
1

Programming language
concepts

長庚大學資訊工程學系 陳仁暉 助理教授

Tel: (03) 211-8800 Ext: 5990
Email: jhchen@mail.cgu.edu.tw
URL: http://www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

2

Programming is an unnatural
act

Alan Perlis

1922-1990
First President of the ACM
First Turing Award winner
Member of the Algol-60 design team

3

An example of an early computer

Harvard Mark I (IBM, Aiken, 1948)
electro-mechanical

ENIAC is an electronic copy of Mark I design
executed 3 operations each second (3 IPS)
remained in use until 1959
51’ long, 8’ high, 3’ deep
730,000 parts (relays, switches, wheels, shafts), 530
miles of wiring, 18,000 vacuum tubes, ...

How many programmers could one ‘buy’ with the
price of one computer?

4

An example of a new computer

Sun Fire 15K
106 UltraSPARC III processors

900 MHz to 1.2 GHz clock speed
29 million transistors
supports 4 Gb of memory

602,270 JBB operations per second
list price $3,739,230.00 (72 processors)

5

Picture of Mark I

6

Computer Size

ENIAC then…

ENIAC today…

With computers (small) size does matter!

7

An example of an early program

Euclid’s algorithm for GCD (greatest common divisor)
actually this is for a quite new computer (MIPS R4000)

Writing programs in this way is very expensive and hard
but the early computers cost much much more
even using the computer cost more than programming it

8

With Mark II came the bugs

9

Problems of machine code

Programming = coding in the true meaning of the
word
Code is not

reusable: monolithic ‘structure’
relocatable: consider adding one instruction in the middle
readable (more important)

Practically impossible to create large programs

10

Symbolic assembly language

Assembler
translator from symbolic language to machine language
(one-to-one mapping)
tool to assemble the symbolic program in the machine

Advantages
relocatable & reusable (copy) programs
macro expansion

first step towards higher-level programming
larger programs (like operating systems) possible

11

Euclid’s GCD program in MIPS assembly
language

12

Problems of assembler

Each kind of computer has its own
Programmers must learn to think like
computers
Maintenance of larger programs is difficult
Higher-level languages

portability
natural notation (for anything)
support to software development

13

First high-level language

Fortran (Backus, 1957)
IBM Mathematical Formula Translator
compilation instead of translation
language for scientific computing

most important task in those days
efficiency important to replace assemblers
introduced many important language concepts
that are still in use

http://www.fortran.com/

14

A Fortran program
C FORTRAN PROGRAM
DIMENSION A(99)
REAL MEAN

READ(1,5) N
5 FORMAT(I2)

READ(1,10) (A(I), I=1,N)
10 FORMAT(6F10.5)

SUM = 0.0
DO 15 I=1,N
15 SUM = SUM + A(I)

MEAN = SUM/FLOAT(N)
NUMBER = 0
DO 20 I=1,N
IF(A(I) .LE. MEAN) GOTO 20
NUMBER = NUMBER + 1
20 CONTINUE

WRITE(2,25) MEAN, NUMBER
25 FORMAT(8H MEAN = , F10.5, 5X, 20H NUMBERS OVER MEAN =, I5)
STOP
END

15

What matters in programming?

1950s: cost and use of machines
Nowadays

problems other than efficiency are often more important
performance gap between compiled and hand-tailored
machine code has diminished
modern hardware is too complicated for humans

cost of labor has far surpassed the cost of machinery
standard PC costs like NT 20,000

software systems are getting more and more complex
problems to solve are getting difficult even to define

16

Why are there so many programming
languages?

Read the “Perlis quotes”
Evolution

CS is constantly finding ‘better’ ways to do things
structured programming, modules, o-o, ...

Special languages for special purposes
scientific applications
business applications
artificial intelligence
systems programming

Personal preference
We are not all driving a NISSON or TOYOTA!?

http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html

17

Why are some programming languages
more successful?

