
1

Chapter 7: Data Type

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
Email: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

2

Data Types

Two principal purposes
provide implicit context for

operators and subroutine calls in general
e.g. a+b, new p(), overloading

limit the set of operations that may be performed
e.g. add a character and a record?
type systems help to catch typing (and thinking) errors

3

Chapter contents

Meaning and purpose of types
Type equivalence & compatibility

Are types T1 and T2 the same?
Can we use a value of type T1 in a context expecting a
value of type T2?

Syntactic, semantic & pragmatic issues of most
common (and important) types

records
arrays
pointers (also naming issues & heap management)
strings, sets, files (also I/O in general)

4

Type Systems

Computer hardware
can interpret bit sequences in various ways

instructions, addresses, characters
integer & real numbers (of various lengths)

machine does not know which interpretation is the correct one
assembly languages can operate the memory locations in any

way they wish
High-level languages

always associate variables with types with some type system
to provide the context & to check errors

5

Components of a type system

Mechanism
to define types and
to associate them with other language constructs

Rules for
type equivalence,
type compatibility, and
type inference

derive the type of an expression
from its parts and from its context

6

What ‘things’ must have types?

Anything that may have a value or refer to something
having a value

constants (named & explicit literals)
variables
record fields
parameters & return values
subroutines themselves (if 1st or 2nd class)
all expressions containing these

‘type of name’ and ‘type of the object named’ can be
different!

but usually type-compatible
important in polymorphic (e.g. o-o) languages
we can use the same name to refer to objects of different types

7

Type checking

“Process of ensuring that the program follows the
type rules”

violation = type clash
Strongly typed languages (p321)

informally: language implementation prevents inappropriate
use of objects

Statically typed languages
strongly typed and
type checking can be carried out at compile-time
used often even when some of the tests are run-time (Ada)

Statically type > strongly type

8

Some example languages

Java: strongly typed but not statically typed (type casts)
Ada: ‘almost’ statically typed
Pascal: variant records create a loophole in strong typing
ANSI C: union types, subroutines with varargs,
array/pointer –interoperability
‘good old’ C: implementations check rarely anything at
run-time
Dynamic scope, late binding dynamic type checking

LISP, Scheme, SmallTalk
Polymorphism does not necessarily imply dynamic
checking

Eiffel & type inheritance
ML, Haskell & type inference

9

Definition of types

Type declaration
gives a name to some type
happens in some scope

Type definition
describes the type itself

Declaration <> definition
although they quite often appear combined
e.g. TYPE intvec = ARRAY[1..10] OF Integer;

Declaring without defining
forward declarations, opaque types, abstract data types, ...

Defining without declaring
‘anonymous’ types
e.g. VAR x: ARRAY[1..10] OF Integer;

10

Denotational view to types

Type = set of values
Also known as (a.k.a) domain
the values the objects of that type can take
if constant value v ∈ T then v is of type T
if v ∈ T for all values v of x then x is of type T

Widely used in formalizing the semantics of
programming languages

record: n-tuple, array: function
assignment: mapping store store

11

Constructive view

Tells ‘how the type is built’
Built-in types

a.k.a primitive, pre-defined
integer, Boolean, ...

Composite types
created by applying a type constructor to one or more simpler
types
‘simpler types’ may be composite, too
typical constructors: record, array, set

Rest of the chapter focuses on this constructive point of
view

12

Abstraction-based view

Type is an interface
set of operations allowed for that type
explains the meaning and purpose of the type

Operations should
have well-defined semantics (pre- & post-
conditions)
respect the data invariant of the type

13

Built-in types...

Note: some (but not many) languages may have
exceptions to what is said here
Built-in = same as the ones the hardware supports
Booleans

implemented as 1-byte quantities
0: false, 1: true (other values illegal)
C: no boolean type (int 0 = false, anything else = true)

Characters
ASCII encoding one byte
UNICODE 2 bytes (Java)
C++: char & wide char

14

...Built-in types

Integers
different lengths (C, Fortran)
signed and unsigned (Modula-2: cardinal)

Floating-point numbers
different lengths (precision & magnitude)

15

Some non-common builtins...

Note: languages which don’t have these as built-ins
quite commonly provide them via libraries
Fixed-point numbers (Ada)

can be implemented as integers
fast summation (if same precision)
can express large magnitudes compared to floating point
numbers with same number of bits

Decimal types (Cobol, PL/I)
some processors support BCD arithmetics

16

...some non-common builtins

Complex numbers (Fortran, LISP)
implemented as a pair of floating point numbers

Rational numbers (Scheme, LISP)
pair of integers

Arbitrary precision integers (SmallTalk)

17

Some terminology

Discrete type (also called ordinal type), e.g.,
integers, booleans, characters

countable domain
each element has a successor and a predecessor
(except min & max element)

Scalar type
elements of the type can ‘express scale’
all numeric types

18

Enumeration types
Ordered set of named elements

comparisons make sense
predecessor, successor
enumeration-controlled loops
each element has its unique ordinal value mappings

