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Definition of Random Variable

The definition of random variable
I The random variable is the observation.
I The random variable is a function of the observation.
I The random variable is a function of another random

variable.
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Probability Problems

Q1: The problem of deciding volunteers (a public errand)
I Usually it’s common to draw lots to decide who should be

the volunteers of a public errand. In this way, we will let all
people line up for drawing the made lots. What is the
probability of being the volunteers of each person if we
need three volunteers out from 10 people?

I What is the probability of the first one to draw the lots?
I Based on the first drawn, what is the probability of the

second one to draw the lots? And what is the probability of
the third one?
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Probability Problems

Q2: The problem of wining your prize.
Among these three cards, there is a card for prize of a luxury
car. Now you have the chance to guess which one is the prize.
Make a choice!! After your choice is done, the host turns on a
‘sorry’ card to let you make a new decision (i.e., choose your
card again because the win probability becomes 50% which is
higher than the beginning 1/3). Will you change your decision
again? Why or why not? What is the probability if you reselect a
new card?
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Description of Queueing Problem

I A queueing system can be described as customers
arriving for service, waiting for service if it is not immediate,
and if having waited for service, leaving the system after
being served.

I The term “customer” is used in a general sense and does
not imply necessarily a human customer.

I A telephone system is generally characterized by
I Poisson input, exponential holding (service) times, and

multiple channels (servers)
I Poisson input, constant holding time, and a single channel
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Characteristics of Queueing Processes

Six characteristics of queueing processes
1. arrival pattern of customers
2. service pattern of servers
3. queue discipline
4. system capacity
5. number of service channels
6. number of service stages
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Notation

A queueing process is described by a series of symbols and
slashes such as A/B/X/Y/Z , where

I A indicates in some way the interarrival-time distribution
I B the service pattern as described by the probability

distribution for service time
I M: Exponential
I D: Deterministic
I Ek : Erlang type k (k = 1,2, . . .)
I Hk : Mixture of k exponentials
I PH: Phase type
I G: General (Arbitrary)

I X the number of parallel service channels
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Notation

A queueing process is described by a series of symbols and
slashes such as A/B/X/Y/Z , where

I Y the restriction on system capacity
I Z the queu discipline

I FCFS: First come, first served
I LCFS: Last come, first served
I RSS: Random selection for service
I PR: Priority
I GD: General discipline

I For example M/D/2/∞/FCFS
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Measuring System Performance

Generally there are three types of system responses of
interest:

I Some measure of the waiting time that a typical customer
might be forced to endure

I An indication of the manner in which customers may
accumulate

I A measure of the idle time of the servers
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Some General Results

I G/G/1 or G/G/c
I Denoting the average rate of customers entering the

queueing system as λ, the average rate of serving
customers as µ, and a measure of traffic congestion for
c-server systems is

I ρ ≡ λ/cµ (often called traffic intensity)
I Three conditions

I ρ > 1 (λ > cµ), as time goes on, the queue to get bigger
and bigger, unless, at some point, customers were not
allowed to join.

I ρ = 1, unless arrivals and service are deterministic and
perfectly scheduled, no steady state exists, since
randomness will prevent the queue from ever emptying out
and allowing the servers to catch up, thus causing the
queue to grow without bound.

I ρ = λ/cµ < 1 is the only condition we consider
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I What we most often desire in solving queueing models is
to find the probability distribution for the total number of
customers in the system at time t , N(t), which is made up
of those waiting in queue, Nq(t), plus those in service Ns(t)

I Let pn(t) = Pr{N(t) = n} and pn = Pr{N = n} in the
steady state

I Two expected-value measures of major interest are
I The mean number in the system

L = E [N] =
∞∑

n=0

npn

I The expected number in queue

Lq = E [Nq] =
∞∑

n=c+1

(n − c)pn



Outline Preface Chapter 1. Introduction Chapter 2. Simple Markovian Queueing Models

Little’s Formulas

I T = Tq + S, where S is the service time, and T , Tq, and S
are random variables

I Two often used measures of system performance with
respect to customers are

I The mean waiting time in queue

Wq = E [Tq]

I The mean waiting time in the system

W = E [T ]

I E [T ] = E [Tq] + E [S]

I We have the Little’s Formulas are

L = λW

Lq = λWq
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I Denoting the number of customer as Nc that arrive over
the time period (0,T ) is 4.
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The Calculation for L and W

