Lecture 2: Lexical Analysis &
Lex Tool

ERSFFNIEE K MI-HE BAIR R
Tel: (03) 211-8800 Ext: 5990

Email: jhchen@mail.cgu.edu.tw

URL: httpy//www.csie.cgu.edu.tw/~jhchen

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of Professor Jenhui Chen (E-mail: jhchen@mail.cgu.edu.tw).

‘ Lexical Analysis - Scanning

Source

language

lm-

» Tokens described formally
* Breaks input into tokens

» White space syl

Table

CGU, Jenhui Chen

‘ Lexical Analysis

INPUT: sequence of characters
OUTPUT: sequence of tokens

Next_char() Next_token()

Input

character ~

A lexical analyzer is generally a subroutine of parser:

= Simpler design
= Efficient
= Portable

CGU, Jenhui Chen

Definitions

token — set of strings defining an atomic
element with a defined meaning

pattern — a rule describing a set of string

lexeme — a sequence of characters that
match some pattern

CGU, Jenhui Chen

Examples

Token Pattern | Sample
Lexeme
while while while
relation_op | =|!=|<|> <
integer (0-9)+ 42
string Characters | “l am here”

between

CGU, Jenhui Chen

Input string: size :=r * 32 + ¢

<token,lexeme> pairs:
<id, size>
<assign, :=>
<id, r>
<arith_symbol, *>
<integer, 32>
<arith_symbol, +>
<id, c>

CGU, Jenhui Chen

Implementing a Lexical Analyzer

Practical Issues:

Input buffering
Translating RE into executable form

Must be able to capture a large number of
tokens with single machine

Interface to parser
Tools

CGU, Jenhui Chen

Capturing Multiple Tokens

Capturing keyword “begin”

b e i n —~W

WS — white space
A — alphabetic

QA,QVLS,O AN — alphanumeric

VAN

Capturing variable names

What if both need to happen at the same time?

CGU, Jenhui Chen

Capturing Multiple Tokens

WS — white space
A — alphabetic
AN - alphanumeric

N
NV s @
Machine is much more complicated — just for these two tokens!

CGU, Jenhui Chen

Lex — Lexical Analyzer Generator

Lex

specification

Lex

— lex.yy.c

l

C/C++ compiler

input—» a.out

— tokens

CGU, Jenhui Chen

10

‘ Lex Specitication

Definitions —
Code, RE

%%
{word} {wordCount++; charCount += yyleng; } Rules —

[\n] {charCount++; lineCount++;} RE/Action pairs
{charCount++;}

%%

User Routines

CGU, Jenhui Chen 11

‘ A lLex file

%1

.. define ... int charcount=0,linecount=0;
%% %}
... rules ... e
]
%%
... code ... charcount++;
\n {linecount++; charcount++;}
%%
int main()
{
yylex();

printf ("There were %d characters in %d lines\n",
charcount, linecount) ;
return 0;

}

CGU, Jenhui Chen 1

Lex definitions section

= C/C++ code:

o Surrounded by %{... %} delimiters
o Declare any variables used in actions

= RE definitions:
o Define shorthand for patterns:
digit [0-9]
letter [a-Z]
ident {letter}({letter}|{digit})*
o Use shorthand in RE section: {ident}

CGU, Jenhui Chen

13

Lex Regular Expressions

{word} {wordCount++; charCount +=yyleng; }
[\n] {charCount++; lineCount++;}
: {charCount++;}

Match explicit character sequences
o Integer, “+++7, \<\>

Character classes

g

Q

g

abcd]
a-zA-Z]

0-9] — matches non-numeric

CGU, Jenhui Chen 14

Alternation
o twelve | 12

Closure

a *-zero or more

a + - at least one or more
a 7 — Zero or one

o {number}, {number,number}

CGU, Jenhui Chen

15

Character

Meaning

A-7,0-9, a-z

Characters and numbers that form part of the pattern.

Matches any character except \n.

Used to denote range. Example: A-Z umplies all characters from A to Z.

[]

A character class. Matches any character i the brackets. If the first
character 1s * then it indicates a negation pattern. Example: [abC] matches
either of a, b, and C.

Match zero or more occurrences of the preceding pattern.

Matches one or more occurrences of the preceding pattern.

Matches zero or one occurrences of the preceding pattern.

Matches end of line as the last character of the pattern.

Indicates how many times a pattern can be present. Example: A{1,3}
implies one or three occurrences of A may be present.

Used to escape meta characters. Also used to remove the special meaning
of characters as defined 1n this table.

A

Negation.

Logical OR between expressions.

""<some symbols>"

Literal meanings of characters. Meta characters hold.

/

Look ahead. Matches the preceding pattern only 1f followed by the
succeeding expression. Example: A0/1 matches A0 only if AO1 1s the input.

