
1

Chapter 6: Flow Control

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
Email: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

2

Control flow

Ordering information is fundamental to
imperative programming
Categories for ordering instructions

sequencing
selection
iteration
procedural abstraction (Ch. 8)
recursion
concurrency (Ch. 12)
nondeterminacy

3

Chapter contents

Expression evaluation
syntactic form
precedence & associativity of operators
order of evaluation of operands
semantics of assignment statement

Structured & unstructured control flow
goto-statement

Sequencing, selection, iteration, recursion, nd

4

Expressions

An expression generally consists of
Simple object (or atomic)

(named or literals) variables and constants
Structured

function applied on arguments
arguments are expressions

word operator is commonly used for functions with
a special (operator) syntax

arguments of operators are called operands
syntactic sugar (Ada, C++)

5

‘fixity’ of operators

Prefix: operator is before its operands
-x
(+ 1 2)

Infix: operator is among (between) its operands
x - y
myBox: displayOn: myScreen at: 100@50
a = b != 0 ? a/b : 0;

Postfix: operator is after its operands
p^, i++

6

Precedence & Associativity

What is an operand of what?
people don’t want to put parentheses around every
subexpression
what if no parentheses?
a + b * c ** d ** e / f
note: this is a problem only with infix operators

Precedence rules
tell how tightly operands bind their arguments (e.g., * and +)

Associativity rules
tell whether a sequence of operators (of equal precedence)
groups operands to the left or to the right
‘left-to-right’ grouping: a – b – c ((a – b) – c)
‘right-to-left’ grouping: a ** b ** c (a ** (b ** c)

7

Precedence rules
Given an expression

find the operator with highest precedence
assign to it the left & right operand
x + y * z x + (y*z)

C, C++, Java have too many precedences
Fig. 6.1 shows only a fragment
best to parenthesize properly because nobody remembers them

Pascal has too few precedences
IF a < b AND c < d THEN ... is parsed to IF a < (b AND c) < d
THEN ...

syntactic error unless a,b,c,d are all Booleans
and if they are, this is most probably not what the programmer had in
mind
most languages give higher precedence to arithmetic

operators and lower to boolean operators, e.g., C/C++, Java
No precedences at all: APL, Smalltalk

8

Associativity rules

Operators are commonly ‘left-to-right’ associative
i.e. they form groups to the left
a – b – c – d (((a – b) – c) – d)

But exceptions exist (right-to-left)
exponentiation: a ** b ** c ** d (a ** (b ** (c ** d)))

Ada: ** ‘does not associate’
assignment expressions (a = b = c + d)

Recommendation
precedence and associativity vary much from one language to
another
programmer should voluntarily use parentheses

9

Assignments
Purely functional languages

computation = expression evaluation
effect of any expression = value of that expression

Imperative languages
computation = ordered series of changes to the variables in
computer memory
changes are made by assignments evaluation of expressions
may have side effects
both statements and expressions

Side effect
Definition: any other way than returning a value that influences
the subsequent computation
purely functional languages have no side effects

expressions always return the same value for same binding
environment
the time of the evaluation has no effect on the result
Expressions in a purely functional language are said to be
referentially transparent

10

What is a variable?

There are differences in the semantics of assignment
statement

often ‘invisible’, but have a major impact when pointers are used
C examples

d = a; a refers to the value of a
a = b+c; a refers to the address of a

Variable is a ‘named container for a value’
value model of variables
‘left-hand-side’: address, l-value, location of the container
‘right-hand-side’: value, r-value, contents of the container

In general
any expression that yields a location has an l-value
and an expression that yields a value has an r-value

11

Expressions and l-values

All expressions are not l-values
not all values are locations
not all names are variables

Examples
2+3:=a doesn’t make much sense
not even a:=2+3 if a is a constant

Not all l-values are simply names
legal C statement: (f(a)+3)->b[c] = 2;
in C++ one can return a reference (to a structure) and write
simply g(a).b[c] = 2;