L = [1(t2 − t1) + 2(t3 − t2) + 1(t4 − t3) + 2(t5 − t6)

+ 3(t6 − t5) + 2(t7 − t6) + 1(T − t7)]/T
= (area under curve)/T
= (T + t7 + t6 − t5 − t4 + t3 − t2 − t1)/T

W = [(t3 − t1) + (t6 − t2) + (t7 − t4) + (T − t5)]/4
= (T + t7 + t6 − t5 − t4 + t3 − t2 − t1)/4
= (area under curve)/Nc

LT = WNc , which yields L = WNc/T = Wλ
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The Calculation for L and W

L− Lq = λ(W −Wq) = λ(1/µ) = λ/µ

I

L− Lq = E [N]− E [Nq] = E [N − Nq] = E [Ns]

I For a single-server system that r = ρ and it follows from
simple algebra that

L− Lq =
∞∑

n=1

npn −
∞∑

n=1

(n − 1)pn =
∞∑

n=1

pn = 1− p0

I A simple expected-value argument, we show that pb = ρ

r/c = ρ = 0 · (1− pb) + 1 · pb

I Because p0 = 1− pb, in this case, then

p0 = 1− ρ = 1− r = 1− λ/µ
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Table 1.2 Summary of General Results

Table: Summary of General Results for G/G/c Queue

ρ = λ/cµ Traffic intensity; offered work load rate to a server
L = λW Little’s formula
Lq = λWq Little’s formula
W = Wq + 1/µ Expected-value argument
pb = λ/cµ = ρ Busy probability for an arbitrary server
r = λ/µ Expected number of customers in service; offered work load rate
L = Lq + r Combined result — (1.3)
p0 = 1 − ρ G/G/1 empty-system probability
L = Lq + (1 − p0) Combined result for G/G/1
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Some Examples

I The Carry Out Curry House, a fast-food Indian restaurant,
must decide on how many parallel service channels to
provide. They estimate that, during the rush hour, the
average number of arrivals per hour will be approximately
40. They also estimate that, on average, a server will take
about 5.5 min to serve a typical customer. Using only this
information, about how many service channels (clerks) will
you recommend they install?

Sol: λ = 40/hr = 2/3 per minute; µ = 1/5.5
ρ = λ/cµ < 1→ c > λ/µ = 2/3× 5.5 = 3.6667
Thus, we recommend they install 4 servers.
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Some Examples

I Fluffy Air, a small local feeder airline, needs to know how
many slots to provide for telephone callers to be placed on
hold. They plan to have enough answerers so that the
average waiting time on hold for a caller will be 75 seconds
during the busiest period of the day. They estimate the
average call-in rate to be 3 per minute. How many slots
would you advise Fluffy Air to set up?

Sol: Lq = λWq = (3/min)([75/60]min) = 3.75 or, say 4. The
3.75 number is, of course, the average number in the
queue. We may wish to provide 5 or 6 slots to guarantee
that most callers get into the queue.
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Simple Data Bookkeeping for Queues

I Some expression for expressing the number of customers
in the system

n(t) = {number of arrivals in (0, t ]}
− {number of services completed in (0, t ]}.

I Notice that the notation (0, t ] means

0 < time ≤ t .
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Poisson Process and the Exponential Distribution (1/7)

I The most common stochastic queueing models assume
that interarrival times and service times obey the
exponential distribution or, equivalently, that the arrival rate
and service rate follow a Poisson distribution.

I Consider an arrival counting process {N(t), t ≥ 0}, where
N(t) denotes the total number of arrivals up to time t , with
N(0) = 0, and which satisfies the following three
assumptions:
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Poisson Process and the Exponential Distribution (2/7)

1. The probability that an arrival occurs between time t and
time t + ∆t is equal to λ∆t + o(∆t). We write this as
Pr{arrival occurs between t and t + ∆t} = λ∆t + o(∆t),
where λ is a constant independent of N(t), ∆t is an
incremental element, and o(∆t) denotes a quantity that
becomes negligible when compared to ∆t as ∆t → 0; that
is,

lim
∆t→0

(
o(∆t)

∆t

)
= 0

2. Pr{more than one arrival between t and t + ∆t} = o(∆t)
3. The number of arrivals in nonoverlapping intervals are

statistically independent; that is, the process has
independent increments.
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Poisson Process and the Exponential Distribution (3/7)