Expressive power
in principle, all languages are Turing-complete
has a huge effect on programmer’s ability to

write, read, and maintain
understand and analyze

abstraction facilities (for computation & data)
Ease of use

low learning curve (Basic, Logo, Pascal)
Ease of implementation

Pascal & p-code (forefather of Java VM) made it easy to port
compilers
free availability in general

18

More reasons for success

Excellent compilers and tools
fast compiled code (Fortran)
debugging tools
project management tools
teamwork tools

Economics, inertia
10000000 lines of Cobol is hard to rewrite
100000 Cobol programmers are hard to re-train

Patronage
many languages have powerful ‘sponsors’

Cobol, PL/I, Ada, Visual Basic, C#

19

Classification of PLs

Imperative languages
program = description of how the computer should
solve the problem

first do this, then repeat that, then branch there...
dominate the field (good performance)

Declarative languages
program = description of the problem

i.e. a formal statement of what is the problem
closer to humans than computers

20

Computational models

von Neumann architecture (1946)
procedural languages (Pascal, C, Basic, ...)
‘computing via side-effects’

λ-calculus (Church, 1941)
functional languages (LISP, ML, Haskell)
‘computing without variables’

Predicate logic (Frege, 1871)
logic programming languages (Prolog, Mercury, CLP)
‘computing with relations’

http://ei.cs.vt.edu/~history/VonNeumann.html
http://www.math.ucla.edu/~asl/bsl/0104-toc.htm
http://www.findlink.dk/frege/frege.htm

21

Other classifications

Object-oriented languages
O-O ideas were first implemented in Simula I (Dahl & Nygaard,
1963)
‘computation = the interaction of independent objects’

suits well for distributed systems
Smalltalk, C++, Java, CLOS, ...

Parallel (concurrent) languages
nowadays hard to draw borders between sequential & parallel
some languages do have explicit concurrent features (Ada, Java)
others can use os-specific library routines (C, Fortran)
only few are inherently concurrent (Occam)

http://java.sun.com/people/jag/SimulaHistory.html

22

Notes about classifications

Most languages break class borders
e.g. logic languages have imperative features

Some languages are ‘multi-class’ by design
Our definitions just attempt to capture the general
flavor of the class
Imperative languages (o-o or not) are the most
common in practice

we consider mainly these
but most of the material applies to languages of other
classes, too

23

Why are you here?

Or ... “Why study programming languages?”
Help you to choose a language

certain languages suit better for certain applications
distributed systems: Java or C++/CORBA?
systems programming: C, C++ or Modula-3?

Help you to learn a new language
many languages are closely related (C++ Java)
there are basic concepts that underlie all languages

Help you to use a language better

24

Make the most out of a language

Understand obscurities
C: unions, arrays vs. pointers, separate compilation, variables, ...
understanding the basic concepts is a necessity to understand
non-basic ones

Understand implementation costs
alternative ways of doing the same thing

x*x or of x**2
pointer arithmetics or arrays
computation vs. memory (function or table)

things to avoid
Pascal & value parameters for large types

25

Make your language better

Simulate things your language lacks
Fortran (pre -90)

bad control structures use comments & programmer
discipline
no recursion eliminate recursion
no named constants use variables

C, Pascal
no modules use naming & discipline

no iterators use functions & static variables

26

Make good use of language tools

Editors
Debuggers

sometimes the bugs are very deeply hidden
compiler error, OS error, ...
have to read the ‘hex dump’ or assembly code

Assemblers
Linkers
Profilers

27

Understand why languages work

Language design
Language implementation

especially compilation
Interaction with the operating system

28

But I will never design a programming
language!

Many system programs are like languages
command shells
programmable editors
programmable applications

Many system programs are like compilers
read & analyze configuration files and command line
options

Easier to use and design such things once you
know about ‘real’ languages

29

Compilation and interpretation

Compiler
translates source language to target language
and goes away
when a program is executed, the place of
execution is at the target program

30

Compilation and interpretation (cont.)

