
1

Chapter 3: Names, Scopes,
and Bindings

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
Email: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

2

High-level programming languages

High-level features relative to assembly language
‘Highness’ = degree of abstraction

machine independence
efficient implementation does not depend on a specific
machine instruction set
relatively easy goal

ease of programming
hard goal
more aesthetics(藝術的), trial and error than science ?

Programming language design
find the right abstractions

3

Name
Mnemonic character string to represent
something else

usually identifiers, e.g., bull, cow, boy, girl, etc.
some languages allow names like ‘+’ & ‘:=‘

Enables programmers to
refer to variables etc. using

symbolic names rather than (e.g., $r0, $s0, sp, or fp, etc)
low-level hardware addresses (e.g., 0x3F3D or 0x11AA)

abstract their control and data structures
express purpose or function instead of implementation
make programs manageable
control abstraction: subroutines
data abstraction: classes (for example)

4

Binding & Binding Time...
Binding

an association between a name and the thing that is named
Binding time

the time at which an implementation decision is made to create a
binding

The time spent in implementation decision
Language design time

the design of specific program constructs (syntax)
primitive types
meaning (semantics)

Language implementation time
fixation of implementation constants such as

numeric precision
run-time memory sizes
max identifier name length
number and types of built-in exceptions, etc.

5

...Binding times

Program writing time
programmer’s choice of algorithms and data structures

Compile time
translation of high-level constructs to machine code
choice of memory layout for objects

Link time
multiple object codes (machine code files) and libraries are combined
into one executable code

Load time
operating system loads the executable code in memory

Run time
program executes

6

Nature of bindings

Static: things bound before execution
Dynamic: execution-time bindings
Early binding

efficiency (e.g. addressing a global variable in C)
languages tend to be compiled

Late binding
flexibility (e.g. polymorphism in Smalltalk)
languages tend to be interpreted

Our current interest
binding of identifiers to variables they name
note: all data has not to be named (e.g. dynamic storage)

7

Things we have to keep track of

The differences between names and objects by
identifying several key events following:

creation
of objects
of bindings

references to variables or subroutines, etc. (which use bindings)
deactivation and reactivation of bindings
destruction

of bindings
of objects

If we don’t keep good track of them we get
garbage: object that outlives it's binding and
dangling references: bindings that outlive their objects

8

Lifetime

Binding lifetime
time between the creation and destruction

Object lifetime
defined similarly, but not necessarily the same as
binding lifetime
e.g. objects passed as reference parameters
generally corresponds to the storage allocation
mechanism that is used to allocate/deallocate
object’s space

9

Storage allocation

Static objects
have absolute (and same) address through the program
execution
space is ‘part of the program’

Stack objects
allocated/deallocated in LIFO order (usually) in conjunction
of subroutine calls/exits

Heap objects
can be allocated/deallocated at arbitrary times
storage management more complex than with stack

10

An Example of Static Allocation

11

Static objects

Global variables
Translated machine code

subroutine locations in particular
Constants

large ones in ‘constant pool’
small ones stored as part of instructions

Subroutine variables that are declared static
Run-time support tables (produced by the compiler)

symbol table, dynamic type checking, exception handling,
garbage collection, ...

Note: processor-supported memory protection is
possible for constant data

12

Static or non?

Local variables in non-recursive languages
e.g. early Fortrans
all data (subroutines included) can be allocated
statically
pros: faster execution
cons: wastes space, bad programming practices

Local constants
compile-time constants can be allocated statically
elaboration-time constants must be allocated from
stack

each invocation may have a different value

13

Other information associated with
subroutines

Arguments and return values
compilers try to place these in registers if possible
if not, then the stack is used

Temporary variables
hold intermediate values of complex calculations
registers / stack

Bookkeeping information
return address (dynamic link)
saved registers (of the caller)
...

14

Why a stack?

