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Programming is an unnatural 
act

Alan Perlis

1922-1990
First President of the ACM
First Turing Award winner
Member of the Algol-60 design team
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An example of an early computer

Harvard Mark I (IBM, Aiken, 1948)
electro-mechanical 

ENIAC is an electronic copy of Mark I design
executed 3 operations each second (3 IPS)
remained in use until 1959
51’ long, 8’ high, 3’ deep 
730,000 parts (relays, switches, wheels, shafts), 530 
miles of wiring, 18,000 vacuum tubes, ...

How many programmers could one ‘buy’ with the 
price of one computer?
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An example of a new computer

Sun Fire 15K
106 UltraSPARC III processors

900 MHz to 1.2 GHz clock speed
29 million transistors
supports 4 Gb of memory

602,270 JBB operations per second
list price $3,739,230.00 (72 processors)
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Picture of Mark I
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Computer Size

ENIAC then…

ENIAC today…

With computers (small) size does matter!
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An example of an early program

Euclid’s algorithm for GCD (greatest common divisor)
actually this is for a quite new computer (MIPS R4000)

Writing programs in this way is very expensive and hard
but the early computers cost much much more
even using the computer cost more than programming it
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With Mark II came the bugs
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Problems of machine code

Programming = coding in the true meaning of the 
word
Code is not

reusable: monolithic ‘structure’
relocatable: consider adding one instruction in the middle
readable (more important)

Practically impossible to create large programs
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Symbolic assembly language

Assembler 
translator from symbolic language to machine language 
(one-to-one mapping)
tool to assemble the symbolic program in the machine

Advantages
relocatable & reusable (copy) programs
macro expansion 

first step towards higher-level programming
larger programs (like operating systems) possible
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Euclid’s GCD program in MIPS assembly 
language
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Problems of assembler

Each kind of computer has its own
Programmers must learn to think like 
computers
Maintenance of larger programs is difficult
Higher-level languages

portability
natural notation (for anything)
support to software development
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First high-level language

Fortran (Backus, 1957)
IBM Mathematical Formula Translator
compilation instead of translation
language for scientific computing

most important task in those days
efficiency important to replace assemblers
introduced many important language concepts 
that are still in use

http://www.fortran.com/
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A Fortran program
C  FORTRAN PROGRAM
DIMENSION A(99)
REAL MEAN

READ(1,5) N
5 FORMAT(I2)

READ(1,10) (A(I), I=1,N)
10 FORMAT(6F10.5)

SUM = 0.0
DO 15 I=1,N
15 SUM = SUM + A(I)

MEAN = SUM/FLOAT(N)
NUMBER = 0
DO 20 I=1,N
IF(A(I) .LE. MEAN) GOTO 20
NUMBER = NUMBER + 1
20 CONTINUE

WRITE(2,25) MEAN, NUMBER
25 FORMAT(8H MEAN = , F10.5, 5X, 20H NUMBERS OVER MEAN =, I5)
STOP
END
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What matters in programming?

1950s: cost and use of machines
Nowadays

problems other than efficiency are often more important
performance gap between compiled and hand-tailored 
machine code has diminished
modern hardware is too complicated for humans

cost of labor has far surpassed the cost of machinery
standard PC costs like NT 20,000

software systems are getting more and more complex
problems to solve are getting difficult even to define
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Why are there so many programming 
languages?

Read the “Perlis quotes”
Evolution

CS is constantly finding ‘better’ ways to do things
structured programming, modules, o-o, ...

Special languages for special purposes
scientific applications
business applications
artificial intelligence
systems programming

Personal preference
We are not all driving a NISSON or TOYOTA!?

http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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Why are some programming languages 
more successful?

Expressive power
in principle, all languages are Turing-complete
has a huge effect on programmer’s ability to

write, read, and maintain
understand and analyze

abstraction facilities (for computation & data)
Ease of use

low learning curve (Basic, Logo, Pascal)
Ease of implementation

Pascal & p-code (forefather of Java VM) made it easy to port 
compilers
free availability in general
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More reasons for success

Excellent compilers and tools
fast compiled code (Fortran)
debugging tools
project management tools
teamwork tools

Economics, inertia
10000000 lines of Cobol is hard to rewrite
100000 Cobol programmers are hard to re-train

Patronage
many languages have powerful ‘sponsors’

Cobol, PL/I, Ada, Visual Basic, C#
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Classification of PLs

Imperative languages
program = description of how the computer should 
solve the problem

first do this, then repeat that, then branch there...
dominate the field (good performance)

Declarative languages
program = description of the problem

i.e. a formal statement of what is the problem
closer to humans than computers
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Computational models

von Neumann architecture (1946)
procedural languages (Pascal, C, Basic, ...)
‘computing via side-effects’

λ-calculus (Church, 1941)
functional languages (LISP, ML, Haskell)
‘computing without variables’

Predicate logic (Frege, 1871)
logic programming languages (Prolog, Mercury, CLP)
‘computing with relations’

http://ei.cs.vt.edu/~history/VonNeumann.html
http://www.math.ucla.edu/~asl/bsl/0104-toc.htm
http://www.findlink.dk/frege/frege.htm
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Other classifications

Object-oriented languages
O-O ideas were first implemented in Simula I (Dahl & Nygaard, 
1963)
‘computation = the interaction of independent objects’

suits well for distributed systems
Smalltalk, C++, Java, CLOS, ...

Parallel (concurrent) languages
nowadays hard to draw borders between sequential & parallel
some languages do have explicit concurrent features (Ada, Java)
others can use os-specific library routines (C, Fortran)
only few are inherently concurrent (Occam)

http://java.sun.com/people/jag/SimulaHistory.html
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Notes about classifications

Most languages break class borders
e.g. logic languages have imperative features

Some languages are ‘multi-class’ by design
Our definitions just attempt to capture the general 
flavor of the class
Imperative languages (o-o or not) are the most 
common in practice

we consider mainly these
but most of the material applies to languages of other 
classes, too
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Why are you here?

Or ... “Why study programming languages?”
Help you to choose a language

certain languages suit better for certain applications
distributed systems: Java or C++/CORBA?
systems programming: C, C++ or Modula-3?

Help you to learn a new language
many languages are closely related (C++ Java)
there are basic concepts that underlie all languages

Help you to use a language better
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Make the most out of a language

Understand obscurities
C: unions, arrays vs. pointers, separate compilation, variables, ...
understanding the basic concepts is a necessity to understand 
non-basic ones

Understand implementation costs
alternative ways of doing the same thing

x*x or of x**2
pointer arithmetics or arrays
computation vs. memory (function or table)

things to avoid
Pascal & value parameters for large types
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Make your language better

Simulate things your language lacks
Fortran (pre -90)

bad control structures use comments & programmer 
discipline
no recursion eliminate recursion
no named constants use variables

C, Pascal
no modules use naming & discipline

no iterators use functions & static variables
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Make good use of language tools

Editors
Debuggers

sometimes the bugs are very deeply hidden
compiler error, OS error, ...
have to read the ‘hex dump’ or assembly code

Assemblers
Linkers
Profilers
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Understand why languages work

Language design
Language implementation

especially compilation
Interaction with the operating system
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But I will never design a programming 
language!

Many system programs are like languages
command shells
programmable editors
programmable applications

Many system programs are like compilers
read & analyze configuration files and command line 
options

Easier to use and design such things once you 
know about ‘real’ languages
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Compilation and interpretation

Compiler
translates source language to target language 
and goes away
when a program is executed, the place of 
execution is at the target program
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Compilation and interpretation (cont.)

Interpreter
is present also at the execution time
is the place of execution (‘virtual machine’)
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Properties of Compilation

Gives better performance
A decision made at compile-time is a decision not 
made at run time

access a variable 
via same address at all occurrences (compiled)
look it up from a table (interpreted)

now execute that 100000 times in a loop
compilation (final) is made only once, but the program is 
executed many times

Code optimization
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Properties of Interpretation

Gives better diagnostics
debugging at source-code level
clear error messages

Gives flexibility
programs that adapt themselves to the input

e.g. sizes of arrays, types, even names
programs that develop while executing them

LISP: create new functions from data
Late binding is natural

decisions that are postponed until run time
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Mixtures of both
Typical combination

compile to intermediate code (Java bytecode)
interpret the intermediate program in a virtual machine 
(JVM)
intermediate code can be compiled, too (JIT)

Where’s the difference?
interpretation is ‘simple’ and compilation is  ‘complicated’
compilation involves understanding of the whole source 
program
the translation made by the compiler is non-trivial
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Implementation strategies...

Preprocessors
most interpreters use one
produces an intermediate form translated from the source

removes white space, tokenize, and expands macros, ...
intermediate form is faster to interpret

Pure compilation
source machine code
usually involves a linking phase to merge library routines into the 
final program
library routines = ‘extension’ of the machine instruction set

Some library routines are interpreters!
e.g. printf of C has to interpret the format string
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...Implementation strategies

Compilation to assembly language
easier to debug & read
compiler is tolerant to changes in hardware
cross-assemblers make porting software easier

C compilers
start with preprocessor (cpp)

macro expansion
conditional compilation

Compilation to C
e.g. early C++ implementations
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Pascal, P-code & bootstrapping

Wirth tools (1972) for porting Pascal
Pascal compiler PaToP-C.Pa

written in Pascal, generating P-code
PaToP-C.P-C

i.e. PaToP-C.Pa compiled with itself on some computer
P-C.Pa: P-code interpreter written in Pascal

Porting the compiler to machine M (bootstrapping)
translate P-C.Pa by hand to a local language, say C
compile the result, say P-C.C, obtain an interpreter P-C.M
modify (by hand) PaToP-C.Pa to PaToM.Pa
compile PaToM.Pa (run PaToP-C.P-C on P-C.M) to PaToM.P-C
compile PaToM.Pa (run PaToM.P-C on P-C.M) to PaToM.M

http://www.cs.inf.ethz.ch/~wirth/
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Porting a Pascal Compiler to M

MA

Pa-to-P-C.Pa Pa-to-A.A

Pa-to-P-C.A

Pa-to-P-C.P-C

1

23

4

P-C.Pa P-C.C
hand

P-C.M

C-to-M.M

Pa-to-M.Pa

hand

Pa-to-P-C.P-C
+

Pa-to-M.P-C    +    P-C.M

5

7

8

6

9

Pa-to-M.M

8

9
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Pascal, P-code & bootstrapping
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Compilers are everywhere

Compilation: any non-trivial translation
Text formatting (TeX, troff)

document description language printer command 
language

Postscript (or PCL) printers
printer command language graphic output

database query processing
SQL query primitive I/O operations

design-to-manufacture
CAD design IC layout
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Programming Environments

Independent tools for different tasks
editors
pretty printers
pre-processors
debuggers
style checkers
module management
version management
assemblers
linkers & loaders
perusal tools
cross-referencing
manuals
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Programming Environments

Integrated environments
most/all of the UNIX tools but under one hood
syntax error at compilation editor pops up at 
the erroneous line
out-of-bounds index debugger pops up
type-checking & cross-referencing across several 
modules

e.g. search all places that use a certain routine
help & search facilities
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Overview of compilation

Program proceeds through a series of phases
Subsequent phases may use

information found in an earlier phase 
a form of the program produced by an earlier phase 

Note
phases may overlap each other in a real implementation
we present them as separate for the sake of clarity
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Phases of compilation...

Front end (analysis)
aim: find out the meaning of the source program
scanner

performs lexical analysis
reads characters, produces tokens

parser 
performs syntactic analysis on tokens
produces a parse tree a.k.a concrete syntax tree

semantic analysis
produces an abstract syntax tree from the parse tree
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...Phases of compilation

Back end (synthesis)
aim: construct an equivalent target program
machine-independent code optimization

modify the intermediate code or AST
target code generation

e.g. assembly language
machine-specific code optimization

Symbol table
collects information of all identifiers
is maintained and used by most phases
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Phases and passes

Compilation pass
a collection of successive phases
sometimes implemented as an own program

when memory was still an issue some machines could not 
load the whole compiler

e.g. front end pass & back end pass
share the same front end over different machines (for the 
same language)
share the same back end over different languages (for the 
same machine)
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Scanning (lexical analysis)

Principal task: simplify the task of the parser
Example: gcd program (see page 17)

Pascal source
tokens produced by scanner (see page 17)

smallest meaningful units of the language
faster to manipulate than characters (parser)

Scanner tasks involve
remove comments
produce listing (if wanted)
save texts of strings, identifiers & numbers
tag tokens with line numbers (for later diagnostics)
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Parsing (syntactic analysis)

syntax of the language is usually defined via a 
formal context-free (CF) grammar

terminals and nonterminals, productions
Parser organizes tokens into a parse tree

“context-free” structure of the program
structure defined by the CF grammar of the language

Examples
grammar for the top level of Pascal programs
parse tree of the GCD program in Figure 1.3
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Mini theory lesson...

Formal languages
generators describe the language
recognizers tell whether a given string belongs to the language

Regular languages (Reg)
regular expressions are generators of Reg languages
scanners are recognizers of Reg languages

finite automata (with output)
example: input of a hand-held calculator

CF languages 
CF grammars generate CF languages
parsers are recognizers of CF languages

pushdown automata
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...Mini theory lesson

Example
syntax for calculator language (in EBNF)
small program fragment in this language
resulting parse tree

Scanner and parser generators
lex (we will learn), flex, scangen
yacc (we will learn), bison

transform a generator into a recognizer
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Semantic analysis

“discovery of the meaning of the program”
tasks involve

checking that
all identifiers are unique
identifiers are used according to their kind

keeping track of types of identifiers
type defines structure and ways of correct use
type tells how to generate code for a particular use of an identifier

symbol table
important structure assisting semantic analysis
maps each identifier to all information known about it (type, 
structure, scope, ...)
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Static semantic analysis

“semantic things done at compile time”
symbol table makes it possible to take care of tasks that CF 
grammar / parse trees can not express, like

identifiers must be declared before they are used
identifiers are not used in inappropriate context 

e.g. call an integer as a function, add a string to a real number, ...
types and numbers of parameters match in subroutine calls
case/switch statement does not contain duplicate labels
functions must contain a return statement

semantic & syntactic analysis are often merged
parser invokes a semantic action routine after the 
completion of some syntactic structure
e.g. a block statement ends update symbol table
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Dynamic semantic analysis

semantic rules that can be checked only at run-time, like
use of uninitialized variables
pointers must point to valid objects
array subscript expressions must honor the array bounds
functions return a proper value

compiler generates code for these checks
failures lead to exceptions

some rules may be too expensive to check
not checked at all
checked only in the ‘debug version’ of the program
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Abstract syntax trees (AST)

Concrete syntax tree: the one produced by the parser
contains a complete (and concrete) demonstration how each 
structure was derived via the CF grammar
once we know that some structure is syntactically valid, much of
this information is unnecessary and irrelevant

AST
produced by semantic analyzer
result of removing unnecessary syntactic structure
node are annotated with useful information

e.g. a pointer to the symbol table
annotations are also known as attributes (of an AST node)
example in Figure 1.4
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Intermediate code generation...

Based on the AST
as such or translated to some other intermediate form in the end
of semantic analysis

Intermediate code 
input of the ‘back end’ of compilation
often ‘machine code’ of some simple idealized RAM

a.k.a pseudo-assembler
independence of real machines
ease of optimization, compactness

useful when several languages & compilers
users of the same intermediate code can share the same back end

some compilers use several (successive) intermediate forms
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...Intermediate code generation

Typical compiler augments AST nodes with ‘code 
generation’ attributes

sizes of variables
location in memory (stack offset)
data-flow knowledge (value known/not)
temporary variables (containing intermediate results of 
computations)

Intermediate code can be optimized (actually 
improved) independently of the ‘real machine code’
optimization
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Target code generation

Translate intermediate code to
assembly language or
(relocatable) machine language

Code contains often also the symbol table (for debugging 
purposes)
Generating target code is easy

traverse AST & use symbol table
variable references load / store instructions
expressions arithmetic operations
selections, loops test and branching instructions
subroutine calls parameter & return value passing

Generating good target code is hard
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How to read example figure 1.5

Registers
memory locations inside the processor
sp,ra,at,a0,v0,t0-t9

Stack
sp: stack pointer 

contains an address to a memory location within an area dedicated to the program
28(sp) = memory location 28 bytes beyond the address stored in sp

Subroutines
jal: ‘jump and link’
first argument always in a0
return value always in v0

Delaying
branch instruction takes 2 machine cycles

add no-operation instructions (nop) to allow them complete in time
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Code improvement

Often called as optimization
Machine-dependent and non

e.g. special addressing instructions
Goal: transform the code into a new version which computes the 
same result but is faster to execute

program on page 1 = optimized Fig. 1.5
Examples

remove unnecessary loads & stores by keeping data in registers
reorder instructions to get rid of ‘waiting nops’

some instructions are safe to execute even when branch is active
decide which parts can be executed in parallel

superscalar processors
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Summary

Introduction to the study of programming 
language design and implementation
Language design and implementation are 
bound to each other
Interpretation and compilation
Compiler phases
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What follows

Chapters 3,6,7,8 and 10 of the book
Time permitting also 11 & 12
Skipped chapters

2: programming language syntax (parsing)
4: semantic analysis
5: computer architecture (assembly level)
9: building a runnable program (back end)
13: code improvement
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Contents of the course

3: Names, Scopes and Bindings
6: Control Flow
7: Data Types
8: Subroutines & control abstraction
10: Data abstraction and Object Orientation
11: Functional & logic languages
12: Concurrency
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