Pascal: Ord(c) ASCII code of c (if c is of type Char)
Ada: weekday’pos(mon), weekday’val(1)

Ada, ANSI C: ordinal values other than ‘default ones’
Ada: overloading of enum names is allowed

Why not use just integers?
more readable programs

Why not just use integer constants?
C enum is just syntactic sugar
compiler can catch errors when enumerations are real types on
their own
e.g. one can not use an integer in the place of an enumeration type

19

Subrange types

Values comprise a contiguous subset of another discrete
type

base type, parent type
integer, character, enumeration, another subrange

Ada makes a distinction between
derived types (not assignment compatible)
constraint subtypes

Advantages of subranges
‘automatic documentation’ of an integer range
compiler can generate range checking code
compiler can ‘compress’ the subrange (120..125 needs only 3
bits)
usually the implementation takes the ‘expected’ amount

20

Common composite types

Records (structures)
collection of fields
Cartesian product of (field) domains

Arrays (vectors, tables)
function from index type to component type
strings are quite often ‘just’ arrays of characters with some
special operations

Variant records
union of field types
alternative fields under one name, only one alternative is
valid at a time

21

...common composite types
Sets

powerset of its (discrete) base type
Pointers (l-values)

references to objects of pointer’s base type
often implemented as machine addresses (not necessary!)
requirement for recursive data structures

Lists
sequences of elements (like arrays)
recursive definition instead of an indexing function
variable length
fundamental to functional & logic languages

Files
data on mass storage devices
like arrays (if ‘seek’ allowed) with known ‘current position’
like lists (if only sequential access allowed)

22

Type checking

Typed objects
every definition of an object must specify also the object’s type

Typed contexts
rules of the language tell what types are allowed in each context
sometimes finding this out requires type inference

Type checking
may an object of type T be used in some given context?
if types are equivalent (same): yes
if types are compatible : depends on the language

casts / conversions
coercion
nonconverting casts

23

Type equivalence

Two principal ways
Structural equivalence

based on the content of definitions
(roughly put) types are the same if they

consist of same components and
they are composed in the same way

Algol 68, Modula-3, C & ML (with various ‘wrinkles’)
Name equivalence

based on the lexical occurrence of definitions
each definition defines a new type
more popular in recent languages (Java, Ada)

Note: separate compilation creates some problems
see section 9.6

24

What is structurally equivalent?

See examples on page 331
What differences are important and what not?

format of declaration
order of fields in a record
representations of same constant values
index values of an array

Algorithm to decide structural equivalence
expand all definitions until no user-defined types are left
check if the 2 expanded definitions are the same
recursive types give some trouble (must match graphs)

25

Problems with structural eq

Unintentional equivalence (p. 332)
programmer defines 2 types that have nothing in common

different name
but the type system thinks they are the same

same internal structure
Name equivalence resolves this

‘if programmer takes the effort to define 2 types then he
most probably has the intention that those types are
different’ (otherwise he would define only one)

26

Name equivalence

Aliasing
define a type using just the name of another type

Problem
are these 2 types the same (name equivalent) or not?
essential for Modula-2 example to work (p. 332)
but sometimes we do not want this (p. 333)

Strict name equivalence
aliased types are distinct

Loose name equivalence (Pascal, Modula-2)
aliased types are considered equivalent

Ada: ‘best of both worlds’
derived type: incompatible with base type
subtype: compatible

Modula-3: branded types (otherwise structural eq)

27

Strict and loose

TYPE A = B
strict name equivalence: a language in which
aliased types are considered distinct (declaration
and definition are distinct)
loose name equivalence: a language in which
aliased types are considered equivalent (just a
declaration, A shares the definition of B)

Example on p.333 (bottom of the page)
strict: p & q & t, r & u
loose: r & s & u, p & q & t
structural: all 6 variables

28

Type conversions
Contexts expecting values of a specific type

assignment
expressions with overloaded operators
subroutine calls

Suppose types must match exactly
explicit type conversions required

Conversion depends on the types
types are structurally equivalent, conversion just makes them name
equivalent

no run-time code
different subsets of values, common values are represented in the same
way

e.g. signed & unsigned integers
check that the value is in the common area, then use the machine

representation as such
different low-level representations

must use some mapping routine
32 bit integer 64 bit float: ok
opposite direction: loss of precision (round/trunc), overflow

29

Nonconverting type casts

Change the type of the value without changing the
underlying implementation

occasionally useful in systems programming
example 1: memory allocation

heap is allocated as an array of (say) integers
it can contain addresses and different user-defined data
structures

example 2: high-performance arithmetics
treat IEEE floating point number as a record
use exponent, sign & mantissa as integers

30

...nonconverting casts

Ada
generic subroutine ‘unchecked_conversion’

C
type cast run-time conversion with no checking
nonconverting casts possible by ‘clever’ use of pointers
also possible with union types (and variant records in other
languages)

C++
static_cast: type conversion
reinterpret_cast: nonconverting
dynamic_cast: run-time check

Dangerous!

31

Why type compatibility?