Subroutine call / return is ‘stack-like’
stack is the natural data structure to support

data allocation & deallocation
Allows recursion

several instances of same subroutine can be
active

Allows re-using space
even when no recursion is used

15

Maintaining the Stack

Each subroutine call creates a stack frame
also called an activation record
bottom of the frame: arguments and returns

easy access for the caller
always at same offset

top of the frame: local variables & temporaries
compiler decides relative ordering

Maintenance of stack is done by (see Section 8.2)
prologue (code executed at the beginning) & epilogue (code
executed at the end) in the subroutine

saves space to do much here
calling sequence in the caller

instructions immediately before/after call/return
may save time to do much here
interprocedural optimizations possible

16

Addressing stack objects

Offsets of variables within a frame can be decided at compile-
time
Locations of frames themselves may vary during execution
Many machines have

a special frame pointer register (fp)
load/store instructions supporting indirect addressing via fp

Address = fp + offset (Fig. 3.2)
locals, temps: negative offset
arguments, returns: positive offset
stack grows ‘downward’ from high addresses to low ones
push/pop instructions to manipulate both fp and data

17

Stack-based Allocation of Space for
Subroutines

Figure 3.2

18

Heap-Based allocation

Heap is here not a priority queue
region of storage to support allocation/deallocation at arbitrary
times
necessity for dynamic data structures

Many space-management strategies
should be part of your data structures course?
space & speed concerns
space: internal & external fragmentation (O.S.)

Internal
allocation of a block larger than required
happens because of standard-sized blocks

External
blocks are scattered around the heap
lot of free space but in small pieces

19

An Example of External Fragmentation

20

Block allocation

Maintain all unallocated blocks in one list
also call a free list
at each allocation request, look for a block of appropriate size

Strategies
First-fit: return first large enough
Best-fit: return smallest block large enough
Neither is better than other (depends on requests)

Both cases:
if the block found is much larger than the request, split it in 2 and
return the other half to free list

Deallocation
add to free list and merge with adjacent regions if possible

21

Reducing Allocation Time

Scanning the free list
takes linear time in the # of free blocks

maintain separate lists for different (standard)
sizes

Fast allocation
find appropriate size (constant time)
return the first block (constant time)

Buddy systems & Fibonacci heaps
block sizes powers of 2 or Fibo numbers

22

Garbage collection

External fragmentation can not be avoided
‘checkerboard’ the heap
we end up with a situation where

we have a lot of free space
but no blocks large enough

heap must be compacted by moving the allocated
blocks
complicated because all the references to these blocks
must be updated, too!

23

Explicit and implicit deallocation

Allocation is always triggered by some program
action
Deallocation can be either

explicit
Pascal, C
simple, efficient, immediate
allows ‘hand-tailored’ storage management

or implicit
Java, C++, functional languages
garbage collector starts whenever space gets low
complex, time-consuming

24

Garbage Collection (GC) or not to GC?

Explicit memory management is more efficient
But

manual deallocation errors are among the most common and
costly bugs
too fast deallocation dangling references
forgotten deallocation memory leaks

Automatic GC is considered an essential feature of modern
languages

GC algorithms have improved
implementations are more complex in general (so adding GC
plays not a big role)
large applications make benefits of GC greater

25

Scope

Scope (of a binding)
the (textual) part of the program where the binding
is active

Scope (in general) is a
program section of maximal size in which

no bindings change or at least
no re-declarations are permitted

Lifetime and scope are not necessarily the
same

26

Elaboration

Subroutine entrance new scope opens
create bindings for new local variables
deactivate bindings for global variables that are redeclared

Subroutine exit scope closes
destroy bindings for local variables
reactivate bindings for global variables that were
deactivated

Elaboration
process of creating bindings when entering a new scope
also other tasks, for example in Ada:

storage allocation
starting tasks (processes)
propagating exceptions

27

Scope rules

Referencing environment of a statement
the set of active bindings
corresponds to a collection of scopes that are examined (in order)
to find a binding

Scope rules
determine that collection and its order

Static (lexical) scope rules
scope is defined in terms of the physical (lexical) structure of the
program
typically the most recent (active) binding is chosen
we study mostly (and first) these here