0)

Groups a series of regular expressions.

Lex Matching Rules

_ex always attempts to match the longest
nossible string.

f two rules are matched (and match strings
are same length), the first rule in the
specification Is used.

CGU, Jenhui Chen

17

Lex Operators

Highest: closure
concatenation
alternation

Special lex characters:
A0 [%[N

Special lex characters inside [|

-\ []7

CGU, Jenhui Chen

18

Examples

joke[rs] =» matches {joker, jokes}
A{1,2}lias? =» {Alias, AAlias, Alia, AAlia}

a.*z = {az, alz, a#z, a.z, a..z, aaz, aaaz, ...}
(ab)+ =>» {ab, abab, ababab, ...}
[0—9|{1,5}=> {0, 1, ..., 9, 00001, ..., 99999}
(ablcd)?ef =» {abef, cdef, ef}

-?[0-9]\.[0-9]

CGU, Jenhui Chen 19

Lex Actions

Lex actions are C (C++) code to implement
some required functionality

Default action Is to echo to output

Can ignore Iinput (empty action)

ECHO - macro that prints out matched string
yytext — matched string

yyleng — length of matched string

CGU, Jenhui Chen 20

‘ User Subroutines

= C/C++ code
= Copied directly into the lexer code
= User can supply ‘main’ or use default

CGU, Jenhui Chen 21

Lex

Lex always creates a file ‘lex.yy.c’ with a
function yylex()

-l directs the compiler to link to the lex library

The lex library supplies external symbols
referenced by the generated code

The lex library supplies a default main:
main(int ac,char **av) {return yylex(); }

CGU, Jenhui Chen 22

Lex Example: Extracting white space

&l

int yylex(void); // make C++ happy
%0}
%%
[\t\n] :
_ {ECHO;}
%%

To compile and run above (example.l):

lex example.l flex simple.l

cc lex.yy.c —o first -ll

gcc lex.yy.c -l g++ -x c++ lex.yy.c -l
a.out < input

CGU, Jenhui Chen

23

Input:
This is a file
of stuff we want to extract all

white space from

Output:

Thisisafileofstuffwewantoextractallwhitespacefrom

CGU, Jenhui Chen

24

Lex Example 2: Unix wc

%({ int charCount=0, wordCount=0, lineCount=0;

%}

word [\t\n]

%%

{word} {wordCount++; charCount += yyleng; }

[\n]{charCount++; lineCount++;}

: {charCount++;}

%%

main() {
yylex();

printf(“Characters %d, Words: %d, Lines: %d\n”,charCount, wordCount,
lineCount);

CGU, Jenhui Chen 25

Lex Example 3: Extracting tokens

%%
and
array
begin
\[

[a-zA-Z][a-zA-Z0-9]*
[+-]?[0-9]+

[\t\n]

%%

return(AND);
return(ARRAY);
return(BEGIN);

return(‘[*);
return(ASSIGN);
return(ID);
return(NUM);

CGU, Jenhui Chen

26

Uses for Lex

Transforming Input — convert input from one

form to another (example 1). yylex() is called once,;
return is not used In specification

Extracting Information — scan the text and
return some information (example 2). yylex() is
called once; return is not used in specification.

Extracting Tokens — standard use with compiler

(example 3). Uses return to give the next token to
the caller.

CGU, Jenhui Chen 27

IL.ex States

Regular expressions are compiled to state
machines.

Lex allows the user to explicitly declare
multiple states.

%s COMMENT
Default initial state INITIAL (0)

Actions for matched strings may be different
for different states

CGU, Jenhui Chen

28

Lex State Example

Problem: Want to discard comments
surrounded by /*... */ from the input.

)
T

ECHO:;

CGU, Jenhui Chen

29

Lex State Example

Discard comments surrounded by /*... */ from the input.

%%

<INITIAL>. {ECHO;}
<INITIAL>”/*” {BEGIN COMMENT;}
<COMMENT?>. ,

<COMMENT>"*/" {BEGIN INITIAL;}
%%

CGU, Jenhui Chen

30

	Lecture 2: Lexical Analysis & Lex Tool
	Lexical Analysis - Scanning
	Lexical Analysis
	Definitions
	Examples
	Input string: size := r * 32 + c
	Implementing a Lexical Analyzer
	Capturing Multiple Tokens
	Capturing Multiple Tokens
	Lex – Lexical Analyzer Generator
	Lex Specification
	A Lex file
	Lex definitions section
	Lex Regular Expressions
	Lex Matching Rules
	Lex Operators
	Examples
	Lex Actions
	User Subroutines
	Lex
	Lex Example: Extracting white space
	Lex Example 2: Unix wc
	Lex Example 3: Extracting tokens
	Uses for Lex
	Lex States
	Lex State Example
	Lex State Example