Interpreter
is present also at the execution time
is the place of execution (‘virtual machine’)

31

Properties of Compilation

Gives better performance
A decision made at compile-time is a decision not
made at run time

access a variable
via same address at all occurrences (compiled)
look it up from a table (interpreted)

now execute that 100000 times in a loop
compilation (final) is made only once, but the program is
executed many times

Code optimization

32

Properties of Interpretation

Gives better diagnostics
debugging at source-code level
clear error messages

Gives flexibility
programs that adapt themselves to the input

e.g. sizes of arrays, types, even names
programs that develop while executing them

LISP: create new functions from data
Late binding is natural

decisions that are postponed until run time

33

Mixtures of both
Typical combination

compile to intermediate code (Java bytecode)
interpret the intermediate program in a virtual machine
(JVM)
intermediate code can be compiled, too (JIT)

Where’s the difference?
interpretation is ‘simple’ and compilation is ‘complicated’
compilation involves understanding of the whole source
program
the translation made by the compiler is non-trivial

34

Implementation strategies...

Preprocessors
most interpreters use one
produces an intermediate form translated from the source

removes white space, tokenize, and expands macros, ...
intermediate form is faster to interpret

Pure compilation
source machine code
usually involves a linking phase to merge library routines into the
final program
library routines = ‘extension’ of the machine instruction set

Some library routines are interpreters!
e.g. printf of C has to interpret the format string

35

...Implementation strategies

Compilation to assembly language
easier to debug & read
compiler is tolerant to changes in hardware
cross-assemblers make porting software easier

C compilers
start with preprocessor (cpp)

macro expansion
conditional compilation

Compilation to C
e.g. early C++ implementations

36

Pascal, P-code & bootstrapping

Wirth tools (1972) for porting Pascal
Pascal compiler PaToP-C.Pa

written in Pascal, generating P-code
PaToP-C.P-C

i.e. PaToP-C.Pa compiled with itself on some computer
P-C.Pa: P-code interpreter written in Pascal

Porting the compiler to machine M (bootstrapping)
translate P-C.Pa by hand to a local language, say C
compile the result, say P-C.C, obtain an interpreter P-C.M
modify (by hand) PaToP-C.Pa to PaToM.Pa
compile PaToM.Pa (run PaToP-C.P-C on P-C.M) to PaToM.P-C
compile PaToM.Pa (run PaToM.P-C on P-C.M) to PaToM.M

http://www.cs.inf.ethz.ch/~wirth/

37

Porting a Pascal Compiler to M

MA

Pa-to-P-C.Pa Pa-to-A.A

Pa-to-P-C.A

Pa-to-P-C.P-C

1

23

4

P-C.Pa P-C.C
hand

P-C.M

C-to-M.M

Pa-to-M.Pa

hand

Pa-to-P-C.P-C
+

Pa-to-M.P-C + P-C.M

5

7

8

6

9

Pa-to-M.M

8

9

38

Pascal, P-code & bootstrapping

39

Compilers are everywhere

Compilation: any non-trivial translation
Text formatting (TeX, troff)

document description language printer command
language

Postscript (or PCL) printers
printer command language graphic output

database query processing
SQL query primitive I/O operations

design-to-manufacture
CAD design IC layout

40

Programming Environments

Independent tools for different tasks
editors
pretty printers
pre-processors
debuggers
style checkers
module management
version management
assemblers
linkers & loaders
perusal tools
cross-referencing
manuals

41

Programming Environments

Integrated environments
most/all of the UNIX tools but under one hood
syntax error at compilation editor pops up at
the erroneous line
out-of-bounds index debugger pops up
type-checking & cross-referencing across several
modules

e.g. search all places that use a certain routine
help & search facilities

42

Overview of compilation

Program proceeds through a series of phases
Subsequent phases may use

information found in an earlier phase
a form of the program produced by an earlier phase

Note
phases may overlap each other in a real implementation
we present them as separate for the sake of clarity

43

44

Phases of compilation...