Dynamic scope rules
bindings depend on the current state of program execution

28

Static scope

Related to program structure
Basic: one scope (static & global)
Fortran: global & local scopes

COMMON blocks
aim: share global data in separately compiled subroutines
typing errors possible

EQUIVALENCE of variables
aim: share (and save) space
predecessor of variant/union types

lifetime of a local variable?
semantically: execution of the subroutine
possible to SAVE variables (static allocation)
in practice all variables may behave as if SAVEd bad
programming

29

Nested program structure

Subroutines within subroutines within ...
scopes within scopes within ...

thing X declared inside a subroutine thing X is not visible
outside that subroutine
Algol 60, Pascal, Ada, C/C++, ...

Resolving bindings
closest nested scope rule
subsequent declarations may hide surrounding ones
(temporarily)
built-in/predefined bindings: special outmost scope

Example in Figure 3.4

30

Non-local references

Nested subroutine may refer to objects declared in other
subroutines (surrounding it)

example 3.4: P3 can access A1, X and A2
how to access these objects (they are in other stack frames)?

need to find the corresponding frame at run-time
Difficulty

deeply nested routine (like P3) can call any visible routine (P1)
caller’s scope is not (always) the lexically surrounding scope

however, that surrounding scope must have a stack frame
somewhere below in the stack

we can get to P3 only by making it visible first
P3 gets visible after P1 & P2 have been called

31

procedure P1 (A1 : T1);
var X : real;

…
procedure P2 (A2 : T2);

…
procedure P3 (A3 : T3);
…
begin

… (* body of P3 *)
end;
…

begin
… (* body of P2 *)

end;
…
procedure P4 (A4 : T4);

…
function F1 (A5 : T5) : T6;
var X : integer;
…
begin

… (* body of F1 *)
end;

begin
… (* body of P4 *)

end;
…

begin
… (* body of P1 *)

end;

32

Accessing non-local stack objects

Parent frame
most recent invocation of the lexically surrounding subroutine

Augment stack frame with static link
pointer to parent frame
outermost frame: parent = nil
links form a static chain through all scopes

Accessing
routine at nesting depth k refers to an object at depth j
follow k - j static links (k - j is known at compile-time)
use offset in that ancestor frame as usual

Figure 3.5

33

Static Chains

Figure 3.5

34

Holes in scopes

Name-object binding N-O1
hidden by a nested declaration N-O2
has a hole in it’s scope (for the lifetime of that nested
declaration)
object O1 is inaccessible via N

Scope resolution operators
allow programmer to explicitly use ‘hidden’ bindings
also call a qualifiers
Ada: My_Proc.X (X declared in My_Proc)
C++: ::X (global X)

35

Scopes without subroutines

Variable definitions in block statements
either at the beginning of the block or

C, Ada
anywhere where a statement may appear

C++, Java
scope extends to the end of the current block

space allocated from the stack frame
no extra runtime operations needed
space saved by letting allocations overlap each
other

36

Re-declaring bindings

Change bindings ‘on the fly’
e.g. to fix bugs (rapid prototyping)
interactive languages

New meaning replaces the old one immediately
everywhere

implemented using some search structure (name
meaning)

Problems with ‘half-compiled’ languages (ML)
old (compiled) bindings may be preserved
in subroutines that are already elaborated (using the old
binding)

37

Modules

Great tool to divide programming effort
information hiding

details are visible only to parts that really need them
reduces the ‘cognitive load’ of programmers

minimize the amount of information required to understand any part
of the system

changes & updates localized within single modules
Other benefits

reduces name clashes
data integrity: only routines inside a module update certain object
errors are localized

38

Information hiding using subroutines?