12

Reference model (of variables)
Variables are named references to values

not containers
Figure 6.2

Unique objects (e.g. for all integer values)?
in reference model b & c refer to the same object

necessity to decide identity?
in Clu, integers are immutable

value 2 never changes
it doesn’t matter whether we compare 2 ‘copies of 2’ or 2 references
to the ‘unique 2’
most implementations of languages using the reference model have
adopted the ‘copy approach’ for efficiency reasons (for immutable
types)

different definitions for ‘being equal’
Dereferencing

process of obtaining the referred r-value
required when context expects an r-value
automatic in most languages, explicit in ML

Java: value model for built-in types, reference model for classes

13

Orthogonality

Name originates from linear algebra
orthogonal set of vectors none of the members depends on
the others, all are required to define the vector space

Principal design goal of Algol 68
language features = orthogonal set

can be used in any combination
all combinations make sense
features always mean the same (no matter the context)

e.g. Algol-68 was expression-oriented
no notion of a statement, just use expressions without their value
‘statements’ can appear as expressions

C: intermediate approach
expression can appear in statement context
sequencing and selection expressions (to use statements in
expression context)

14

Assignments in expressions

Value of an assignment: right-hand-side
May lead to confusion

different assignment & equality operators
Algol 60, Pascal: a := b assign (a = b: equality)
C, C++, Java: a = b assign (a == b: equality)

further confusion for C
lacking a boolean type integer used instead

0: false, all other values: true
both if (a = b) and if (a == b) are legal

C++ has bool but it coerces (a = b) to bool
automatically for numeric, pointer & enumeration types!

Java (finally) disallows use of int in boolean context

15

Initialization

Imperative languages
already have a construct to specify variable values (assignment
statement)

not all have a special ‘initial value’ construct
Why should such a thing be useful?

static variables can be initialized at compile-time
saves time (recompiled)
in reference model also the values of stack/heap variables (the actual
references are created at run time)

common error: use of an uninitialized variable
program is still buggy but at least errors are systematic
‘uninitialization’ may be caused also by other reasons

dangling pointers
updates to the tag-field of a variant type

16

Initialization choices
Initialization as assignment

Pascal extensions allow initializations of simple types at variable
declaration
C, Ada: aggregate expressions to initialize even structured types
at compile-time

Default values
C initializes all static data to null/0 values

Constructors
A constructor routine of a class is automatically called when an
object of that class is created
C++ allows to define own assignment statement for classes

e.g. variable-length strings
Incorrect values (causing a dynamic semantic error)

bugs are FOUND (legal default values may mask them)
IEEE NaN (not a number) constant is catched by hardware (fast
to check at runtime)

17

Catching uninitialized variables

In general, an expensive operation
for many types, all bit patterns are legal

must extend data with an explicit (boolean) tag field
set ‘uninitialized’ at elaboration time
set ‘initialized’ at each assignment

run time checks at each use
Note

any potential error that depends on run-time flow
e.g. using an uninitialized value

is provably impossible to detect at compile-time in general
but can be catched in some restricted cases

‘straight-line’ code, e.g., a = 3 + 1;
Java: precise definition of ‘definite assignment’ (each possible path
must assign a value)

18

Assignment operators

Updating variables is very common in imperative languages
‘update statement’ x := x + b is common

cumbersome to red/write if ‘x’ is complex
are the both sides really the same?

redundant address calculations for ‘x’
address calculations may have side-effects!

Assignment operators answer to all these
e.g. x += b
self-clear whether both sides same because only one side
address is computed only once
note: C has 10 assignment operators (one for each operator)

19

C & post increment/decrement operations

Adjust the value of x by one
‘special case of a special case’
still occurs very often
C applies it also to pointers

*p++ = *q++
+/-1 = relative to the size of the pointed structure

++i (pre-increment)
i = i+1, value = i
equal to i += 1

i++ (post-increment)
value = i, i = i+1
equal to (temp = i, i+=1, temp)

20

Simultaneous Assignment

a, b := c, d (in CLu, ML, and Perl)
not the sequencing operator of C
value-based model

variable tuple (multiway) a, b is assigned the value tuple c, d
reference model

reference tuple a, b is assigned another reference tuple
references to the values of c & d

a, b := b, a
a, b, c := foo(d, e, f)
ML & Haskell: pattern matching (generalization of tuples)

21

Evaluation order in expressions

Precedence & associativity
tell which operator is applied to what operands
does not tell in what order operands are evaluated

a – f(b) – c * d : is a – f(b) evaluated before c*d?
f(a, g(b), c): is g(b) evaluated before c?