I To calculate pn(t), the probability of n arrivals in a time
interval of length t , n being an integer ≥ 0. We will do this
by first developing differential-difference equations for the
arrival process. For n ≥ 1 we have

pn(t + ∆t) = Pr{n arrivals in t and none in ∆t}
+ Pr{n − 1 arrivals in t and one in ∆t}
+ Pr{n − 2 arrivals in t and two in ∆t}+ · · ·
+ Pr{no arrivals in t and n in ∆t} (1.6)

I Using assumptions i, ii, and iii, (1.6) becomes

pn(t+∆t) = pn(t)[1−λ∆t−o(∆t)]+pn−1(t)[λ∆t+o(∆t)]+o(∆t),

where the last term, o(∆t), represents the terms Pr{n − j
arrivals in t and j in ∆t ; 2 ≤ j ≤ n}.
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Poisson Process and the Exponential Distribution (4/7)

I For the case n = 0, we have

p0(t + ∆t) = p0(t)[1− λ∆t − o(∆t)] (1.8)

I Rewriting (1.7) and (1.8) and combining all o(∆t) terms,
we have

p0(t + ∆t)− p0(t) = −λ∆tp0(t) + o(∆t) (1.9)

and

pn(t+∆t)−pn(t) = −λ∆tpn(t)+λ∆tpn−1(t)+o(∆t) (n ≥ 1). (1.10)
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Poisson Process and the Exponential Distribution (5/7)

I We divide (1.9) and (1.10) by ∆t , take the limit as ∆t → 0,
and obtain the differential-difference equations

lim
∆t→0

[
p0(t + ∆t)− p0(t)

∆t
= −λp0(t) +

o(∆t)
∆t

]
,

lim
∆t→0

[
pn(t + ∆t)− pn(t)

∆t
= −λpn(t) + λPn−1(t) +

o(∆t)
∆t

]
(n ≥ 1),

which reduce to

dp0(t)
dt

= −λp0(t) (1.11)

and

dpn(t)
dt

= −λpn(t) + λpn−1(t) (n ≥ 1). (1.12)
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Poisson Process and the Exponential Distribution (6/7)

I We now have an infinite set of linear, first-order ordinary
differential equations to solve. Equation (1.11) clearly has
the general solution p0(t) = Ce−λt , where the constant C
is easily determined to be equal to 1, because p0(0) = 1.
Next, let n = 1 in (1.12), and we find that

dp1(t)
dt

= −λp1(t) + λp0(t)

or
dp1(t)

dt
+ λp1(t) = λp0(t) = λe−λt .

I The solution to this equation is

p1(t) = Ce−λt + λte−λt .
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Poisson Process and the Exponential Distribution (7/7)

I Use of the boundary condition pn(0) = 0 for all n > 0 yields
C = 0 and gives

p1(t) = λte−λt .

I Continuing sequentially to n = 2,3, . . . in (1.12) and
proceeding similarly, we find that

p2(t) =
(λt)2

2!
e−λt , p3(t) =

(λt)3

3!
e−λt , · · · (1.13)

I From (1.13), we conjecture that the general Poisson
formula is

pn(t) =
(λt)n

n!
e−λt . (1.14)
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Additional Interesting Poisson Properties

I Memoryless property
I If we consider the random variable defined as the number

of arrivals to a queueing system by time t , this random
variable has the Poisson distribution given by (1.14) with a
mean of λt arrivals, or a mean arrival rate (arrivals per unit
time) of λ.

I Poisson processes have a number of interesting additional
properties. One of most important is that the number of
occurrences in intervals of equal width are identically
distributed (stationary increments). In particular, for t > s,
the difference N(t)− N(s) is identically distributed as
N(t + h)− N(s + h), with probability function

pn(t − s) =
[λ(t − s)]n

n!
e−λ(t−s).
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Interarrival Time Follows the Exponential Distribution

I We now show that if the arrival process is Poisson, an
associated random variable defined as the time between
successive arrivals (interarrival time) follows the
exponential distribution.

I Let T be the random variable “time between successive
arrivals”; then

Pr{T ≥ t} = Pr{no arrivals in time t} = p0(t) = e−λt .

I Therefore we see that the cumulative distribution function
of T can be written as A(t) = Pr{T ≤ t} = 1− e−λt , with
corresponding density function

a(t) =
dA(t)

dt
= λe−λt .