Hiding is limited to objects defined inside a
routine

lifetime = execution of the routine
Partial solution: use static local objects

C: static, Algol: own, ...
Example: Figure 3.6
‘subroutines with memory’
‘single-routine data abstractions’

39

Module: multiple-routine abstraction

Combine and hide several routines & data structures
e.g. stack type, push and pop operations
Ada: package, Clu: cluster, Modula-2: module
objects inside a module are

visible to each other
not visible to the outside unless explicitly exported

objects outside a module are
not visible to the inside unless explicitly imported

Example: Figure 3.7

40

Modules and bindings

Bindings made inside a module
are inactive outside of it
but not destroyed
module-level objects have ‘same lifetime they would have
without the enclosing module’

same as the scope they appear in
Restrictions on export declarations

possible in many module-based languages
variables exported read-only
types exported as opaque (Modula-2)

only certain primitive operations allowed

41

Headers and bodies

Modules are often divided into
header/declaration part

definitions for users of the module
the public interface of the module
may also contain private information (for compilation)

body/implementation part
definitions for the implementation of the module

Header and body parts can be compiled separately
especially header can be compiled even if body does
not exist (yet)
and so can the users of the header
total recompilation unnecessary if only some modules
are updated

42

Open and closed scopes

Open scope
no imports required (scope rules apply)
Ada packages, nested subroutines in most Algol
family languages

Closed scope
all names must be explicitly imported
Modula-2 modules, Euclid subroutines
Clu: nonlocal references not possible
import lists

document the program (nonlocal references are part of
the interface)
help the compiler to detect aliasing (Euclid, Turing)

43

Aliasing

Alias
extra name for something that already has a name (in the current
scope)
we may have several (e.g., 陳仁暉, 阿暉, 陳老師, etc)

How are they created?
Fortran: explicit declarations (equivalence)
variant/union structures
languages using pointers
reference parameters

They are considered bad because
they create confusion and hard-to-track errors (Fig. 3.8)
compilers can optimize much better if they know there’s no
aliasing

44

Type manager modules

Modules support ‘naturally’ only the creation of one
single instance of a given abstraction

Figure 3.7 creates only one stack
replicate code?

Alternative organization
module is a manager for the instances of the type it
implements (Fig. 3.9)
additional routines to create/destroy instances
additional parameter to each operation (the object in
question)
Clu: every module is a manager of some type

45

Module types

Each module creates a new type
possible to declare (any number of) variables of that type
Euclid, Simula, Clu
Automatic

initialization code and
finalization code (e.g. to return objects to heap)

Types and their operations are tightly bound to each other
operations ‘belong’ to objects of the module type
conceptually

type approach has a separate push for every stack
manager approach has one parameterized push for all stacks

same implementation in practice

46

Classes

Object-oriented programming
Module types augmented with inheritance
mechanism

possible to define new modules ‘on top’ of existing
ones (refinements, extensions)
objects inherit operations of other objects (no
need to rewrite the code)

47

Module types and scopes

Note: applies also to classes if we forget inheritance
Every instance A of a module type has

a separate copy of the module variables
which are visible when executing one of A’s
operations

Indirect visibility (within same type)
the instance variables of B may be visible
to another instance A of the same type
if B is passed as a parameter of A’s operation

binary operations of C++
opinions vary whether this is a good thing or not

48

Dynamic scope...

Name-object binding decided at run-time
usually the last active declaration
thus, derived from the order in which subroutines are called
(Fig. 3.11)
flow of control is unpredictable compilation impossible

Example languages
early functional languages (Lisp)
Perl (v5.0 gives also static scope)
environment variables in command shells

Static scope rules require that the reference resolve
to the closest lexically enclosing declaration.

49

...Dynamic scope

Dynamic scope dynamic semantics
type checking in expressions and parameter
passing must be deferred to run-time

Simple implementation
maintain declarations in a stack
search stack top bottom to find bindings
push/pop bindings when entering/leaving
subroutines
quite slow

50

Dynamic scope is a bad idea?

Cons
High run-time costs
Non-local references are ‘unpredictable’
Dynamic programs are hard to understand

Pros
Easy to customize subroutines ‘on the fly’
book example

print integers in different bases
base = non-local (dynamic) reference

51

Simulating dynamic scope

Workaround 1
make separate routines for separate cases
default parameters (Ada) one interface
overloading (C++) same name
but: calls made under the emulated ‘dynamic scope’ do not
‘inherit’ the mimicked non-local binding

Workaround 2
use a global/static variable instead of a non-local reference
store/restore before/after use of the routine

Jenhui says
pass all stuff in parameters
forget that non-local references even exist

52

Binding of referencing environments

Note: we skip section 3.3.3 & 3.3.4
WHEN scope rules should be applied?

usually no problem (just apply scope rules)
problematic case: references to subroutines

e.g. function parameters
these may have non-local references, too!

when the reference was created?
when the referred routine is (finally) used?