Front end (analysis)
aim: find out the meaning of the source program
scanner

performs lexical analysis
reads characters, produces tokens

parser
performs syntactic analysis on tokens
produces a parse tree a.k.a concrete syntax tree

semantic analysis
produces an abstract syntax tree from the parse tree

45

...Phases of compilation

Back end (synthesis)
aim: construct an equivalent target program
machine-independent code optimization

modify the intermediate code or AST
target code generation

e.g. assembly language
machine-specific code optimization

Symbol table
collects information of all identifiers
is maintained and used by most phases

46

Phases and passes

Compilation pass
a collection of successive phases
sometimes implemented as an own program

when memory was still an issue some machines could not
load the whole compiler

e.g. front end pass & back end pass
share the same front end over different machines (for the
same language)
share the same back end over different languages (for the
same machine)

47

Scanning (lexical analysis)

Principal task: simplify the task of the parser
Example: gcd program (see page 17)

Pascal source
tokens produced by scanner (see page 17)

smallest meaningful units of the language
faster to manipulate than characters (parser)

Scanner tasks involve
remove comments
produce listing (if wanted)
save texts of strings, identifiers & numbers
tag tokens with line numbers (for later diagnostics)

48

Parsing (syntactic analysis)

syntax of the language is usually defined via a
formal context-free (CF) grammar

terminals and nonterminals, productions
Parser organizes tokens into a parse tree

“context-free” structure of the program
structure defined by the CF grammar of the language

Examples
grammar for the top level of Pascal programs
parse tree of the GCD program in Figure 1.3

49

50

Mini theory lesson...

Formal languages
generators describe the language
recognizers tell whether a given string belongs to the language

Regular languages (Reg)
regular expressions are generators of Reg languages
scanners are recognizers of Reg languages

finite automata (with output)
example: input of a hand-held calculator

CF languages
CF grammars generate CF languages
parsers are recognizers of CF languages

pushdown automata

51

...Mini theory lesson

Example
syntax for calculator language (in EBNF)
small program fragment in this language
resulting parse tree

Scanner and parser generators
lex (we will learn), flex, scangen
yacc (we will learn), bison

transform a generator into a recognizer

52

Semantic analysis

“discovery of the meaning of the program”
tasks involve

checking that
all identifiers are unique
identifiers are used according to their kind

keeping track of types of identifiers
type defines structure and ways of correct use
type tells how to generate code for a particular use of an identifier

symbol table
important structure assisting semantic analysis
maps each identifier to all information known about it (type,
structure, scope, ...)

53

Static semantic analysis

“semantic things done at compile time”
symbol table makes it possible to take care of tasks that CF
grammar / parse trees can not express, like

identifiers must be declared before they are used
identifiers are not used in inappropriate context

e.g. call an integer as a function, add a string to a real number, ...
types and numbers of parameters match in subroutine calls
case/switch statement does not contain duplicate labels
functions must contain a return statement

semantic & syntactic analysis are often merged
parser invokes a semantic action routine after the
completion of some syntactic structure
e.g. a block statement ends update symbol table

54

Dynamic semantic analysis

semantic rules that can be checked only at run-time, like
use of uninitialized variables
pointers must point to valid objects
array subscript expressions must honor the array bounds
functions return a proper value

compiler generates code for these checks
failures lead to exceptions

some rules may be too expensive to check
not checked at all
checked only in the ‘debug version’ of the program

55

Abstract syntax trees (AST)

Concrete syntax tree: the one produced by the parser
contains a complete (and concrete) demonstration how each
structure was derived via the CF grammar
once we know that some structure is syntactically valid, much of
this information is unnecessary and irrelevant

AST
produced by semantic analyzer
result of removing unnecessary syntactic structure
node are annotated with useful information

e.g. a pointer to the symbol table
annotations are also known as attributes (of an AST node)
example in Figure 1.4

56

57

Intermediate code generation...