A := B
type of B must be compatible with the type of A

A + B
types of A & B must be compatible with integer type or with
float type

C := p(A,B)
types of A & B must be compatible with the types of the
formal parameters of p
return value of p must be type compatible with C

32

Examples of type compatibility

Ada: type S is compatible with type T iff
S & T are equivalent or
S is a subtype of T (or vice versa) or
S & T are subtypes of the same type or
S & T are arrays with same dimensions, ranges
and component types

Pascal
integers can be used in the place of reals

33

Implementing type compatibility

Scenario
A & B are type compatible A := B allowed
A & B have different semantics (e.g. subrange) compiler must
generate type checking code
A & B have different low-level representation compiler must
convert B to the type of A

Coercion
implicit type conversion provided automatically by the compiler
may require run-time code

checks (Ada coercions need only these)
actual conversions

34

To coerce or not?

Coercion
allows types to be mixed without explicit indication from the
programmer
weakens significantly type security
‘the weaker the type system, the more coercions the
language provides’ (Fortran & C)

most numeric types can be intermixed
compiler coerces results ‘back and forth’ when necessary

Example on page 338

35

...to coerce or not

Most modern languages try to
get closer to strong typing and
further from coercions

But not C++
motivation: coercions are the natural way to support data
abstraction & program extensibility
extremely rich programmer-extensible set of coercion rules
programmer can define coercion functions for his own classes
add overloading and templates to this and you’ll have the most
complicated type system ever created

36

Type Inference

Type checking ensures that
components of an expression
are type compatible with the expected component types of that
expression
but how to find out the ‘type of an expression’?

Often easy
function call: corresponding function result type
assignment statement: type of assigned value

Problematic case: operations that do not preserve the
types of their operands

operations on subranges
operations on (some) composite types

37

Arithmetics on subranges

See example on p. 341
what is the type of ‘a + b’?

new range 10..40?
Pascal (and descendants)

base type of the subrange (integer in this case)
for-loop in Ada

subrange tells the type of the index variable
for compatibility: type = base type of range bounds

avoiding run-time checks
compiler can keep track on min/max bounds
some checks may be avoided this way (or half of the check)
sometimes we may catch even semantic errors (low bound 1 >
high bound 2)
not always possible (user-defined functions, p. 342)

38

Operations on composite types

Result of operation is different from types of
operands
Example: strings in Ada (p. 343)

string is an ‘incomplete’ type
string of length n is compatible with any array of characters
of length n
the actual range does not matter

the type of the result of string catenation depends on the
context

39

Records and Variants
We skip subsection 7.2.5
Structures and unions (p.351)

C++: struct is a special for of a class (or vice versa)
Java: class is the only ‘struct-like’ type constructor

Pascal & C syntax for records (p. 351)
records consist of named fields
anonymous fields tuple (ML)

Referring to fields
usually referred using the ‘dot notation’

Fortran 90: %-notation
some languages use functional notation

projection functions
ML: #fieldname record-object

Nested definitions (p. 352)
directly (Pascal) or using intermediate structures (F90)

40

Implementation

Prime reason why the order of the fields in a record should
matter

fields are usually stored after each other
Accessing a record field

find base pointer (frame/global)
add to that

record’s offset from the base and
field’s offset in the record

generate corresponding load/store instruction
assumes alignment, i.e. fields start at memory word boundaries

Example: Figure 7.1
alignment creates ‘holes’ in the memory layout
array of such records would allocate 20 bytes for each

41

Packed records

Pascal keyword PACKED
can be applied to record, array, file, set
tells the compiler to use minimum amount of memory
‘push fields together’
accessing fields is slower

collect pieces and reassemble them to registers
we trade memory for speed

Example in Figure 7.2 (p. 354)
array of these would allocate 16 bytes for each
PACKED array would allocate 15

42

Record operations...

Assignment r1 := r2
most languages allow this
naive implementation: copy each field separately
fast implementation: use block memory transfers

just transfer all bits of r2 into r1
block_copy(source, dest, length)
hardware support

43

...Record operations

Comparison r1 = r2
most languages do NOT support this

exception: Ada
in C++ (and many others) one can program own equality
tests for own classes

implementation
block compare

problem: also the garbage in the holes gets tested
always fill holes with zeroes (takes time)

field-by-field comparison

44

Saving space

Holes in records waste space
packing heavy cost in access time

Compromise solution
rearrange fields so that wasting caused by word-alignment
is minimal
greedy heuristics for this minimization

sort fields according to their (alignment) size
place smallest fields first

bytes, half-words, words, double words, arrays, ...
larger fields are never (unnecessarily) split over several

words
Compare examples in Figures 7.1, 7.2, and 7.3

45

Does the ordering matter?

