
IBM Home Products Consulting Industries News About IBM Search

IBM : developerWorks : Linux library

Jumpstart your Yacc...and Lex too!
An intro to Lex and Yacc

Ashish Bansal
Software Engineer, Sapient Corporation
November 2000

Contents:
 Lex

 Regular expressions in
Lex

 Programming in Lex

 Global C and Lex
declarations

 Lex rules for patterns

 C code

 Putting it all together

 Advanced Lex

 Yacc

 Writing a grammar in
Yacc

 Declarations for C and
Yacc

 Yacc grammar rules

 Additional C code

 Other command-line
options

 Tying Lex and Yacc
together

 Resources

 About the author

Lex and Yacc are two very important and powerful tools on UNIX. In
fact, they are so powerful that building compilers for FORTRAN or C
is child's play if you are fluent in Lex and Yacc. Ashish Bansal
discusses these tools in sufficient detail for you to write your own
language and its compiler! He covers regular expressions,
declarations, matching patterns, variables, Yacc grammar, and parser
code. At the end, he explains how to tie Lex and Yacc together.

Lex stands for Lexical Analyzer. Yacc stands for Yet Another Compiler
Compiler. Let's start with Lex.

Lex
Lex is a tool for generating scanners. Scanners are programs that recognize
lexical patterns in text. These lexical patterns (or regular expressions) are
defined in a particular syntax, which I will discuss in a minute.

A matched regular expression may have an associated action. This action
may also include returning a token. When Lex receives input in the form of
a file or text, it attempts to match the text with the regular expression. It
takes input one character at a time and continues until a pattern is matched.
If a pattern can be matched, then Lex performs the associated action (which
may include returning a token). If, on the other hand, no regular expression
can be matched, further processing stops and Lex displays an error message.

Lex and C are tightly coupled. A .lex file (files in Lex have the extension
.lex) is passed through the lex utility, and produces output files in C. These
file(s) are compiled to produce an executable version of the lexical analyzer.

Regular expressions in Lex
A regular expression is a pattern description using a meta language. An
expression is made up of symbols. Normal symbols are characters and
numbers, but there are other symbols that have special meaning in Lex. The
following two tables define some of the symbols used in Lex and give a few
typical examples.

Defining regular expressions in Lex

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (1 of 13) [11/6/2000 8:05:18 AM]

http://www.ibm.com/shop1/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/home/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/news/
http://www.ibm.com/ibm/
http://www-109.ibm.com/redirectdWPS.htm
http://www.ibm.com/
http://www.ibm.com/developer/
http://www2.software.ibm.com/developer/papers.nsf/dw/linux-papers-bytitle?OpenDocument&Count=100

Character Meaning

A-Z, 0-9, a-z Characters and numbers that form part of the pattern.

. Matches any character except \n.

- Used to denote range. Example: A-Z implies all characters from A to Z.

[] A character class. Matches any character in the brackets. If the first
character is ^ then it indicates a negation pattern. Example: [abC] matches
either of a, b, and C.

* Match zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

$ Matches end of line as the last character of the pattern.

{ } Indicates how many times a pattern can be present. Example: A{1,3}
implies one or three occurrences of A may be present.

\ Used to escape meta characters. Also used to remove the special meaning
of characters as defined in this table.

^ Negation.

| Logical OR between expressions.

"<some symbols>" Literal meanings of characters. Meta characters hold.

/ Look ahead. Matches the preceding pattern only if followed by the
succeeding expression. Example: A0/1 matches A0 only if A01 is the input.

() Groups a series of regular expressions.

Examples of regular expressions

Regular expression Meaning

joke[rs] Matches either jokes or joker.

A{1,2}shis+ Matches AAshis, Ashis, AAshi, Ashi.

(A[b-e])+ Matches zero or one occurrences of A followed by any character from b
to e.

Tokens in Lex are declared like variable names in C. Every token has an associated expression.
(Examples of tokens and expression are given in the following table.) Using the examples in our tables,
we'll build a word-counting program. Our first task will be to show how tokens are declared.

