecting
an id_list_prefix, we have no way to tell which of the
two possible productions we should predict.

33

Bottom-up Revision

34

Recursive Descent

An example of “calculate” language.
read A
read B
sum := A + B
write sum
write sum / 2

35

Sum-and-average program

36

FIRST Sets

FIRST(α) is the set of all terminal symbols
that can begin some sentential form that
starts with α
FIRST(α) = {a in Vt | α * aβ } U { ε } if α *
ε
Example:
<stmt> simple | begin <stmts> end
FIRST(<stmt>) = {simple, begin}

37

Computing FIRST sets

Initially FIRST(A) is empty
1. For productions A a β, where a in Vt

Add { a } to FIRST(A)
2. For productions A ε

Add { ε } to FIRST(A)
3. For productions A α B β, where α * ε and

NOT (B ε)
Add FIRST(αB) to FIRST(A)

4. For productions A α, where α * ε
Add FIRST(α) and { ε } to FIRST(A)

38

To compute FIRST across strings of
terminals and non-terminals:

FIRST(ε) = { ε }
FIRST(Aα) = A if A is a terminal

= FIRST(A) U FIRST(α)
if A ε

= FIRST(A) otherwise

39

Example 1

S a S e
S B
B b B e
B C
C c C e
C d

FIRST(C) =
FIRST(B) =
FIRST(S) =

40

Example 1

S a S e
S B
B b B e
B C
C c C e
C d

FIRST(C) = {c,d}
FIRST(B) = {b,c,d}
FIRST(S) = {a,b,c,d}

41

Example 2

P i | c | n T S
Q P | a S | b S c S T
R b | ε
S c | R n | ε
T R S q

FIRST(P) =
FIRST(Q) =
FIRST(R) =
FIRST(S) =
FIRST(T) =

42

Example 2

P i | c | n T S
Q P | a S | b S c S T
R b | ε
S c | R n | ε
T R S q

FIRST(P) = {i,c,n}
FIRST(Q) = {i,c,n,a,b}
FIRST(R) = {b, ε}
FIRST(S) = {c,b,n, ε}
FIRST(T) = {b,c,n,q}

43

Example 3

S a S e | S T S
T R S e | Q
R r S r | ε
Q S T | ε

FIRST(S) =
FIRST(R) =
FIRST(T) =
FIRST(Q) =

44

Example 3

S a S e | S T S
T R S e | Q
R r S r | ε
Q S T | ε

FIRST(S) = {a}
FIRST(R) = {r, ε}
FIRST(T) = {r,a, ε}
FIRST(Q) = {a, ε}

45

FOLLOW Sets

FOLLOW(A) is the set of terminals (including
end of file) that may follow non-terminal A in
some sentential form.
FOLLOW(A) = {a in Vt | S + …Aa…} U {$
(end of file)} if S + …A
For example, consider L + (())(L)L --
Both ‘)’ and end of file can follow L

46

Computing FOLLOW(A)

If S is a start symbol, put $ in FOLLOW(S)
Productions of the form B α A a, then
add { a } to FOLLOW(A)
Productions of the form B α A β,
Add FIRST(β) – {ε} to FOLLOW(A)
INTUITION: Suppose B AX and FIRST(X) = {c}
S + α B β α A X β + α A c δ β

47

Productions of the form B α A or
B α A β where β * ε
Add FOLLOW(B) to FOLLOW(A)
INTUITION:

Suppose B Y A
S + α B β α Y A β
Suppose B A X and X ε
S + α B β α A X β α A β

NOTE: ε never in FOLLOW sets

48

Example 4

S a S e | B
B b B C f | C
C c C g | d | ε

FIRST(C) = {c,d, ε}
FIRST(B) = {b,c,d, ε}
FIRST(S) = {a,b,c,d, ε}

FOLLOW(C) =

FOLLOW(B) =

FOLLOW(S) =

49

Example 4

S a S e | B
B b B C f | C
C c C g | d | ε

FIRST(C) = {c,d, ε}
FIRST(B) = {b,c,d, ε}
FIRST(S) = {a,b,c,d, ε}

FOLLOW(C) =

FOLLOW(B) =

FOLLOW(S) = { }$, e

g,f

c,d,f
FOLLOW(B) = {c,d,e,f,$}

FOLLOW(C) = {c,d,e,f,g,$}

50

Example 5

S (A) | ε
A T E
E , T E | ε
T (A) | a | b | c

FIRST(T) = {(,a,b,c}
FIRST(E) = {‘,’, ε }
FIRST(A) = {(,a,b,c}
FIRST(S) = {(, ε}

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(E) =
FOLLOW(T) =

51

Example 5

S (A) | ε
A T E
E , T E | ε
T (A) | a | b | c

FIRST(T) = {(,a,b,c}
FIRST(E) = {‘,’, ε }
FIRST(A) = {(,a,b,c}
FIRST(S) = {(, ε}

FOLLOW(S) = {$}
FOLLOW(A) = {) }
FOLLOW(E) = {) }
FOLLOW(T) = {‘,’,)}

52

Example 6

E T E’
E’ + T E’ | ε
T F T’
T’ * F T’ | ε
F (E) | id

FIRST(F) = FIRST(T) =
FIRST(E) = {(,id}
FIRST(T’) = {*,ε}
FIRST(E’) = {+,ε}

FOLLOW(E) =
FOLLOW(E’) =
FOLLOW(T) =
FOLLOW(T’) =
FOLLOW(F) =

53

Example 6

E T E’
E’ + T E’ | ε
T F T’
T’ * F T’ | ε
F (E) | id

FIRST(F) = FIRST(T) =
FIRST(E) = {(,id}
FIRST(T’) = {*,ε}
FIRST(E’) = {+,ε}

FOLLOW(E) = {$,)}
FOLLOW(E’) = {$,)}
FOLLOW(T) = {+,$,)}
FOLLOW(T’) = {+,$,)}
FOLLOW(F) = {*,+,$,)}

54

Example 7

S A B C | A D
A a | a A
B b | c | ε
C D a C
D b b | c c

FIRST(D) = FIRST(C) = {b,c}
FIRST(B) = {b,c,ε}
FIRST(A) = FIRST(S) = {a}

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =

55

Example 7

S A B C | A D
A a | a A
B b | c | ε
C D a C
D b b | c c

FIRST(D) = FIRST(C) = {b,c}
FIRST(B) = {b,c,ε}
FIRST(A) = FIRST(S) = {a}

FOLLOW(S) = {$}
FOLLOW(A) = {b,c}
FOLLOW(B) = {b,c}
FOLLOW(C) = {$}
FOLLOW(D) = {a,$}

56

Writing an LL(1) Grammar

The two most common obstacles to “LL(1)-
ness” are

Left recursion
Common prefixes

57

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

P

58

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

SS

P

59

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S

SS

SS

P

60

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S

SS

SS

P

61

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

SS

P

62

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

SS

P

63

Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end $

S S SS

SS

ε

SS

P

64

Grammar

S a B
| b C

B b b C
C c c

Two strings in the language: abbcc and bcc
Can choose between them based on the first character

of the input.

65

LL(k) parsing

Process input k symbols at a time.
Initially, current non-terminal is start symbol.
Algorithm

Given next k input tokens and current non-terminal T, choose a
rule R (T …)

For each element X in rule R from left to right,
if X is a non-terminal, call function for X
else if symbol X is a terminal, see if next input symbol matches X;

if so, update from the input

Typically, we consider LL(1)

66

Two Approaches

Recursive Descent parsing
Code tailored to the grammar

Table Driven – predictive parsing
Table tailored to the grammar
General Algorithm

67

Writing a Recursive Descent Parser

Procedure for each non-terminal.
Use next token (lookahead) to choose which production to mimic.

for non-terminal X, call procedure X()
for terminals X, call ‘match(X)’

match(symbol) {
if (symbol = lookahead)

lookahead = yylex()
else error() }

Call yylex() before the first call to get first
lookahead.

68

Back to grammar

S() {
if (lookahead==a) { match(a);B(); }
else if (lookahead == b) { match(b);

C(); }
else error(“expecting a or b”);

}
B() {match(b); match(b); C();}
C() { match(c) ; match(c) ;}

main() {
lookahead==yylex();

S();
}

S a B
| b C

B b b C
C c c

69

Parsing abbcc

S Remaining input: abbcc

70

Parsing abbcc

S

a B

Remaining input: bbcc

71

Parsing abbcc

S

a B

b b C

Remaining input: cc

72

Parsing abbcc

S

a B

b b C

c c

Remaining input:

73

How do we find the lookaheads?

Can compute PREDICT sets from FIRST and
FOLLOW
PREDICT(A α) =
FIRST(α) – {ε} U FOLLOW(A) if ε in FIRST(α)
FIRST(α) if ε not in FIRST(α)

NOTE: ε never in PREDICT sets
For LL(k) grammars, the PREDICT sets for a given

non-terminal will be disjoint.