Usually not
compiler can rearrange fields as it wishes

Some systems programming tasks
require knowledge of the exact location and length
of the fields

systems programming languages
allow programmer to specify these
C, C++ guarantee that the order is not changed anyway

46

WITH statements & records

Introduced in Pascal
aim: simplify the manipulation of deeply nested
structures (x1.f.g.y := x2.f.g.y)
example pp. 355-356

WITH statement opens a new scope
fields of the opened record become normal
variable names
formalize the notion of elliptical references of
Cobol

allows the use of a field name as a variable if it’s unique

47

...WITH statements

Problems
How to manipulate the fields of 2 similar records simultaneously?
Naming conflicts

new scope local variables inaccessible
Long and nested statements

which field comes from which WITH record
type definition may be very far

Modula 3 solution
WITH creates aliases instead of opening records
fields are not directly visible but accessible via aliases
aliases can be used for other objects, too
examples on page 357

48

WITH without WITH

C simulation
use local pointer variables as aliases
needs the capability of

declaring variables in nested blocks
addressing stack (non-heap) variables
Pascal has neither

C++: use reference types instead
implementation
each WITH creates a local ‘hidden pointer’ to the opened or
aliased record
access to fields via this pointer & offsets
good optimizer might ‘invent’ these automatically

49

Variant records

Aim
provide 2 or more alternative fields
only one of them is valid at a given time

Pascal variant record (p. 358)
tag field (naturally_occurring)
variants (in parentheses)

Implementation
variants may share the same space (Fig. 7.4)
origin: equivalence –statement of Fortran I (use same
space for different variables)

50

Why is ‘variant’ better than union?

Pascal integrates variants with records
variations only seldom appear elsewhere
variant fields can be accessed with standard dot-
notation

C & unions (p. 359)
need to create intermediate structures

extra levels of naming to access variant data

51

Arrays

‘Mother of mass-computation’
homogenous collection of elements

records: heterogenous
most common and important composite data type
fundamental part of any programming language

Semantics
mapping from an index type to a component (element) type
most languages restrict index to be of a discrete type

more general arrays require a hash-table implementation
C++, Java: maps

elements can usually be of any type
Fortran 77: components must be scalars

52

Array syntax...

Accessing elements
Pascal, C, ...: A[3]

no confusion with subroutine calls
Fortran, Ada: A(3)

Fortran: keypunch machines did not have ‘[‘ ‘]’
Ada: deliberate design decision

arrays are mappings, that is, functions
easy to replace an array with the corresponding mapping
(or vice versa)
see Figure 7.6

53

...Array syntax

Declaring array types
append subscript notation to a ‘normal’ scalar declaration

C: char upper[26], lower bound = 0
Fortran: character(26) upper, l.b. = 1

use array constructor
Pascal: upper: ARRAY[‘a’..’z’] OF Char;

Multidimensional arrays
syntactic sugar for ‘arrays of arrays’
Ada makes a difference between

a 2-dimensional array and
an array of 1-dimensional arrays
the latter is more flexible to use (matrix(3) is a normal array)

C: int matrix[3][4]
matrix[3] is a reference (to int or an array of ints, depends on
context)

54

Array operations
Selecting & assigning elements
Slices / sections

Fortran-90: many operations
slice = rectangular portion of an array
Figure 7.7: matrix & some slices

Ada supports only 1-dimensional slices
slice = contiguous subrange of elements

Comparing equality
Ada

lexicographic ordering (A < B) for 1-dim arrays of discrete elements
OR/AND/XOR on Boolean arrays

Fortran 90, APL: many built-in array operations
A + B, tan(A), ...
structural equivalence same element type & shape (good when using
slices)
most built-in scalar operations generalize to arrays
also ‘array-specific’ operations (like matrix transposition)

55

Allocating arrays
Depends on

lifetime of the array
the time the shape of the array is known

Possibilities
Global lifetime, static shape

bounds & dimensions known at compile-time
allocate from global memory area

Local lifetime, static shape: recursive subroutines
allocate from stack frame

local, shape bound at elaboration time (Figure 7.8, p.370)
divide stack frame to fixed & variable part
allocate a pointer from fixed part, array itself from variable
nested definitions delay array allocation

arbitrary, elaboration time (e.g. Java): use heap
dynamic shape

must use heap (array may grow from both ends)
re-allocation & copy when necessary

56

Memory layout

Elements in contiguous locations
possible alignment holes (esp. with records)

Multidimensional arrays
row-major order

‘last’ dimension grows first in consecutive locations
A[1,1], A[1,2], ..., A[1,max2], A[2,1], ...
most languages use this

column-major order
‘first’ dimension grows first in consecutive locations
A[1,1], A[2,1], ..., A[max1,1], A[1,2], ...
Fortran

straightforward generalization to m > 2 dimensions

57

Row- or column order?