Examples of token declarations

Token Associated expression Meaning

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (2 of 13) [11/6/2000 8:05:18 AM]

number ([0-9])+ 1 or more occurrences of a digit

chars [A-Za-z] Any character

blank " " A blank space

word (chars)+ 1 or more occurrences of chars

variable (chars)+(number)*(chars)*(number)*

Programming in Lex
Programming in Lex can be divided into three steps:

Specify the pattern-associated actions in a form that Lex can understand.1.

Run Lex over this file to generate C code for the scanner.2.

Compile and link the C code to produce the executable scanner.3.

Note: If the scanner is part of a parser developed using Yacc, only steps 1 and 2 should be performed.
Read the sections on Yacc and tying Lex and Yacc together for further help with this particular problem.

Now let's look at the kind of program format that Lex understands. A Lex program is divided into three
sections: the first section has global C and Lex declarations, the second section has the patterns (coded in
C), and the third section has supplemental C functions. main(), for example, would typically be found in
the third section. These sections are delimited by %%. So, to get back to the word-counting Lex
program, let's look at the composition of the various program sections.

Global C and Lex declarations
In this section we can add C variable declarations. We will declare an integer variable here for our
word-counting program that holds the number of words counted by the program. We'll also perform
token declarations of Lex.

Declarations for the word-counting program

 %{
 int wordCount = 0;
 %}
 chars [A-za-z\’\'\.\"]
 numbers ([0-9])+
 delim [" "\n\t]
 whitespace {delim}+
 words {chars}+
 %%

The double percent sign implies the end of this section and the beginning of the second of the three
sections in Lex programming.

Lex rules for matching patterns
Let's look at the Lex rules for describing the token that we want to match. (We'll use C to define
what to do when a token is matched.) Continuing with our word-counting program, here are the
rules for matching tokens.

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (3 of 13) [11/6/2000 8:05:18 AM]

Lex rules for the word-counting program

 {words} { wordCount++; /*
 increase the word count by one*/ }

 {whitespace} { /* do
 nothing*/ }

 {numbers} { /* one may
 want to add some processing here*/ }

 %%

C code
The third and final section of programming in Lex covers C function declarations (and
occasionally the main function) Note that this section has to include the yywrap() function. Lex has
a set of functions and variables that are available to the user. One of them is yywrap. Typically,
yywrap() is defined as shown in the example below. We'll explore this topic under Advanced Lex.

C code section for the word-counting program

 void main()

 {

 yylex(); /* start the
 analysis*/

 printf(" No of words:
 %d\n", wordCount);

 }

 int yywrap()

 {

 return 1;

 }

In the preceding sections we've discussed the basic elements of Lex programming, which should
help you in writing simple lexical analysis programs. In the Advanced Lex section we'll cover the
functionality Lex provides, so that you can write more complex programs.

Putting it all together
The .lex file is Lex's scanner. It is presented to the Lex program as:

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (4 of 13) [11/6/2000 8:05:18 AM]

 $ lex <file name.lex>

This produces the lex.yy.c file, which can be compiled using a C compiler. It can also be used with
a parser to produce an executable, or you can include the Lex library in the link step with the
option –ll.

Here are some of Lex's flags:
-c Indicates C actions and is the default.●

-t Causes the lex.yy.c program to be written instead to standard output.●

-v Provides a two-line summary of statistics.●

-n Will not print out the -v summary.●

Advanced Lex
Lex has several functions and variables that provide different information and can be used to
build programs that can perform complex functions. Some of these variables and functions, along
with their uses, are listed in the following tables. For an exhaustive list, please refer to the Lex or
Flex manual (see Resources later in this article).

Lex variables

yyin Of the type FILE*. This points to the current file being parsed by the lexer.

yyout Of the type FILE*. This points to the location where the output of the lexer
will be written. By default, both yyin and yyout point to standard input and
output.

yytext The text of the matched pattern is stored in this variable (char*).

yyleng Gives the length of the matched pattern.

yylineno Provides current line number information. (May or may not be supported
by the lexer.)

Lex functions

yylex() The function that starts the analysis. It is automatically generated by Lex.

yywrap() This function is called when end of file (or input) is encountered. If this
function returns 1, the parsing stops. So, this can be used to parse multiple
files. Code can be written in the third section, which will allow multiple
files to be parsed. The strategy is to make yyin file pointer (see the
preceding table) point to a different file until all the files are parsed. At the
end, yywrap() can return 1 to indicate end of parsing.

yyless(int n) This function can be used to push back all but first ‘n’ characters of the read
token.

yymore() This function tells the lexer to append the next token to the current token.