Why does the order matter?
Side effects

consider a – f(b) – c * d when f(b) modifies d
Code improvement

register allocation
a * b + f(c) (p.263)
call f(c) first to avoid saving a*b into memory

instruction scheduling
a := B[i]; c := a*2 + d*3;
evaluate d*3 before a*2 (loading a takes 2 machine cycles, can do d*3
while waiting)

22

Ordering & language implementations

Leave the order to the compiler to decide
many implementations explicitly state that the order is undefined

Left-to-right evaluation (Java)
Allow (even larger scale) rearranging

commutative, associative, distributive operations
use of these may lead to the invention of common subexpressions (and code
improvements)

unfortunately computers do not follow mathematics
limited range overflows
limited precision ‘absorption’ of small values
note: some languages have ‘integers of infinite size’

Want a certain order?
use parentheses in operator expressions
no way to affect argument evaluation in subroutine calls

better not write programs where this order matters

23

Short-circuit evaluation

Special property of Boolean expressions
the whole expression has not to be computed in order to
determine its value

(a < b) AND (b < c). If a >= b no need to check b < c
similarly for (a > b) OR (b > c). If a > b

Benefits
can save execution time
most important: changes the semantics of Boolean expressions
examples

traversing a list (dereferencing a null pointer)
indexing an array (index out of bounds)
division (by zero)

full evaluation would lead to a runtime error
Drawbacks

sometimes we really want the full evaluation (side effects)

24

Short-circuit & implementations

Always full evaluation
Always partial evaluation
Own operators for full & partial evaluation

Clu: and, or, cand, cor
Ada: and, or, and then, or else
C: &, |, &&, ||

Note
if the expression is used to control program execution (if-
statement, while-loop)
then we don’t necessarily need the value at all (only want to
direct the program)

25

Structured & unstructured flow

Jumps in assembly languages
only way to redirect program execution

goto statement of Fortran (and other early languages)
Goto considered harmful

hot issue in 1960/70s
most modern languages

do not have jump statements at all
or implement it only in some restricted form

26

Structured programming

Emphasizes
top-down design (i.e., progressive refinement)
modularization of code
structured types (records, sets, pointers, multi-dimensional
arrays)
descriptive variables and constant names
extensive commenting conventions
especially structured control-flow constructs

Most structures were invented in Algol 60
case-statement in Algol W

27

Are gotos needed?

Special situations where
control should be redirected in a way that is hard (or impossible) to catch
using structured constructs
but which can easily be implemented with jump statements

Mid-loop exit & continue
goto out of loop/end of loop

own control structures
Early returns from subroutines

goto return address
return statement

Errors and exceptions
non-local goto & unwinding (of subroutine stack and register values)
nonlocal gotos are a ‘maintenance nightmare’

exception handling mechanisms

28

Continuations

Generalization of the ‘non-local goto’
in low-level terms

code address (to continue execution from)
referencing environment (to restore)
quite a lot like a 1st class subroutine

in high-level terms
context in which the execution may continue

all non-local jumps are continuations
Scheme language (successor of LISP)

continuations are 1st class data objects
programmer can design own control structures (both good and
bad ones)
implemented using the ‘heap frame’ idea

29

Sequencing

Central to imperative programming
control the order in which side effects occur

Compound statement
list of statements enclosed in ‘statement parentheses’

begin – end
{ - }

can be used ‘as a single statement’
Block

compound statement with a set of declarations
Value of a (compound) statement?

usually the value of its final element

30

Side-effects: good or evil?