Row-major
easy to define matrix as an array of subarrays

Computational efficiency
better performance if array elements are in cache
cache miss several elements of array are loaded
if subsequent indices use these then we are doing well
Fig. 7.10: good cache hit ratio with row-order, worse with column
order
the ‘good’ and ‘bad’ depend on the program!
one might implement BOTH orders and use the appropriate one

58

Row-pointer implementation
Memory layout

rows can be anywhere in the memory
an auxiliary array of pointers to rows
generalizes to m > 2 dimensions

Advantages
sometimes faster to access row elements

may depend on hardware (indirect addressing vs. multiplication)
rows can be of different length

May waste or save space
pointer array takes some space
‘dynamic’ lengths of rows may save more

Languages
C & C++ have both row-major & row-pointer (Fig. 7.11)
Java uses row-pointer

59

Address calculations

Example
3-dimensional array with row-major ordering

generalizes easily to any number of dimensions
computation is similar for column-major case

A: [L1..U1, L2..U2, L3..U3]
Define

S3 = size of the element type
S2 = size of a row = (U3 – L3 + 1)*S3
S1 = size of a 2-d plane = (U2 – L2 + 1)*S2

address of A[i,j,k]?
= &A + (i – L1)*S1 + (j – L2)*S2 + (k - L3)*S3

60

Faster address calculations

Previous computation involves
5 multiplications and 10 additions/subtractions

IF
Li & Ui (i=1,2,3) are known at compile-time

THEN
Si (i=1,2,3) are compile-time constants

move substractions of Li out of the formula
&A[i,j,k] =

&A + i*S1 + j*S2 + k*S3 (runtime computation)
- [(L1*S1) + (L2*S2) + (L3*S3)] (compile-time constant)

3 multiplications & 4 additions/subtractions
if A is a global/static variable then also &A is a compile-time constant

corresponding machine code on page 376

61

Restricted & generalized cases

Indexes (i,j,k) may be known at compile-time
move to the ‘static part’ of computation

Lower/upper bounds may be unknown
move to the ‘dynamic part’ of computation

Example (in the paragraph of p.377)
L1 not known, k = 3

C, C++, Java
lower bounds always 0 they never contribute to runtime
cost

62

Static & dynamic address computations

This far only arrays, but the idea can be used
for any structures
Example (p. 378)

V = local array of records R
R has a 2-dimensional array in field M
&V[i].M[3,j] = ?

63

Row-pointer addresses

Computations much simpler
A[i,j,k] =

(*(*A[i])[j])[k] in C notation
A[i]^[j]^[k] in Pascal notation
instruction sequence on p. 378

Speed vs. row-major implementation
earlier machines had so slow multiplication that
indirect addressing was faster

64

Strings

(just) an array of characters or
a special data type with own operators

dynamic array
even if the language doesn’t support them otherwise

many applications require strings
strings are easier to implement than arrays in
general

1 dimension, byte elements

65

String Literals

Sequence of characters in quotation marks
character literals (char = string of length 1?)
escape sequences for non-printable characters

C: ‘\t’ (tab) ‘\n’ (newline), ‘\006’ (octal! ascii code)
Java: C + numeric escapes ‘\uxxxx’ for Unicode
characters

66

String operations

Often implementation-dependent
size known at elaboration time

contiguous array of characters
restricted operability
lexicographic ordering (<, >)
C: no built-in operations

size can change dynamically
heap implementation (block, chain of blocks)

concatenation, length
substrings, pattern matching
ability to define own string-valued functions

67

Sets

Collection of elements (like arrays)
homogenous
element type = base type of the set

Different from arrays
unordered
all elements are different
size arbitrary

Part of Pascal language
many others have library support
creation, literals, union, intersection, difference

68

Implementing sets

Numerous standard data structures
e.g. tree structures

Usually as a bit vector
bit i = 1 ith element is a member of the set
bit i = 0 ith element is not a member of the set
suits only for small base types

base domain of size n needs a vector of n bits
32-bit integers 2^32 bits = 540 Mb of memory
typical bound 256 elements (set of Char)

easy to implement and/or/xor/not
just use the corresponding bit operations

69

Pointers and recursive types

Recursive types
objects contain references to other objects of the same type
typically records

some data in addition to those references
generally used to build linked data structures like lists and trees

Easy to define with reference variable model
everything is a reference anyway

Value model needs a special pointer type
value of a pointer = reference to some object
restricted to point only to heap objects (Pascal, Modula-3, Ada 83)

new pointers created only via memory allocation
references to stack objects allowed (C, C++, Ada 95)

new pointers also by using ‘address-of’ –operator

70

Pointers and addresses

Pointer is a high-level concept
a reference to an object

Address is a low-level concept
a location in computer memory

Pointers can be implemented as addresses
addresses do not make sense in distributed environments
address may be augmented with other information to
implement a pointer

71

Storage reclamation

How long is the program supposed to run?
one short time just forget
long / infinite time memory leaks are a real problem

Explicit reclaiming (C, Pascal)
programmer’s responsibility
simplifies implementation
dangers

we may forget to reclaim unused objects memory leak
we may reclaim used objects dangling pointers (7.7.2)

Automatic reclaiming (Java, Ada)
garbage collector (7.7.3)
how to distinguish garbage from objects?

72

Pointer assignment

A := B
reference model: A refers to same object as B
value model

if B is a reference A refers to B’s object
if B is an object copy contents to A

Primitive types & reference model
inefficient to use pointers
number ‘3’ never changes

immutable types (int, float, char)
use the actual object instead of a pointer

use pointers only for mutable types (e.g., tree node)

73

Defining recursive data types...