This completes our discussion of Lex. Now let's move onto Yacc...

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (5 of 13) [11/6/2000 8:05:18 AM]

Yacc
Yacc stands for Yet Another Compiler Compiler. The GNU equivalent of Yacc is called Bison. It is
a tool that translates any grammar that describes a language into a parser for that language. It is
written in Backus Naur form (BNF). By convention, a Yacc file has the suffix .y. The Yacc
compiler is invoked from the compile line as:

 $ yacc <options>
 <filename ending with .y>

Before going further, let's review what a grammar is. In the previous section, we saw that Lex
recognizes tokens from an input sequence. If you are looking at a sequence of tokens, you may
want to perform a particular action on an occurrence of this sequence. The specification of valid
sequences in such cases is called a grammar. The Yacc grammar file contains this grammar
specification. It also covers what you want to do when the sequence is matched.

To clarify this concept a bit further, let's take the English language for an example. The set of
tokens might be: noun, verb, adjective, and so on. To form a grammatically correct sentence using
these tokens, your construction must conform to certain rules. A simple sentence might be noun
verb or noun verb noun. (I care. See spot run.)

So in our case, the tokens themselves come from the language (Lex), and the sequences allowed for
these tokens (the grammar) is specified in Yacc.

Terminal and non-terminal symbols

Terminal symbol: Represents a class of
syntactically equivalent tokens. Terminal
symbols are of three types:

Named token: These are defined
via the %token identifier. By
convention, these are all upper
case.

Character token: A character
constant written in the same
format as in C. For example, ‘+’
is a character token.

Literal string token: is written
like a C string constant. For
example, "<<" is a literal string
token.

The lexer returns named tokens.

Non-terminal symbol: Is a symbol that is a
group of non-terminal and terminal symbols.
By convention, these are all lower case. In the
example, file is a non-terminal while NAME
is a terminal symbol.

There are four steps involved in creating a compiler
in Yacc:

Generate a parser from Yacc by running Yacc
over the grammar file.

1.

Specify the grammar:
Write the grammar in a .y file (also
specify the actions here that are to be
taken in C).

❍

Write a lexical analyzer to process input
and pass tokens to the parser. This can be
done using Lex.

❍

Write a function that starts parsing by
calling yyparse().

❍

Write error handling routines (like
yyerror()).

❍

2.

Compile code produced by Yacc as well as any
other relevant source files.

3.

Link the object files to appropriate libraries for
the executable parser.

4.

Writing a grammar in Yacc
As with Lex, a Yacc program is also divided into three
sections separated by double percent signs. These are:
declarations, grammar rules, and C code. We'll use an

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (6 of 13) [11/6/2000 8:05:18 AM]

example of parsing a file of the format name = age in years in order to illustrate the grammar
specifications. We are assuming the file has multiple names and ages each separated by white
space. As we look at each section of the Yacc program, we'll write a grammar file for our example
case.

Declarations for C and Yacc
C declarations may define types and variables used in the actions, as well as macros. Header files
may also be included. Each Yacc declaration part declares the names of both the terminal and
non-terminal symbols (tokens), and may also describe operator precedence and data types for
various symbols. The lexer (Lex) generally returns these tokens. All such tokens must be declared
in the Yacc declarations.

In the file-parsing example we are interested in the tokens: name, equal sign, and age. Name is an
all-character value. Age is numeric. So the declarations section would look like this:

Declarations for the file-parsing example

 %

 #typedef char* string; /*
 to specify token types as char* */

 #define YYSTYPE string /*
 a Yacc variable which has the value of returned token */

 %}

 %token NAME EQ AGE

 %%

The YYSTYPE may strike you as a bit odd. But like Lex, Yacc also has a set of variables and
functions that are available to the user for extending functionality. YYSTYPE defines the type of
yylval (another Yacc variable) used to copy values from the lexer to the parser or to Yacc. The
default type is int. Since a string of characters will be copied from the lexer, the type has been
redefined to char*. For a detailed discussion on Yacc variables, please refer to the Yacc manual
(see Resources).