Side-effect freedom
functions will always return same values for same inputs
expressions return the same value independent of the execution
order of subexpressions
easier to

reason about programs (e.g. show correctness)
improve compiled code

Side-effects are desirable in some computations
pseudo-random number generator (remembers the ‘seed’)

Language design
Euclid, Turing: no side-effects in functions
Ada: functions can change only static or global variables
most: no restrictions at all

31

Selection

IF-THEN-ELSE
Algol 60: if ... then ... else if ... else
most languages contain some variant of this

Language design
one statement after then/else (Pascal, Algol 60)

nested IFs cause ‘dangling else’ problem
Algol 60: statement after ‘then’ must begin with something else than
‘if’ (e.g. ‘begin’)
Pascal: closest unmatched then

statement list with a terminating keyword
special elsif or elif keyword
to keep terminators from piling up at the end of a nested list

32

Selection & short-circuit evaluation

The actual value of the ‘control expression’ is not usually
of interest

only the selection (of program flow) itself
most machines contain conditional jump/branch instructions that
directly implement some simple comparisons

compile jump code for expressions in selection statements
(and logically controlled loops)

Example on page 273
full evaluation (r1 will contain the value)
short-circuit: execution is shorter & faster

Notice: the value can still be generated if it is required somewhere
(value is obvious after the selection)

33

case/switch statements

Alternative syntax for a special case of nested if-then-
else

each condition compares
the same integer (or enumerated type) expression
against a different compile-time constant

Modula-2 example on p. 275
Corresponding case-statement

starts with the controlling expression
each conditional part becomes an arm of the case-statement
each constant value becomes a case label, which must be

type compatible with the tested expression
disjoint

34

Why case/switch is useful?

Syntactic elegance?
Allows efficient target code to be generated

examples on p. 276 (if-then & corresponding case)
case statement can compute the jump address in a single
instruction

Jump table implementation
table containing arm addresses

one entry for each value between the lowest and highest case
label value

use the case expression as an index to this table
additional check for table bounds

35

Alternative case implementations

Jump table
very fast
space-efficient when

the set of case labels is dense
the range of case labels is small

Sequential testing
useful when the number of case arms is small

Hash tables
useful when then range of label values is large
requires a separate entry for each possible value can get large

Binary search structures
implement label intervals and search on them

Notable: Good compiler must be able to make the
correct decisions and use the appropriate
implementation

36

case & language design

Varying syntactic details
ranges allowed in label lists?

may require binary search
Pascal, C: not allowed

arm: single statement or statement list
action to take if no label matches

do nothing (C, Fortran)
crash (Pascal, Modula: runtime error)
use a default arm

keywords: else, otherwise, default
Ada: required by compiler (unless all labels are covered)

Historical ancestors
Fortran: computed goto
Algol 60: switch = array of labels
Algol 68: array of statements (orthogonality!)

37

C switch

Each possible value must have its own label
Need to simulate label lists

allow empty arms and
let control fall through all ‘empty arms’ to the common statement
list

But control ‘falls through’ any arm!
each arm must be terminated with an explicit break-statement
but of course nothing forces one to write them ‘smart’
programming tricks
leads to difficult bugs

C++ and Java proudly follow the tradition

38

Iteration

Allows the repeated execution of some set of
operations

usually takes a form of (control flow) loops
loops are executed because of the side effects they cause
without iteration (and recursion) computers would be useless!

Two principal loop varieties
difference: the mechanism used to decide how many times they
iterate
enumeration-controlled (definite iteration)

execute once for each element in some (finite) set
number of iterations is known before the loop is executed

logically controlled (indefinite iteration)
execute until some Boolean condition changes its value

usually distinct in languages (exception: Algol 60)

39

Enumeration-controlled loops

Fortran DO-loop (p.280)
do 10 i = 1, 10, 2
10: label at the last statement of the loop body

usually contains the continue (no-op) statement
i: index variable of the loop

1: initial value of i
10: the maximum value i may take
2: the amount by which i is increased in each iteration

updates are executed after the loop body is executed

easy and efficient compilation

40

Minor problems with Fortran DO

Loop bounds must be positive integer
variables/constants

Fortran 77: integer & real expressions
Fortran 90 took reals away (precision difficulties)

Typing errors are easy to make
DO 5 I = 1,25 is a for-loop
DO 5 I = 1.25 is an assignment (to DO5I)

pre-90 Fortrans ignore blank spaces
claim: NASA Mariner 1 space probe was lost because of
this
Fortran 77: additional comma before variable name