Reference model languages
ML example (Fig. 7.13)

tagged tuples
Lisp example (Fig. 7.14)

everything is a cons-cell or an atom
note: data structures of purely functional languages are
always acyclic

new objects may only point to older ones
old ones never change

mutually recursive types
ML: declare together in a group (p. 386)

74

...Defining recursive data types

Value model languages
examples (p. 387)

forward declarations (Pascal)
incomplete declarations (Ada, C)

note that in C the type name is ‘struct chr_tree’

no ‘aggregates’, structures must be built with programs
allocation

using built-in functions (Pascal, Ada)
using library functions (C)

note sizeof & casting
using constructors (C++, Java)

using new, parameters & overloading

75

Accessing pointed objects

Explicit dereferencing
Pascal ‘^’, C: ‘*’

Dereferencing and records
recall: recursive data structures are almost always records

justified to provide a special syntax to access fields of pointed
records

C: r->f
Ada: no special notation

use pointed records just as standard records
implicit dereferencing
pseudofield ‘all’ to copy all of the record

ML language
has an imperative part (with side effects)
assignment statement allowed but only if l.h.s. is a pointer
see example on p. 389

76

Pointers and arrays in C
an 1-dimensional array is almost same as a pointer to
array element

see example on p. 389
arrays are always passed as pointers to subroutines

pointer arithmetic
add/subtract an integer
subtract another pointer
compare 2 pointers
results are automatically scaled according to the element size
common to iterate over arrays using pointers instead of indexes

used to be faster
‘more elegant’?

differences
space allocation (and thus the result of sizeof)
int *a[n] vs. int a[n][m]

77

How to read C type declarations?

(short course)
start at the name of the variable
loop

work right as much as possible (parentheses)
work left as much as possible
jump out of parentheses

until all read
examples

int *a[n]: a is an array of n pointers to int
int (*a)[n]: a is a pointer to an array of n ints

78

Passing array parameters in C

One-dimensional: pointer to the array
2-dimensional, row-pointer layout

int *a[] or int **a
2-dimensional, contiguous layout

int a[][m] or int (*a)[m]
the size of the first dimension is irrelevant
declaration must contain enough info to compute the sizes
of elements

int a[][] is not enough (can not compute a+i or a[i])
exception: size can be deduced from an aggregate

2-dimensional, contiguous layout, sizes not known
pass pointer & dimension sizes
compute address explicitly with pointer arithmetics (p. 391)

79

Dangling references

Created by
explicit reclamation (p. 391)

dispose, delete (+ destructor)
other pointers may still point to the same object

references to ‘dead’ stack objects
lifetime of reference exceeds the lifetime of the referred
object

Dangers
memory area may be allocated to some other object
dangling reference may read or write random bits over it

data structures are corrupted
memory area may even contain heap bookkeeping data

80

Workarounds

Algol 68
pointer is not allowed to point to an object which has a
shorter lifetime than the pointer

heap stack
outer subroutine inner subroutine

problem: pointer & object parameters
pointers & objects must be augmented with lifetime
information

Ada 95
forbids references to objects whose lifetime is briefer than
pointer’s type
can be checked at compile-time in most cases

81

Tombstones

Mechanism to catch all dangling references at run-
time

works both for stack & heap references
tombstone = an extra level of indirection between the
reference and the object
all references point to the tombstone
tombstone points to the object
should be used for all references (even for global data) to
avoid special cases

Reclamation of an object
set tombstone to some special value (non-address)

82

Cost of tombstones

Time overhead
creation (allocation, &)
check validity for each access

almost free if hardware catches illegal addresses
e.g. outside of program memory area

double indirection
Space overhead

significant (almost 1 per each live reference)
simple implementation: reclaim objects but leave
tombstones (tombstones are usually much smaller)
augment with reference counters (reclaim when 0)

83

Benefits of tombstones

Dangling references are catched
Easy to rearrange heap objects

all references go through tombstone
only the tombstone reference must be updated

rearrangement is necessary when compacting the
heap (to eliminate external fragmentation)

book: not widely used in language
implementations, Macintosh OS uses them

84

Locks and keys

Alternative to tombstones
Disadvantages

works only for heap objects
does not give 100% protection

Advantages
avoids the need of ‘keeping tombstones forever’
(or reclaiming them)

85

Implementing locks & keys

Every pointer consists of
the actual reference
and a key

Every heap object begins with a lock field
Access is valid if key = lock (Fig. 7.17)
Allocation create a new key/lock value
Reclaim set lock to some special value
Why does it work?

even if the memory area is used by some other object,
it is very unlikely it has the same value as the key in
the dangling reference

86

Cost of locks & keys

Space overhead
extra word to every pointer & heap object

Time overhead
copying pointers
each access involves key/lock –comparison
unclear whether cheaper than tombstones

tombstone: max 2 indirect accesses (and cache misses)
lock & key: 1 indirect access + some arithmetics

87

Language design

Most languages
do not (by default) generate ‘catch dangling
reference’ code
‘debug mode’ enables checks