74

Example
Production Predict
E T E’ = FIRST(T) = {(,id}

E’ + T E’ {+}

E’ ε = FOLLOW(E’) = {$,)}

T F T’ = FIRST(F) = {(,id}

T’ * F T’ {*}

T’ ε = FOLLOW(T’) = {+,$,)}

F id {id}

F (E) {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E) = {(,id}
•FIRST(T’) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}

75

E() {
if (lookahead in {(,id}) T(); E_prime(); } E T E’
else error(“(E) expecting (or identifier”);

}

E_prime() {
if (lookahead in {+}) {match(+); T(); E_prime();} E’ + T E’
else if (lookahead in {),end_of_file}) return; E’ ε
else error(“(E’) expecting +,) or end of file”);

}

T() {
if (lookahead in {(,id}) F(); T_prime(); } T F T’
else error(“(T) expecting (or identifier”);

}

76

T_prime() {
if (lookahead in {*}) {match(*); F(); T_prime();} T’ * F T’
else if (lookahead in {),end_of_file}) return; T’ ε
else error(“(T’) expecting *,) or end of file”); }

F() {
if (lookahead in {id}) match(id); F id
else if (lookahead in {(}) match({); E(); match (}); } F (E)
else error(“(F) expecting (or identifier”);}

77

Parsing a + b * c

E Remaining input: a+b*c

78

Parsing a + b * c

E Remaining input:
T E’

a+b*c

79

Parsing a + b * c

E Remaining input:
T E’

F T’

a+b*c

80

Parsing a + b * c

E Remaining input:
T E’

F T’

id
a

+b*c

81

Parsing a + b * c

E Remaining input:
T E’

F T’

id
a

ε

+b*c

82

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

ε

b*c

83

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

ε F T’

b*c

84

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

id
b

ε F T’

*c

85

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

c

86

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

id
c

87

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’

id
c

ε

88

Parsing a + b * c

E Remaining input:
T E’

F T’ + T E’

id
a

* F T’id
b

ε F T’ ε

id
c

ε

89

Stacks in Recursive Descent Parsing

Runtime stack
Procedure activations
correspond to a path in
parse tree from root to
some interior node

E’

T

E

id
b

F

90

LL(1) Predictive Parse Tables

An LL(1) Parse table is a mapping T: Vn x Vt
production P or error

1. For all productions A α do
• For each terminal a in Predict(A α),

T[A][a] = A α

2. Every undefined table entry is an error.

91

Using LL(1) Parse Tables

ALGORITHM
INPUT: token sequence to be parsed, followed

by ‘$’ (end of file)
DATA STRUCTURES:

Parse stack: Initialized by pushing ‘$’ and
then pushing the start symbol
Parse table T

92

push($); push(start_symbol); lookahead = yylex()
repeat

X = pop(stack)
if X is a terminal symbol or $ then

if X = lookahead then
lookahead = yylex()

else error()
else /* X is non-terminal */

if T[X][lookahead] = X Y1 Y2 …Ym

push(Ym) … push (Y1)
else error()

until X = $ token

93

Expression Grammar

NT/T + * () ID $

E T E’ T E’

E’ + T E’ ε ε

T F T’ F T’

T’ ε * F T’ ε ε

F (E) ID

94

Parsing a + b * c

Stack Input Action
$E a+b*c$ E T E’
$E’T a+b*c$ T F T’
$E’T’F a+b*c$ F id
$E’T’id a+b*c$ match
$E’T’ +b*c$ T’ ε

$E’ +b*c$ E’ + T E’
$E’T+ +b*c$ match
$E’T b*c$ T F T’

Stack Input Action
$E’T’F b*c$ F id
$E’T’id b*c$ match
$E’T’ *c$ T’ * F T’
$E’T’F* *c$ match
$E’T’F c$ F id
$E’T’id c$ match

$E’ $ E’ ε

$E’T’ $ T’ ε

$ $ accept

95

Stack in Predictive Parsing

Algorithm data structure
Holds terminals and non-terminals from the
grammar

terminals – still need to be matched from the input
non-terminals – still need to be expanded

96

Making a grammar LL(1)

Not all context free languages have LL(1)
grammars
Can show a grammar is not LL(1) by looking
at the predict sets

For LL(a) grammars, the PREDICT sets for a
given non-terminal will be disjoint.

97

Example
Production Predict
E E + T = FIRST(E) = {(,id}

E T = FIRST(T) = {(,id}

T T * F = FIRST(T) = {(,id}

T F = FIRST(F) = {(,id}

F id = {id}

F (E) = {(}

•FIRST(F) = {(,id}
•FIRST(T) = {(,id}
•FIRST(E) = {(,id}
•FIRST(T) = {*,ε}
•FIRST(E’) = {+,ε}
•FOLLOW(E) = {$,)}
•FOLLOW(E’) = {$,)}
•FOLLOW(T) = {+$,)}
•FOLLOW(T’) = {+,$,)}
•FOLLOW(F) = {*,+,$,)}

Two problems: E and T

98

Making a non-LL(1) grammar LL(1)

Eliminate common prefixes
Ex: A B a C D | B a C E
Transform left recursion to right recursion
Ex: E E + T | T

99

Eliminate Common Prefixes

A α β | α δ
Can become:

A α A’
A’ β | δ

Doesn’t always remove the problem. Why?