Thus T has the exponential distribution with mean 1/λ.
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Chapter 2. Simple Markovian Queueing Models

I The purpose of this chapter is to develop a broad class of
simple queueing models using the theory of birth-death
processes.

I The term “Modeling”:
I Definition: “Use mathematical symbols, notations, and tools

to describe your system.” said Jenhui Chen.
I A birth-death process is a specific type of continuous-time

Markov chain, the structure of which leads to a
straightforward solution for the steady-state probabilities
{pn}.

I Examples of queues that can be modeled as birth-death
processes are M/M/1, M/M/c, M/M/c/K , M/M/c/c,
M/M/∞, and variations of these queues with
state-dependent arrival and service rates.
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Birth-Death Process (1/5)

0 1 2 3 4

λ0 λ1 λ2 λ3 λ4

µ1 µ2 µ3 µ4 µ5

I 0 = −(λn + µn)pn + λn−1pn−1 + µn+1pn+1 (n ≥ 1)

I 0 = −λ0p0 + µ1p1,
I or
I (λn + µn)pn = λn−1pn−1 + µn+1pn+1 (n ≥ 1)

I λ0p0 = µ1p1.
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Birth-Death Process (2/5)

I Find a solution for (2.1) we first rewrite the equations as

pn+1 =
λn + µn

µn+1
pn −

λn−1

µn+1
pn−1 (n ≥ 1)

p1 =
λ0

µ1
p0

I It follows that

p2 =
λ1 + µ1

µ2
p1 −

λ0

µ2
p0 =

λ1 + µ1

µ2

λ0

µ1
p0 −

λ0

µ2
p0 =

λ1λ0

µ2µ1
p0

p3 =
λ2 + µ2

µ3
p2−

λ1

µ3
p1 =

λ2 + µ2

µ3

λ1λ0

µ2µ1
p0−

λ1λ0

µ3µ2
p0 =

λ2λ1λ0

µ3µ2µ1
p0
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Birth-Death Process (3/5)

I The pattern that appears to be emerging is that

pn =
λn−1λn−2 · · ·λ0

µnµn−1 · · ·µ1
p0 (n ≥ 1)

= p0

n∏
i=1

λi−1

µi
(2.3)

I Apply mathematical induction on (2.3). First, (2.3) is
correct for n = 0, because

∏n
i=1(·) is assumed by default to

be 1 when n = 0.
I We have shown that (2.3) is correct for n = 1,2,3
I Assume n = k is also correct

pk = p0

k∏
i=1

λi−1

µi
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Birth-Death Process (4/5)

I Then we have to prove that it is also correct for n = k + 1.

pk+1 =
λk + µk

µk+1
pk −

λk−1

µk+1
pk−1

=
λk + µk

µk+1
p0

k∏
i=1

λi−1

µi
− λk−1

µk+1
p0

k−1∏
i=1

λi−1

µi

=
p0λk

µk+1

k∏
i=1

λi−1

µi
+

p0µk

µk+1

k∏
i=1

λi−1

µi
− p0µk

µk+1

k∏
i=1

λi−1

µi

=p0

k+1∏
i=1

λi−1

µi

I The induction proof is complete.
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Birth-Death Process (5/5)

I Since probabilities must sum to 1, it follows that

p0 =

(
1 +

∞∑
n=1

n∏
i=1

λi−1

µi

)−1

(2.4)

I Hint: Since
∞∑

n=0

p0

n∏
i=1

λi−1

µi
= 1

p0 · 1 + p0

∞∑
n=1

n∏
i=1

λi−1

µi
= 1
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Single-Server Queue M/M/1 (1/5)

0 1 2 3 4

λ λ λ λ λ

µ µ µ µ µ

I Interarrival times and service times, are assumed to be
exponentially distributed with density function given,
respectively, as

a(t) = λe−λt ,

b(t) = µe−µt .
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Single-Server Queue M/M/1 (2/5)

I Let n denote the number of customers in the system.
Arrivals can be considered as “births” to the system, and
departures can be considered as “deaths.” The rate of
arrivals λ is fixed, regardless of the number in the system.

I The rate of the server µ is fixed, regardless of the number
in the system (provided there is at least one customer in
the system).

(λ+ µ)pn = µpn+1 + λpn−1 (n ≥ 1),

λp0 = µp1.