Pascal
programmer can enable dynamic checks

compiler uses locks & keys technique for
pointers

C
not even optional checks

88

Garbage collection

Automatic reclamation of storage
essential in functional/logic languages

no ‘stack objects’, everything in heap
more and more popular in imperative languages

difficult to implement
convenience of programming!!!

slower than explicit ‘manual’ reclamation
but eliminates need to check dangling references

89

Reference counts

When is an object X ‘not used’?
no pointers to X exist

place a counter to each object = number of pointers
referring to this object

Maintaining reference counts
object X creation X.rc = 1
assignment p := q

decrement p^.rc (if p <> NIL)
increment q^.rc

subroutine return
pointers deallocated with stack frame

decrement rc of each pointed object
hierarchical structures recursive updates to components

90

Implementing reference counts

Implementation
must ‘know’ the location of every pointer

must know which parts contain pointers
in stack frames (subroutine return)
in heap objects (reclaim update rc in pointed sub-objects)

type descriptor contains this information
for each distinct type (class)
for each subroutine

epilogue code uses this to update reference counters
e.g. a table containing

an offset to each pointer
pointer to the type descriptor of each pointer

counter = 0 reclaim object (and update sub-objects)
each pointer must be initialized to NIL to prevent the garbage
collector from following dangling pointers

91

Cost of reference counts

Space
extra counter field in every heap object
may be significant for small objects (e.g. cons cells)

Time
updating reference counts
depends on the ‘nature’ of the program

Problem
object may be useless even if rc > 0 (Fig. 7.18)
caused by circular structures

not a problem with non-recursive structures (e.g. strings)
not a problem in purely functional languages (no cycles)

Reference counts may be used with tombstones
explicit reclaiming of objects
automatic reclaiming of tombstones
rc > 0 programmer has not reclaimed the referred object (cyclic or not)

92

Mark-and-sweep collection

Better definition of “object X is not used”
X can not be reached from valid pointers outside the heap
covers the situation of Fig. 7.18

Mark-and-sweep garbage collection
mark all heap objects as ‘useless’
mark all reachable objects as ‘useful’

begin from stack frames & recurse into structures
if a block is already marked ‘useful’ return

move all ‘useless’ blocks of heap to free list (reclaim)

93

Potential problems

Steps 1 & 3
collector must know where every ‘in-use’ heap
block begins and ends
variable sizes each block must

start with its size
contain a free/used indicator

Step 2
collector must know the locations of pointers

place a pointer to object’s type descriptor into
each heap block

94

Cost of ‘mark-and-sweep’

Extra space for heap objects
address to type descriptor

type descriptor contains the size
if type descriptor addresses are word-aligned
then last 2 bits of the address can be used for

‘free’ flag and
‘useful’ flag

Step 2
needs a recursion stack for the exploration

garbage collection is done because we are OUT of space!
Schorr & Waite -67: no stack needed

redirect pointers to find the way back

95

Schorr-Waite technique

Figure 7.19
Embeds the stack in the fields of heap blocks

keep track of current & previous block (Y,R)
Exploring from Y to W

reverse the pointer to W to point to R
set current block to W, previous to Y

Returning from W to Y
use the reversed pointer in Y to find the previous block R
flip reversed pointer back to W
set current block to Y, previous to R

Fact: at most one pointer per block is reversed
must be marked somehow bookkeeping data in block

96

Storage compaction

Remove external fragmentation
easy with tombstones

Stop-and-copy technique
compaction while eliminating steps 1 and 3 of mark-and-
sweep algorithm
divide heap into 2 halves (virtual memory!), say H1 & H2
all allocations are done in H1
memory full copy all reachable data to H2

use ‘useful’ flags to keep track of shared structures
not ‘useful’ pointer points to H1 copy data to H2, update pointer
to H2
‘useful’ pointer points to H2 just copy the reference

swap H1 & H2

97

Cost of ‘stop-and-copy’

Only half of the heap is in use
not a problem with virtual memory

Time overhead
proportional to the amount of non-garbage blocks
mark-and-sweep: all blocks

98

Mark-and-Sweep vs. RC

Time usage
M-a-S has lower overhead than RC in ‘normal’ operation

costs only when a GC is made
suffers from “stop-the-world” symptom

everything freezes at GC
execution happens in bursts
the more GC is needed the more it costs (lot of heap
data)

Space usages comparable
reversed pointer indicator / reference counter
address to type descriptor

99

Improved M-a-S

Idea: trade GC accuracy to GC speed
divide heap to permanent and dynamic half
GC is performed only in the dynamic half
data is moved to permanent half if it lives over 1 or 2 GCs
like ‘stop-and-copy’ but no swapping
risk: permanent area may get full

should not happen with ‘normal’ programs
Avoiding ‘stop-the-world’

interleave normal execution & GC
multiprocessor computers: P1 executes, P2 does GC