100

Why is left recursion a problem?

A

A α

A α

A α

101

Remove Left Recursion

A A α1 | A α2 | … | β1 | β2 | …
becomes
A β1 A’| β2 A’| …
A’ α1 A’ | α2 A’ | … | ε

Τhe left recursion becomes right recursion

102

A

A α

A α

A α

A A α | β becomes A β B, B α B | λ

β

A

β Β

α Β

α Β

α Β

ε

103

Expression Grammar

E E + T | T
T T * F | F
F id | (E) NOT LL(1)
Eliminate left recursion:
E T E’, E’ + T E’ | ε
T F T’, T’ * F T’ | ε
F id | (E)

104

Non-Immediate Left Recursion

Ex: A1 A2 a | b
A2 A1 c | A2 d

Convert to immediate left recursion
Substitute A1 in second set of productions by A1’s definition:
A1 A2 a | b
A2 A2 a c | b c | A2 d

Eliminate recursion:
A1 A2 a | b
A2 b c A3

A3 a c A3 | d A3 | ε

105

Example

A B c | d
B C f | B f
C A e | g
Rewrite: replace C in B
B A e f | g f | B f
Rewrite: replace A in B
B B c e f | d e f | g f | B f

106

Now grammar is:
A B c | d
B B c e f | d e f | g f | B f
C A e | g
Get rid of left recursion (and C if A is start)
A B c | d
B d e f B’ | g f B’
B’ c e f B’ | f B’ | ε

107

Error Recovery in LL parsing

Simple option: When see an error, print a
message and halt
“Real” error recovery

Insert “expected” token and continue – can have
a problem with termination
Deleting tokens – for an error for non-terminal F,
keep deleting tokens until see a token in follow(F).

108

For example:

E() {
if (lookahead in {(,id}) T(); E_prime(); } E T E’
else { printf(“(E) expecting (or identifier”); Follow(E) = $)
while (lookahead != (or $) lookahead = yylex();
}

}

	Programming Language Syntax
	Syntax of Programming Languages
	Formal Languages and Grammars
	Grammars & Terminals
	Grammars & Terminals
	Grammars & Terminals
	Regular Grammars and Languages
	Regular Grammars and Languages
	Regular Grammars and Languages
	Context-free Grammars and Languages
	Context-free Grammars and Languages
	Context-free Grammars and Languages
	Specifying Syntax
	Tokens and Regular Expressions
	Tokens and Regular Expressions
	Context-Free Grammar
	Context-Free Grammar
	Derivations and Parse Trees
	Ambiguous
	Parse Tree
	Another Example of Parse Tree
	Another example of ambiguity
	Recognizing Syntax: Scanners & Parsers
	Recognizing Syntax: Scanners & Parsers
	Scanning
	Scanning
	Top-Down and Bottom-Up Parsing
	Common Orderings
	Top-down vs. bottom-up
	Top-down vs. bottom-up Parsing
	Disadvantage of Bottom-Up Parsing
	Bottom-up Revision
	Recursive Descent
	Sum-and-average program
	FIRST Sets
	Computing FIRST sets
	Example 1
	Example 1
	Example 2
	Example 2
	Example 3
	Example 3
	FOLLOW Sets
	Computing FOLLOW(A)
	Example 4
	Example 4
	Example 5
	Example 5
	Example 6
	Example 6
	Example 7
	Example 7
	Writing an LL(1) Grammar
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Top Down (LL) Parsing
	Grammar
	LL(k) parsing
	Two Approaches
	Writing a Recursive Descent Parser
	Back to grammar
	Parsing abbcc
	Parsing abbcc
	Parsing abbcc
	Parsing abbcc
	How do we find the lookaheads?
	Example
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Parsing a + b * c
	Stacks in Recursive Descent Parsing
	LL(1) Predictive Parse Tables
	Using LL(1) Parse Tables
	Expression Grammar
	Parsing a + b * c
	Stack in Predictive Parsing
	Making a grammar LL(1)
	Example
	Making a non-LL(1) grammar LL(1)�
	Eliminate Common Prefixes
	Why is left recursion a problem?
	Remove Left Recursion
	A  A a | b becomes A  b B, B  a B | l
	Expression Grammar
	Non-Immediate Left Recursion
	Example
	Error Recovery in LL parsing