Yacc grammar rules
Yacc grammar rules take on the following general form:

 result: components { /*
 action to be taken in C */ }

 ;

In this example, result is the non-terminal symbol the rule describes. Components are various
terminal and non-terminal symbols put together by the rule. Components can be followed by the
action to be performed if that particular sequence is matched. Consider the following example:

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (7 of 13) [11/6/2000 8:05:18 AM]

 param : NAME EQ NAME {
 printf("\tName:%s\tValue(name):%s\n", $1,$3);}

 | NAME EQ VALUE{
 printf("\tName:%s\tValue(value):%s\n",$1,$3);}

 ;

If the sequence NAME EQ NAME is matched in the above example, the action in the
corresponding { } brackets is taken. Another useful thing that comes into play here is the use of $1
and $3, which refer to the values of the tokens NAME and NAME (or VALUE for the second line).
The lexer returns these values through a Yacc variable called yylval. Lex code for the token
NAME would look like this:

 char [A-Za-z]

 name {char}+

 %%

 {name} { yylval = strdup(yytext);
 return NAME; }

The rules section for our file-parsing example would look like this:

Grammar for the file-parsing

 file : record file

 | record

 ;

 record: NAME EQ AGE {
 printf("%s is now %s years old!!!", $1, $3);}

 ;

 %%

Additional C code
Now let's move to the last section of the grammar file, the additional C code. (This section is
optional, for those of you who want to skip it:) A function like main() calls the yyparse() function
(the Yacc equivalent of Lex's yylex() function). Generally, Yacc expects that code for yyerror(char
msg) also be provided. yyerror(char msg) is called whenever the parser encounters an error. The
error message is passed as a parameter. A simple yyerror(char*) might look like this:

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (8 of 13) [11/6/2000 8:05:18 AM]

 int yyerror(char* msg)

 {

 printf("Error: %s
 encountered at line number:%d\n", msg, yylineno);

 }

yylineno provides line number information.

The main function for our file-parsing example would also be included in this section:

Additional C code

 void main()

 {

 yyparse();

 }

 int yyerror(char* msg)

 {

 printf("Error: %s
 encountered \n", msg);

To generate code, the following command may be used:

 $ yacc –d <filename.y>

This generates the output files y.tab.h and y.tab.c and can be compiled using any standard C
compiler on UNIX (gcc, for example).

Other common options that can be used on the command line
'-d' ,'--defines' : Write an extra output file containing macro definitions for: the token type
names that are defined in the grammar, the semantic value type YYSTYPE, and a few
external variable declarations. If the parser output file is named 'name.c', then the '-d' file is
named 'name.h'. If you want to put the yylex definition in a separate source file you need
'name.h', because yylex has to be able to refer to token type codes as well as the yylval
variable.

●

'-b file-prefix' ,'--file-prefix=prefix' : Specify a prefix to use for all Yacc output file names.
Chose the names as if the input file were named 'prefix.c'.

●

'-o outfile' ,'--output-file=outfile' : Specify the name outfile for the parser file. The other●

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (9 of 13) [11/6/2000 8:05:18 AM]

output files' names are constructed from outfile as described under the '-d' options.

The Yacc library is usually automatically included in the compile step. But it can also be explicitly
included to specify the –ly option during the compile step. In this case the compile command line
would become:

 $ cc <source file
 names> -ly

Tying Lex and Yacc together
So far we've talked about Lex and Yacc separately. Now let's see how they can be used in
conjunction with each other.

A program generally calls the yylex() function each time it returns a token. It stops doing this
either at the end of the file or at an incorrect token.

A Yacc-generated parser calls yylex() to obtain tokens. yylex() can be generated by Lex or written
from scratch. For the Lex-generated lexer to be used with Yacc, a token has to be returned every
time a pattern is matched in Lex. The general form of action on matching a pattern in Lex would
therefore be:

 {pattern} { /* do smthg*/
 return TOKEN_NAME; }

Yacc then obtains the returned tokens. When Yacc compiles a .y file with a –d option, a header file
is generated, which has #define for each of the tokens. If Lex and Yacc are being used together, the
header file must be included in the C declaration section of the corresponding Lex .lex file.