I Alternatively, these can be written as

pn+1 =
λ+ µ

µ
pn −

λ

µ
pn−1 (n ≥ 1),

p1 =
λ

µ
p0.
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I Since the M/M/1 system is a birth-death process with
constant birth and death rates, it follows that

pn = p0

n∏
i=1

(
λ

µ

)
= p0

(
λ

µ

)n

n ≥ 1

I To get p0, 1 =
∑∞

n=0 pn = p0
∑∞

n=0 ρ
n =⇒ p0 = 1∑∞

n=0 ρ
n .

I Now,
∑∞

n=0 ρ
n is a geometric series that converges iff

ρ < 1. Then, we have

∞∑
n=0

ρn =
1

1− ρ
(ρ < 1),

which implies that p0 = 1− ρ (ρ = λ/µ < 1).
I Then

pn = (1− ρ)ρn (ρ = λ/µ < 1).
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Measures of Effectiveness (3/5)

I The steady-state probability distribution for the system size
allows us to calculate the system’s measures of
effectiveness.

L = E [N] =
∞∑

n=0

npn = (1− ρ)
∞∑

n=0

nρn.

I Consider the summation
∞∑

n=0

nρn = ρ+ 2ρ2 + 3ρ3 + · · ·

= ρ(1 + 2ρ+ 3ρ2 + · · · )

= ρ

∞∑
n=1

nρn−1.

I Since
∑∞

n=0 ρ
n = 1/(1− ρ).
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I Since
∑∞

n=0 ρ
n = 1/(1− ρ); hence

∞∑
n=1

nρn−1 = 1 + 2ρ+ 3ρ2 + · · · =
1

(1− ρ)2 .

I So the expected number in the system at steady state is
then

L = (1− ρ)
∞∑

n=0

nρn = (1− ρ)ρ
∞∑

n=1

nρn−1 =
ρ(1− ρ)

(1− ρ)2 ,

or simply

L =
ρ

1− ρ
=

λ

µ− λ
.

and

Lq =
ρ2

1− ρ
=

λ2

µ(µ− λ)
.
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I From L and Lq by using Little’s formulas, L = λW and
Lq = λWq.

W =
L
λ

=
ρ

λ(1− ρ)
=

1
µ− λ

and
Wq =

Lq

λ
=

ρ

µ(1− ρ)
=

ρ

µ− λ
.
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Multiserver Queues M/M/c (1/2)

I The steady-state probabilities pn:

pn =

{
λn

n!µn p0, (0 ≤ n < c),
λn

cn−cc!µn p0, (n ≥ c).

I The initial probability p0 is

p0 =

(
r c

c!(1− ρ)
+

c−1∑
n=0

rn

n!

)−1

(r/c = ρ < 1).

Lq =

(
r cρ

c!(1− ρ)2

)
p0.
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I To find L, we employ Little’s formula to get Wq, then use
Wq to find W = Wq + 1/µ, and finally employ Little’s
formula again to calculate L = λW . Thus we get

Wq =
Lq

λ
=

(
r c

c!(cµ)(1− ρ)2

)
p0,

W =
1
µ

+

(
r c

c!(cµ)(1− ρ)2

)
p0,

and

L = r +

(
r cρ

c!(1− ρ)2

)
p0,

I Equivalently, the probability that an arriving customer has a
nonzero wait in queue is

C(c, r) ≡ 1−Wq(0) =
r c

c!(1− ρ)

/(
r c

c!(1− ρ)
+

c−1∑
n=0

rn

n!

)
.
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Multiserver Queues M/M/c Example

I Calls to a technical support center arrive according to a Poisson
process with rate 30 per hour. The time for a support person to
serve one customer is exponentially distributed with a mean of 5
minutes. The support center has 3 technical staff to assist
callers. What is the probability that a customer is able to
immediately access a support staff, without being delayed on
hold? (Assume that customers do not abandon their calls.)

I For this problem, λ = 30, µ = 12, and c = 3. The r = 2.5 and
ρ = 5/6. From (2.38)

C(c, r) =
2.53

3!(1− 5/6)
/(

2.53

3!(1− 5/6)
+ 1 +

2.5
1!

+
2.52

2!
)
.

= 0.702.

The answer is 1− C(c, r) = 1− 0.702 = 0.298
I Now suppose that the call center wishes to increase the

probability of nondelayed calls to 90%. How many servers are
needed?
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