100

GC and weak typing

Most GC techniques use type descriptors
need to find pointers in objects

Weakly typed languages & GC?
probabilistic approach

of block in the heap << # of possible bit patterns in addresses
probability that a non-pointer data area contains a ‘heap

address’ is small
assume that everything that looks like a pointer is a pointer &

apply standard mark-and-sweep algorithm
properties

never reclaims useful blocks
unless programmer ‘hides’ pointers (possible in C)

some useless blocks may get marked as useful
compaction impossible: we never know which ‘pointers’ should
be changed

101

Lists

recursive definition: list is
an empty list or
a pair consisting of an object and a list

‘arrays of functional languages’
useful in imperative programs, too
can be implemented in any language with records
and pointers

homogeneous in typed languages (ML)
Lisp lists are heterogeneous (untyped language)

102

Implementation

Chain of blocks (ML)
component object may be contained in the block

useful for primitive types
or the block contains a pointer to the component

must have some ‘tag bit’ to tell which case holds

Chain of ‘cons-cells’ (Lisp)
combination of 2 pointers

103

Basic operations

Convenience notations
ML: [a,b,c,d]
Lisp: (a b c d)

also: (a.(b.(c.(d.nil)))) (dotted pair notation)
note: (a.b) is NOT a proper list

List manipulation
construction, extraction, concatenation
Lisp

car, cdr, cons, append
car & cdr (coulder) are ‘historical accidents’
illegal uses just return nil

ML
hd, tl, ::, @ (infix notation)
illegal uses cause runtime exception

104

List functions

Typical built-in functions
test for emptiness
length
n th element
reversal

Polymorphic functions
filter, map, accumulate

Haskell (successor of ML)
list comprehension =
convenience notation for combinations of generation,
filtering and mapping
much like corresponding mathematical definition of sets

105

Assignment & equality

Primitive types
obvious semantics & implementation
bitwise copying
bitwise comparison

Structured types, abstract data types?
Example: strings s & t, does s=t mean s & t

are aliases?
occupy a bitwise identical storage?

uninteresting (garbage bits)
contain same sequence of characters?
would appear the same if printed?

106

Deep and shallow equality & assignment

E1 = E2 (in reference model)
E1, E2 are the same object = shallow equality
E1 & E2 refer to objects that are (in some sense) equal = deep
equality

may require recursive testing
E1 := E2 in reference model

suppose E2 refers to object O
shallow assignment

make E1 a reference to O
deep assignment

create a copy, say C, of O
make E1 a reference to C

E1 := E2 in value model
‘deep’ for primitive types
always shallow for pointers

107

Language design

Most languages provide only the ‘shallow’
versions
Scheme (most well-known Lisp dialect)

privides 3 equality testing functions
eq?, eqv?, equal?

Deep assignment is rare
Clu: copy1, copy

Languages with ADTs
programmer should carefully think which versions
to implement

	Chapter 7: Data Type
	Data Types
	Chapter contents
	Type Systems
	Components of a type system
	What ‘things’ must have types?
	Type checking
	Some example languages
	Definition of types
	Denotational view to types
	Constructive view
	Abstraction-based view
	Built-in types...
	...Built-in types
	Some non-common builtins...
	...some non-common builtins
	Some terminology
	Enumeration types
	Subrange types
	Common composite types
	...common composite types
	Type checking
	Type equivalence
	What is structurally equivalent?
	Problems with structural eq
	Name equivalence
	Strict and loose
	Type conversions
	Nonconverting type casts
	...nonconverting casts
	Why type compatibility?
	Examples of type compatibility
	Implementing type compatibility
	To coerce or not?
	...to coerce or not
	Type Inference
	Arithmetics on subranges
	Operations on composite types
	Records and Variants
	Implementation
	Packed records
	Record operations...
	...Record operations
	Saving space
	Does the ordering matter?
	WITH statements & records
	...WITH statements
	WITH without WITH
	Variant records
	Why is ‘variant’ better than union?
	Arrays
	Array syntax...
	...Array syntax
	Array operations
	Allocating arrays
	Memory layout
	Row- or column order?
	Row-pointer implementation
	Address calculations
	Faster address calculations
	Restricted & generalized cases
	Static & dynamic address computations
	Row-pointer addresses
	Strings
	String Literals
	String operations
	Sets
	Implementing sets
	Pointers and recursive types
	Pointers and addresses
	Storage reclamation
	Pointer assignment
	Defining recursive data types...
	...Defining recursive data types
	Accessing pointed objects
	Pointers and arrays in C
	How to read C type declarations?
	Passing array parameters in C
	Dangling references
	Workarounds
	Tombstones
	Cost of tombstones
	Benefits of tombstones
	Locks and keys
	Implementing locks & keys
	Cost of locks & keys
	Language design
	Garbage collection
	Reference counts
	Implementing reference counts
	Cost of reference counts
	Mark-and-sweep collection
	Potential problems
	Cost of ‘mark-and-sweep’
	Schorr-Waite technique
	Storage compaction
	Cost of ‘stop-and-copy’
	Mark-and-Sweep vs. RC
	Improved M-a-S
	GC and weak typing
	Lists
	Implementation
	Basic operations
	List functions
	Assignment & equality
	Deep and shallow equality & assignment
	Language design