In other words
WHAT is the referencing environment of a subroutine
reference?

53

Shallow & deep binding

Consider example of Fig. 3.16 (dynamic scoping)
print_routine

should create its environment just before it’s used
otherwise the ‘format trick’ would not work
this late binding is called shallow binding
default in dynamically scoped languages

older_than
is designed to use the global threshold variable
i.e. it is meant to be used in that one and only environment
referencing environment

should be bound when older_than is passed as a parameter
and used when it is finally called

this early binding is called deep binding

54

Implementing deep binding

Subroutine closure bundles together
pointer to subroutine code and it’s
referencing environment

Dynamic scoping
environment implemented as a binding stack

book calls this an association list (section 3.3.4)
current top of stack defines the environment

when a routine is passed as a parameter
save current top of the stack in the closure & pass closure

when the referenced routine is called
use saved pointer as the top of stack
if other functions are called, grow another ‘top’ for the stack from this
point (list-implemented stack)

55

Deep binding & static scope

Deep binding is default in static scope
shallow binding does not make much sense

Does the binding time matter at all?
generally not

name lexical nesting
nesting does no change

recursion!
we must find the correct instance, too
closure must capture the current instance of every visible
object when it is created
this saved closure is then used when routines are used
example in Fig. 3.17

56

Some notes

Binding rules matter (with static scoping) only
when referencing objects that are not local neither local
irrelevant in

C: no nested structure
Modula-2: only top-level routines can be passed as
parameters
and in all languages that do not permit passing subroutines as
arguments

Jenhui: good programmer doesn’t make such programs
anyway

57

Implementing deep binding

Static links define referencing environments
pass: create closure with current static link
call: use the saved static link (instead of creating a
new one) when creating the frame record

static chain is now the same as in the time the
parameter was passed

58

Classes of objects (values)

First-class objects can be
passed as parameters
returned from a subroutine
assigned to variables
e.g. integers in most languages

Second-class objects
can only be passed as parameters
e.g. arrays in C/C++

Third-class objects
can not even be passed as a parameter
e.g. jump labels (in most languages that have a goto-statement)

59

Subroutines & classes

First-class
functional languages

note: these can even create new subroutines
Modula-2 & -3, Ada 95, C, C++

language-specific restrictions on use

Second-class
almost all other languages
Ada 83: third-class

60

Problem with first-class subroutines...

Reference to a subroutine
may live longer than the scope that created it

referencing environment no longer exists when routine is
called

Functional languages
unlimited extent of local objects
frames are allocated from the heap (not stack)
garbage collected when no references remain

61

...Problem with first-class subroutines

Imperative languages want to use the stack
limited extent of local objects
frames are deleted from the stack when execution leaves the
subroutine

dangling references if 1st class subroutines
Algol-family languages have different workarounds

Modula-2: only top-level subroutines can be referenced to
Modula-3

only top-level subroutines are 1st class, others are 2nd class
Ada 95

a nested routine can be returned (by a function) only to a scope that
contains that routine

referencing environment will always be alive
C/C++: no problem (because they have no nested scopes)

62

Overloading

Aliasing: multiple names for same object
Overloading: one name for several objects

in the same scope
semantic rules: context of the name must give
enough information to resolve the binding
most programming languages support at least
some overloading (arithmetic operations)

63

Overloading of ...