41

Major problems with Fortran DO

statements in the loop body may change the loop index
number of iterations is not known
hard-to-find bug or a hard-to-read code

gotos are allowed into & out of the loop
jump in without initializing loop counter?

value of the loop counter after termination?
implementation-dependent
expected value: L + ((U-L) div S) + 1) * S i.e. the first value that exceeds
the bound U
arithmetic overflow possible if U is large

negative value & infinite iteration (or run-time exception)
more complex code to check for overflow? index may contain its last in-
bounds value after termination

bounds tested after the loop is executed
at least one iteration no matter what the bounds are

42

Language design issues with for-do -loops

Can the loop index or loop bounds be
modified in the loop

if so, what is the effect?
in general: is the enumeration always the same?

upper bound < lower bound?
value of loop index after termination?
can one jump into/out of loops

43

Commonly used implementation decisions

Prohibit changes to loop indices/bounds
and good so
bounds are evaluated only once (later changes have no
effect)

Bounds are checked before the first iteration
takes care of ‘empty bounds’
compiled code is longer but more intuitive (p. 283)
improved version: only one branch

44

Negative / unknown steps
IF the step is a variable THEN the direction of the
iteration is not known at compile-time
Naive implementation

test sign & provide 2 tests (for both cases)
Direction required by language design

Ada, Pascal: downto, reverse
Modula-2: step must be a compile-time constant

use iteration count instead of index variable to control
termination

compute count from given bounds & step (p. 284)
avoids sign test and arithmetic overflow issues!
most modern processors have instructions for ‘decrement-test-
branch’
sometimes the index variable can be eliminated in code
improvement

45

Loop index value after loop

Leave undefined (Pascal)
‘Most recently assigned’ (Fortran 77, Algol 60)

normal termination: first value exceeding bound
overflows & subrange types: ‘first value exceeding’ may be
incorrect or illegal

‘Last one that was valid’
compiled code is slower
necessary if overflow is a danger

Avoid the issue altogether (Ada, C++)
make index a variable local to the loop
for-statement declares the index (type induced from bounds)
not visible after value can not be even accessed
not visible before no danger of overwriting an old value

46

Combination loops

Algol 60 ‘overkill’ (p. 286)
index values defined by a sequence of enumerators (value, range,
while-expr)
each expression is re-evaluated at the top of the loop

otherwise the while-form would be quite useless
leads to hard-to-understand programs

C for-statement
equivalent to a special kind of a while-loop

control information collected to the header
everything is on programmer’s responsibility

overflow checking, side effects
note: any expression (including empty & expression list) is
allowed

47

Iterators

Iterating over something else than an
arithmetic sequence?
In general, iterate over the elements of any
well-defined set

e.g. nodes of a binary tree in pre-order
some languages support this by design (Clu, Icon)
some by library classes (Java, C++)

48

Clu iterator

See Figure 6.5 (p.288)
Programmer can write own iterators

special kind of a subroutine (co-routine)
invocation: for e in iterator_call(args) do
iterator may yield results several times and return once
implementation: store also ‘call address’ to stack frame

for-loops (iterator invocations) may be nested
iterators can be recursive (see Fig. 6.6)

49

Icon generator

deeply embedded to the semantics of the language
generator can be used in any context that accepts an expression
(p. 290)

can be used to implement backtracking search
tests succeed or fail (instead of being true/false)
if a failing test contains a generator, Icon tries it again (and tests
the next value)
reversible assignments <- are restored to previous values when
backtracking

built-in generators
to .. by for arithmetic enumeration
find, upto for string manipulation

user-defined generators
any subroutine using suspend instead of return

50

Enumerating without iterators...

Implementation of iterators
involves some special implementation problems
requires jumping back and forth in the subroutine stack (see 8.6.3)

not implemented in most languages
Similar effect through programming conventions

Fig. 6.7 (p.291): C ‘iterator’ for the elements of a binary tree
note: a recursive implementation could be better
data structure

holding all information that an iterator would hold automatically
interface routines

create/destroy iterator
test whether it is empty
get next element if there is some

51

...Enumerating without iterators

Euclid generators (p. 293)
for-loop = interface to a generator module
generator = module which exports

variables value & stop
function Next

create/destroy: module initialization
all interface calls are made automatically

C++
use container classes & inheritance
by heavily overloading (!=, ++, ->) and using constructor and
destructor, one gets ‘almost a for-loop’

Java
implement Enumeration interface (p. 294)

52

Logically controlled loops

Not that many semantic subtleties
Only real question:

where in the body of the loop
the terminating condition is tested?

Most common approach: before each iteration
Algol W & Pascal: WHILE condition DO statement
most successors of Pascal:

DO starts a statement list
loop ends with some terminating keyword

Languages without them?
pre-90 Fortrans: simulate (negate test & jump over if true)
Algol 60: ‘dummy enumeration’ combined with the actual loop

53

Post-test loops

REPEAT statement UNTIL condition
iteration continues until condition comes true

Eliminates code duplication if we know that the body
is executed at least once
This happens especially when the body has to be
executed in order to compute the termination
condition
Note: do-while of C works in the ‘other direction’

iteration continues as long as the condition holds

54

Mid-test loops

Can be simulated with conditional gotos
Modula-1

WHEN condition EXIT
a loop may contain any number of these
part of the loop syntax
must be at the top level of the loop

Modula-2
simple EXIT statement
can appear anywhere, typically after some IF
compiler must check that EXITs are inside some loop
C break works in a similar manner

55

Multi-level exits

Nested loops exit all / some of them?
with ‘standard’ exit one must introduce auxiliary
boolean variables & add conditional statements

Ada
loops can be named
EXIT can specify which (named) loop it breaks
Java has adopted a similar mechanism

56

Recursion

No special syntax required
possible in any language that allows subroutines to call
themselves

Recursion or iteration? (Which one is better?)
Imperative language: based on side-effects iterate
functional/logic language: ‘pure’ recur
choice is quite often only a matter of taste

sum: iterate, GCD: recur (p. 297)
but also the opposite is possible (p. 298)

57

Tail-recursion optimization

Common argument: iteration is faster than recursion
makes sense, because a function call must allocate space from
stack etc, whereas iteration only jumps
but good compilers can transform recursion automatically into
iteration!

Tail-recursive functions
recursive call is the last action the function makes
i.e. no computation follows the call

function returns whatever the recursive call returns
Tail-recursion optimization (TRO)

dynamic stack allocation is unnecessary the recursive call can
reuse the frame of the caller
recursive calls become jumps to the start of the routine

58

Generalized TRO

Apply TRO even in non-tail cases
make the code following the recursive call a continuation
pass the continuation as an extra parameter
execute continuations after ‘termination’

Programming tricks
transform non-TR functions to TR ones with helper routines
well-known in ‘functional programming community’
use of accumulators (summation, p. 299)

works when a binary function is known to be associative

59

Recursion ‘algorithmically inferior’?

Example: Fibonacci numbers (p. 300)
defined via mathematical recurrence formula

leads directly to a naive O(n^2) recursive implementation
one can easily write an O(n) iterative program
a skillful programmer can do the same even with recursion

helper routine: remember the previously computed 2 numbers
simulation of iteration via recursion?
YES but WITHOUT side-effects!

What about the ‘non-skillful’ ones?
define iterative constructs as syntactic sugar for tail recursion
programmer writes for-loops, compiler takes care of the ‘skill’
special mechanisms needed in order to refer to the ‘old’ values of
variables (from the previous iteration)
Sisal example code on p. 301 is still side-effect free

60

Nondeterminacy (nd)

Note: we skip 6.6.2
I really do not understand why it is located here, perhaps
we return to it in chapter 8

Nondeterministic choice (ch 6.7)
choice between alternatives is deliberately unspecified

e.g. evaluation order of subexpressions
note: choice = iteration control nd iteration

guarded commands
notation for nd selection & nd iteration
Dijkstra -75
most current implementations follow this notation

61

ND selection

max(a,b): nd choice when a=b
different imperative implementations make different choices
in practice this does not matter special notation to point
this out?

Guarded selection
combination of guarded commands
guard: logical expression
guard + statement = guarded command
statement may be executed if the guard is true

nd choice when several are

62

ND iteration

Perform a loop around guarded commands
none of guards true terminate
otherwise make an nd choice
e.g. Euclid’s gcd algorithm

ND choice is not only esthetics!
some concurrent programs really need it
correctness of execution depends on a truly nd choice
example in Figure 6.9

63

Implementing an ND choice

If-then-elseif
always favors earlier requests

some requests may have to wait forever
Keep guarded commands in a circular list

guards are checked in the list order
always continue from the one succeeding the previously chosen
guard
works well in most cases

example of bad performance on page 307
A can be chosen only at odd iterations of the loop
imagine A(), B(), C() always succeed
B C B C ...

64

Fair nd choice

ND choices should have a guarantee of fairness
What is fair?

no true guard can be always skipped
no guard that is true infinitely often can be always skipped
any guard that is true infinitely often is chosen infinitely often

satisfied if the choice is truly random
i.e. implementation must use some good pseudo-random number
generator
but these are computationally expensive to use

In practice
circular list
rough random numbers from the cpu clock

Guards & side effects? (full/partial evaluation of guards)

65

Summary

Expression evaluation
l- and r- values
variable models (value/reference)
precedence, associativity, ordering
shortcircuit evaluation & implementation

Principal forms of control
sequencing, selection, iteration
recursion, nondeterminacy

66

Evolution of control constructs?

Clearly some has happened
just compare Fortran with Ada

Goals that are driving the evolution
humans: ease of programming, semantic
elegance
machines: ease of implementation, efficiency
sometimes contradictory, sometimes
complementary

67

Ease and efficiency

Both goals satisfied go implement it
short-circuit evaluation

cleaner semantics (null pointer check & dereferencing)
fast implementation (jump code)

index variables local in for-loops
value after iteration is not a problem
no need to check for arithmetic overflow

Improvement worth a small run-time cost
midtest loops (need more branch instructions)
iterators
large payback in decreased programming work

68

...Ease and efficiency

Compilers are better
some ‘costly’ constructs are now possible
e.g. label ranges in case statements (needs binary search)
note: also programmer may help the compiler (e.g. pointing
out common subexpressions)

Some constructs are still too expensive
lazy evaluation, continuations, truly nd choice
used only in special cases

69

Programming conventions

Use of a ‘primitive’ language does not imply that the programs
are primitive, too
No short-circuit evaluation

use nested selection statements
No iterators

use a bunch of subroutines with same functionality
No midtest loops

auxiliary Boolean variables & nested selections
No modules

use consistent naming of subroutines
etc etc

	Chapter 6: Flow Control
	Control flow
	Chapter contents
	Expressions
	‘fixity’ of operators
	Precedence & Associativity
	Precedence rules
	Associativity rules
	Assignments
	What is a variable?
	Expressions and l-values
	Reference model (of variables)
	Orthogonality
	Assignments in expressions
	Initialization
	Initialization choices
	Catching uninitialized variables
	Assignment operators
	C & post increment/decrement operations
	Simultaneous Assignment
	Evaluation order in expressions
	Ordering & language implementations
	Short-circuit evaluation
	Short-circuit & implementations
	Structured & unstructured flow
	Structured programming
	Are gotos needed?
	Continuations
	Sequencing
	Side-effects: good or evil?
	Selection
	Selection & short-circuit evaluation
	case/switch statements
	Why case/switch is useful?
	Alternative case implementations
	case & language design
	C switch
	Iteration
	Enumeration-controlled loops
	Minor problems with Fortran DO
	Major problems with Fortran DO
	Language design issues with for-do -loops
	Commonly used implementation decisions
	Negative / unknown steps
	Loop index value after loop
	Combination loops
	Iterators
	Clu iterator
	Icon generator
	Enumerating without iterators...
	...Enumerating without iterators
	Logically controlled loops
	Post-test loops
	Mid-test loops
	Multi-level exits
	Recursion
	Tail-recursion optimization
	Generalized TRO
	Recursion ‘algorithmically inferior’?
	Nondeterminacy (nd)
	ND selection
	ND iteration
	Implementing an ND choice
	Fair nd choice
	Summary
	Evolution of control constructs?
	Ease and efficiency
	...Ease and efficiency
	Programming conventions