Based on the AST
as such or translated to some other intermediate form in the end
of semantic analysis

Intermediate code
input of the ‘back end’ of compilation
often ‘machine code’ of some simple idealized RAM

a.k.a pseudo-assembler
independence of real machines
ease of optimization, compactness

useful when several languages & compilers
users of the same intermediate code can share the same back end

some compilers use several (successive) intermediate forms

58

...Intermediate code generation

Typical compiler augments AST nodes with ‘code
generation’ attributes

sizes of variables
location in memory (stack offset)
data-flow knowledge (value known/not)
temporary variables (containing intermediate results of
computations)

Intermediate code can be optimized (actually
improved) independently of the ‘real machine code’
optimization

59

Target code generation

Translate intermediate code to
assembly language or
(relocatable) machine language

Code contains often also the symbol table (for debugging
purposes)
Generating target code is easy

traverse AST & use symbol table
variable references load / store instructions
expressions arithmetic operations
selections, loops test and branching instructions
subroutine calls parameter & return value passing

Generating good target code is hard

60

How to read example figure 1.5

Registers
memory locations inside the processor
sp,ra,at,a0,v0,t0-t9

Stack
sp: stack pointer

contains an address to a memory location within an area dedicated to the program
28(sp) = memory location 28 bytes beyond the address stored in sp

Subroutines
jal: ‘jump and link’
first argument always in a0
return value always in v0

Delaying
branch instruction takes 2 machine cycles

add no-operation instructions (nop) to allow them complete in time

61

Code improvement

Often called as optimization
Machine-dependent and non

e.g. special addressing instructions
Goal: transform the code into a new version which computes the
same result but is faster to execute

program on page 1 = optimized Fig. 1.5
Examples

remove unnecessary loads & stores by keeping data in registers
reorder instructions to get rid of ‘waiting nops’

some instructions are safe to execute even when branch is active
decide which parts can be executed in parallel

superscalar processors

62

Summary

Introduction to the study of programming
language design and implementation
Language design and implementation are
bound to each other
Interpretation and compilation
Compiler phases

63

What follows

Chapters 3,6,7,8 and 10 of the book
Time permitting also 11 & 12
Skipped chapters

2: programming language syntax (parsing)
4: semantic analysis
5: computer architecture (assembly level)
9: building a runnable program (back end)
13: code improvement

64

Contents of the course

3: Names, Scopes and Bindings
6: Control Flow
7: Data Types
8: Subroutines & control abstraction
10: Data abstraction and Object Orientation
11: Functional & logic languages
12: Concurrency

	Programming language concepts
	Programming is an unnatural act
	An example of an early computer
	An example of a new computer
	Picture of Mark I
	Computer Size
	An example of an early program
	With Mark II came the bugs
	Problems of machine code
	Symbolic assembly language
	Euclid’s GCD program in MIPS assembly language
	Problems of assembler
	First high-level language
	A Fortran program
	What matters in programming?
	Why are there so many programming languages?
	Why are some programming languages more successful?
	More reasons for success
	Classification of PLs
	Computational models
	Other classifications
	Notes about classifications
	Why are you here?
	Make the most out of a language
	Make your language better
	Make good use of language tools
	Understand why languages work
	But I will never design a programming language!
	Compilation and interpretation
	Compilation and interpretation (cont.)
	Properties of Compilation
	Properties of Interpretation
	Mixtures of both
	Implementation strategies...
	...Implementation strategies
	Pascal, P-code & bootstrapping
	Porting a Pascal Compiler to M
	Pascal, P-code & bootstrapping
	Compilers are everywhere
	Programming Environments
	Programming Environments
	Overview of compilation
	Phases of compilation...
	...Phases of compilation
	Phases and passes
	Scanning (lexical analysis)
	Parsing (syntactic analysis)
	Mini theory lesson...
	...Mini theory lesson
	Semantic analysis
	Static semantic analysis
	Dynamic semantic analysis
	Abstract syntax trees (AST)
	Intermediate code generation...
	...Intermediate code generation
	Target code generation
	How to read example figure 1.5
	Code improvement
	Summary
	What follows
	Contents of the course