Enumeration constants
Ada example in Figure 3.18

dec & oct overloaded
print has not sufficient context explicit qualification required

Modula-3: each occurrence must be qualified
Subroutines

Ada, C++
arbitrary number as long as parameter types/number are
different
also arithmetic operators (syntactic sugar)

Figure 3.19

64

Overloading is NOT coercion

Coercion
process in which the compiler automatically

converts an object X:T1 to another type T2
when X is used in a context where T2 is expected

In overloading
separate functions are selected by the compiler for different
uses

In coercion
there is only one function
compiler makes the necessary type transformations

65

Overloading is NOT polymorphism

Polymorphism
polymorphic objects may represent objects of
more than one type
subroutines can manipulate the polymorphic
parameters without any conversions

either all objects have some common characteristics
(and only these are used)
or objects contain other information so the subroutine
can customize itself appropriately

66

Examples of polymorphism

abs(x) for any type that supports
comparison ‘> 0’ and
negation

counting the length of a list (of any type)
only succ & empty –tests required

mergesort
comparison, succ, empty, cons

conformant array parameters
very limited form of polymorphism (Pascal, Ada)

67

Overloading is NOT generics

Generic subroutines (or modules)
parameterized templates that can be instantiated to create
concrete subroutines

early C++ versions used cpp to do this
Ada example in Fig. 3.20

Generics is not polymorphism
polymorphic routine is a single object capable of accepting
multiple types

compiled to a single body of code
generic routines are instantiated to create an own concrete
routine for each different use

compiled to several copies of the code
Ada allows these instance names to be overloaded
C++ requires them to do so

68

Naming-related pitfalls...

Redefinition of function name inside the function
recursion impossible
Pascal: function name is used to define the return value

strange problems
most current languages use return-statement or some special
pseudo-variable for return values

Scope of a name
entire block it is declared in (Pascal)

names must be declared before they are used
strange consequences when names refer to each other
do we use ‘external’ or ‘internal’ name?

or from the declaration to the end of the block? (Ada)
or either to the end of the block or next re-definition (ML)

69

...Naming-related pitfalls

Recursive data types
need to reference to the not-yet-defined type
Pascal: pointers are an exception to the general ‘declare before use’ rule

pointer declaration makes a forward reference
C, C++, Ada

forward references are forbidden but incomplete type definitions are allowed
Mutually recursive subroutines

need to reference to the not-yet-defined subroutine
Pascal: forward declarations
Modula-3: order of declarations does not matter
Java, C++

variables ‘declared before used’
classes can be used before they are (totally) declared
order of routines does not matter (inside a class)

	Chapter 3: Names, Scopes, and Bindings
	High-level programming languages
	Name
	Binding & Binding Time...
	...Binding times
	Nature of bindings
	Things we have to keep track of
	Lifetime
	Storage allocation
	An Example of Static Allocation
	Static objects
	Static or non?
	Other information associated with subroutines
	Why a stack?
	Maintaining the Stack
	Addressing stack objects
	Stack-based Allocation of Space for Subroutines
	Heap-Based allocation
	An Example of External Fragmentation
	Block allocation
	Reducing Allocation Time
	Garbage collection
	Explicit and implicit deallocation
	Garbage Collection (GC) or not to GC?
	Scope
	Elaboration
	Scope rules
	Static scope
	Nested program structure
	Non-local references
	Accessing non-local stack objects
	Static Chains
	Holes in scopes
	Scopes without subroutines
	Re-declaring bindings
	Modules
	Information hiding using subroutines?
	Module: multiple-routine abstraction
	Modules and bindings
	Headers and bodies
	Open and closed scopes
	Aliasing
	Type manager modules
	Module types
	Classes
	Module types and scopes
	Dynamic scope...
	...Dynamic scope
	Dynamic scope is a bad idea?
	Simulating dynamic scope
	Binding of referencing environments
	Shallow & deep binding
	Implementing deep binding
	Deep binding & static scope
	Some notes
	Implementing deep binding
	Classes of objects (values)
	Subroutines & classes
	Problem with first-class subroutines...
	...Problem with first-class subroutines
	Overloading
	Overloading of ...
	Overloading is NOT coercion
	Overloading is NOT polymorphism
	Examples of polymorphism
	Overloading is NOT generics
	Naming-related pitfalls...
	...Naming-related pitfalls