Let's get back to our name and age file-parsing example and look at the code for the Lex and Yacc
files.

Name.y - The grammar file

 %

 typedef char* string;

 #define YYSTYPE string

 %}

 %token NAME EQ AGE

 %%

 file : record file

 | record

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (10 of 13) [11/6/2000 8:05:18 AM]

 ;

 record : NAME EQ AGE {
 printf("%s is %s years old!!!\n", $1, $3); }

 ;

 %%

 int main()

 {

 yyparse();

 return 0;

 }

 int yyerror(char *msg)

 {

 printf("Error
 encountered: %s \n", msg);

 }

Name.lex - Lex file for the parser

 %{

 #include "y.tab.h"

 #include <stdio.h>

 #include <string.h>

 extern char* yylval;

 %}

 char [A-Za-z]

 num [0-9]

 eq [=]

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (11 of 13) [11/6/2000 8:05:18 AM]

 name {char}+

 age {num}+

 %%

 {name} { yylval = strdup(yytext);
 return NAME; }

 {eq} { return EQ; }

 {age} { yylval = strdup(yytext);
 return AGE; }

 %%

 int yywrap()

 {

 return 1;

 }

As a point of reference, let's list y.tab.h, the header file generated by Yacc.

y.tab.h - Yacc-generated header

 # define NAME 257

 # define EQ 258

 # define AGE 259

This completes our discussion on Lex and Yacc. Which language do you want to compile today?

Resources
Lex and Yacc, Levine, Mason and Branson, O’Reilly and Associates Inc, 2nd Ed.●

Program Development in UNIX, J. T. Shen, Prentice-Hall India.●

Compilers: Principles, Techniques and Tools, Ahoo, Sethi and Ullman, Addison-Wesley Pub.
Co., Nov, 1985.

●

Bison Manual from Gnu.●

Flex Manual from Gnu.●

Info on Bison, (GNU's Yacc).●

MKS Lex and Yacc release notes.●

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (12 of 13) [11/6/2000 8:05:18 AM]

http://www.amazon.com/exec/obidos/ASIN/1565920007/qid=966761542/sr=1-1/102-9713829-1677713
http://www.amazon.com/exec/obidos/ASIN/0132373971/qid=966761701/sr=1-2/102-9713829-1677713
http://www.amazon.com/exec/obidos/ASIN/0201100886/o/qid=966761739/sr=2-1/102-9713829-1677713
http://www.gnu.org/manual/bison/index.html
http://www.gnu.org/manual/flex/index.html
http://www.cis.ohio-state.edu/htbin/info/info/bison
http://www.datafocus.com/docs/relnotes_ly33.htm

Tutorial on Lex and Yacc.●

Tutorials on Lex and Yacc and compiler writing.●

Tutorial on Java version of Lex, called Jlex.●

Example of formalizing a grammar for use with Lex & Yacc.●

About the author
Ashish Bansal has a bachelors degree in Electronics and Communications Engineering from the
Institute of Technology, Banaras Hindu University, Varanasi, India. He is currently working as a
software engineer with Sapient Corporation. He can be reached at abansal@sapient.com.

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

Privacy Legal Contact

developerWorks : Linux : Jumpstart your Yacc...and Lex too!

http://www-4.ibm.com/software/developer/library/l-lex.html (13 of 13) [11/6/2000 8:05:18 AM]

http://www.cs.arizona.edu/classes/cs553/tutorial.ps
http://tinf2.vub.ac.be/~dvermeir/courses/compilers/
http://bmrc.berkeley.edu/courseware/cs164/fall99/assignment/a1/tutorial.html
http://www.cs.man.ac.uk/~pjj/cs2111/ex5_hint.html
mailto:abansal@ieee.org
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

	ibm.com
	developerWorks : Linux : Jumpstart your Yacc...and Lex too!

	JKJADMFFLCOCFPFIGAABAMDKBJNPADMP:
	form1:
	x:
	f1: Jumpstart your Yacc...and Lex too!
	f2: Linux
	f3: http://www.ibm.com/developer/thankyou/feedback-linux.html
	f4: Off
	f5:

	f6:

