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‘ Lexical Analysis

INPUT: sequence of characters
OUTPUT: sequence of tokens

Next_char() Next_token()

Input

character ~

A lexical analyzer is generally a subroutine of parser:

= Simpler design
= Efficient
= Portable
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Definitions

token — set of strings defining an atomic
element with a defined meaning

pattern — a rule describing a set of string

lexeme — a sequence of characters that
match some pattern
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Examples

Token Pattern | Sample
Lexeme
while while while
relation_op | =|!=|<|> <
integer (0-9)+ 42
string Characters | “l am here”

between
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Input string: size :=r * 32 + ¢

<token,lexeme> pairs:
<id, size>
<assign, :=>
<id, r>
<arith_symbol, *>
<integer, 32>
<arith_symbol, +>
<id, c>
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Implementing a Lexical Analyzer

Practical Issues:

Input buffering
Translating RE into executable form

Must be able to capture a large number of
tokens with single machine

Interface to parser
Tools
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Capturing Multiple Tokens

Capturing keyword “begin”

b e i n —~W

WS — white space
A — alphabetic

QA,QVLS,O AN — alphanumeric

VAN

Capturing variable names

What if both need to happen at the same time?
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Capturing Multiple Tokens

WS — white space
A — alphabetic
AN - alphanumeric

N
NV s @
Machine is much more complicated — just for these two tokens!
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Lex — Lexical Analyzer Generator

Lex

specification

Lex

— lex.yy.c

l

C/C++ compiler

input—» a.out

— tokens
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‘ Lex Specitication

Definitions —
Code, RE

%%
{word} {wordCount++; charCount += yyleng; } Rules —

[\n] {charCount++; lineCount++;} RE/Action pairs
{charCount++;}

%%

User Routines
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‘ A lLex file

%1

.. define ... int charcount=0,linecount=0;
%% %}
... rules ... e
]
%%
... code ... charcount++;
\n {linecount++; charcount++;}
%%
int main()
{
yylex();

printf ("There were %d characters in %d lines\n",
charcount, linecount) ;
return 0;

}
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Lex definitions section

= C/C++ code:

o Surrounded by %{... %} delimiters
o Declare any variables used in actions

= RE definitions:
o Define shorthand for patterns:
digit [0-9]
letter [a-Z]
ident {letter}({letter}|{digit})*
o Use shorthand in RE section: {ident}
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Lex Regular Expressions

{word} {wordCount++; charCount +=yyleng; }
[\n] {charCount++; lineCount++;}
: {charCount++;}

Match explicit character sequences
o Integer, “+++7, \<\>

Character classes

g

Q

g

abcd]
a-zA-Z]

0-9] — matches non-numeric
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Alternation
o twelve | 12

Closure

a *-zero or more

a + - at least one or more
a 7 — Zero or one

o {number}, {number,number}
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Character

Meaning

A-7,0-9, a-z

Characters and numbers that form part of the pattern.

Matches any character except \n.

Used to denote range. Example: A-Z umplies all characters from A to Z.

[]

A character class. Matches any character i the brackets. If the first
character 1s * then it indicates a negation pattern. Example: [abC] matches
either of a, b, and C.

Match zero or more occurrences of the preceding pattern.

Matches one or more occurrences of the preceding pattern.

Matches zero or one occurrences of the preceding pattern.

Matches end of line as the last character of the pattern.

Indicates how many times a pattern can be present. Example: A{1,3}
implies one or three occurrences of A may be present.

Used to escape meta characters. Also used to remove the special meaning
of characters as defined 1n this table.

A

Negation.

Logical OR between expressions.

""<some symbols>"

Literal meanings of characters. Meta characters hold.

/

Look ahead. Matches the preceding pattern only 1f followed by the
succeeding expression. Example: A0/1 matches A0 only if AO1 1s the input.

0)

Groups a series of regular expressions.




Lex Matching Rules

_ex always attempts to match the longest
nossible string.

f two rules are matched (and match strings
are same length), the first rule in the
specification Is used.
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Lex Operators

Highest: closure
concatenation
alternation

Special lex characters:
A0 [ %[N

Special lex characters inside [ |

-\ []7

CGU, Jenhui Chen

18



Examples

joke[rs] =» matches {joker, jokes}
A{1,2}lias? =» {Alias, AAlias, Alia, AAlia}

a.*z = {az, alz, a#z, a.z, a..z, aaz, aaaz, ...}
(ab)+ =>» {ab, abab, ababab, ...}
[0—9|{1,5}=> {0, 1, ..., 9, 00001, ..., 99999}
(ablcd)?ef =» {abef, cdef, ef}

-?[0-9]\.[0-9]
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Lex Actions

Lex actions are C (C++) code to implement
some required functionality

Default action Is to echo to output

Can ignore Iinput (empty action)

ECHO - macro that prints out matched string
yytext — matched string

yyleng — length of matched string
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‘ User Subroutines

= C/C++ code
= Copied directly into the lexer code
= User can supply ‘main’ or use default
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Lex

Lex always creates a file ‘lex.yy.c’ with a
function yylex()

-l directs the compiler to link to the lex library

The lex library supplies external symbols
referenced by the generated code

The lex library supplies a default main:
main(int ac,char **av) {return yylex(); }
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Lex Example: Extracting white space

&l

int yylex(void); // make C++ happy
%0}
%%
[ \t\n] :
_ {ECHO;}
%%

To compile and run above (example.l):

lex example.l flex simple.l

cc lex.yy.c —o first -ll

gcc lex.yy.c -l g++ -x c++ lex.yy.c -l
a.out < input

CGU, Jenhui Chen
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Input:
This is a file
of stuff we want to extract all

white space from

Output:

Thisisafileofstuffwewantoextractallwhitespacefrom

CGU, Jenhui Chen
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Lex Example 2: Unix wc

%({ int charCount=0, wordCount=0, lineCount=0;

%}

word [ \t\n]

%%

{word} {wordCount++; charCount += yyleng; }

[\n]{charCount++; lineCount++;}

: {charCount++;}

%%

main() {
yylex();

printf(“Characters %d, Words: %d, Lines: %d\n”,charCount, wordCount,
lineCount);
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Lex Example 3: Extracting tokens

%%
and
array
begin
\[

[a-zA-Z][a-zA-Z0-9 ]*
[+-]?[0-9]+

[ \t\n]

%%

return(AND);
return(ARRAY);
return(BEGIN);

return(‘[*);
return(ASSIGN);
return(ID);
return(NUM);

CGU, Jenhui Chen
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Uses for Lex

Transforming Input — convert input from one

form to another (example 1). yylex() is called once,;
return is not used In specification

Extracting Information — scan the text and
return some information (example 2). yylex() is
called once; return is not used in specification.

Extracting Tokens — standard use with compiler

(example 3). Uses return to give the next token to
the caller.
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IL.ex States

Regular expressions are compiled to state
machines.

Lex allows the user to explicitly declare
multiple states.

%s COMMENT
Default initial state INITIAL (0)

Actions for matched strings may be different
for different states

CGU, Jenhui Chen
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Lex State Example

Problem: Want to discard comments
surrounded by /*... */ from the input.

)
T

ECHO:;
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Lex State Example

Discard comments surrounded by /*... */ from the input.

%%

<INITIAL>. {ECHO;}
<INITIAL>”/*” {BEGIN COMMENT;}
<COMMENT?>. ,

<COMMENT>"*/" {BEGIN INITIAL;}
%%

CGU, Jenhui Chen

30



	Lecture  2: Lexical Analysis & Lex Tool
	Lexical Analysis - Scanning
	Lexical Analysis
	Definitions
	Examples
	Input string: size := r * 32 + c
	Implementing a Lexical Analyzer
	Capturing Multiple Tokens
	Capturing Multiple Tokens
	Lex – Lexical Analyzer Generator
	Lex Specification
	A Lex file
	Lex definitions section
	Lex Regular Expressions
	Lex Matching Rules
	Lex Operators
	Examples
	Lex Actions
	User Subroutines
	Lex
	Lex Example: Extracting white space
	Lex Example 2: Unix wc
	Lex Example 3: Extracting tokens
	Uses for Lex
	Lex States
	Lex State Example
	Lex State Example

