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Abstract

In the backbone network, a Steiner multicast tree (SMT) will be established for multi-
cast members to minimize the traffic load on networks. However, a communication link
or node may fail due to some accidental factors during the transmission period. Down-
stream nodes with respect to the failed link/node will be forced to leave this tree. In order
to guarantee the quality of service (QoS), it is desirable to have some schemes for the
multicast tree so that such termination of service can be avoided or at least, reduced. In
this paper, we propose a fixed SMT algorithm (FSA) to construct the Steiner backup mul-
ticast tree (SBMT). Based on FSA, for each ‘critical’ path, an alternate route with enough
bandwidth will be reserved such that most fatal failures in the network can be recovered
immediately. The way to determine critical paths is based on statistical analysis. In ad-
dition, an adaptive SMT algorithm (ASA) is proposed to construct both SMT and SBMT
on unreliable networks. The adjustment of the SBMT when nodes dynamically join or
leave the SMT is also discussed. The degree of fault tolerance of the proposed strategies
is evaluated and compared by simulation. Simulation results demonstrate that FSA and
ASA improve the reliability in stable and unstable networks, respectively. Moreover, the
dynamic joining process of a node will be sped up by taking both SMT and SBMT into
considerations. Simulation results are presented to demonstrate the effectiveness of the
optimization.
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1 Introduction

Many multimedia systems, such as video conferencing systems, need dedicated bandwidth
to guarantee real-time communications. Asynchronous transfer mode (ATM) networks are
considered to provide the most suitable transport technique due to their ability to flexibly
support a wide range of services with quality of service (QoS) guarantees. Similarly, one
can also use the resource reservation protocol (RSVP) [1] or differentiated services (DiffServ)
[2] to reserve bandwidth. RSVP runs over the network layer (e.g., IPv4 or IPv6) and uses
the existing multicast tree to reserve bandwidth. Receivers choose the level of resources
reserved and are responsible for initiating and keeping the reservation active as long as they
want to receive the data. In DiffServ, traffic is differentiated into a set of classes for scalability,
and network nodes provide priority-based treatment according to these classes.

Actually, a communication link or node may fail due to some accidental factors during
the connection holding time. When a link (node) fails, downstream nodes with respect to this
link (node) will be excluded from the multicast tree. For the sake of guaranteeing the QoS,
it is necessary to re-establish new connections with enough bandwidth for these nodes right
away. To do this, broadcast messages will be generated to search for restoration paths one by
one. This approach to restore a failed link is known as the dynamic method. However, the
remaining bandwidth on the different route(s) in the network may be insufficient to support
these connections at the moment the failure occurs. Besides, it will take a considerable time
to recover all failures. Thus, each working path should pre-arrange its backup routes with
an appropriate amount of bandwidth for the purpose of fault tolerance. Such an approach
is known as the preplanned method. It is important for networks to provide high-reliability
services such as, for example, emergency rescue applications and tactical communications.
Of course, the reserved bandwidth will be wasted if all links or nodes work well. In a word,
it is trade off between the efficiency and reliability. It is desirable to design a scheme to
provide the best quality of fault tolerance but reserving the minimum bandwidth.

1.1 Backup Multicast Tree

Many new applications require point-to-multipoint (multicast) communications, which send
the same packet to a group of destinations. In order to consume a minimal amount of
resources for such applications, a minimal cost-spanning tree is applied. A common solution
is to model the network as a graph G = (V,E) where the nodes represent routers or switches
and the edges represent links between nodes, and to generate a multicast tree that includes
the source and destination nodes. In a point-to-point (unicast) network, we are interested
in finding the shortest path between a pair of nodes so that the propagation delay of each
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packet is minimized. On the other hand, in the multicast problem, we are interested in
the minimum cost subtree or multicast tree which connects all destination nodes and the
source node. Finding this minimum cost subtree, which is known as Steiner multicast tree
(SMT) [3] in graphs, is a complicated problem. It has been shown that deriving the SMT is
NP-complete [4].

Previous work on a multicast tree can be classified into two categories. The first one
assumes that all destination nodes are unchanged during the transmission period. That
is, one only focuses on finding a heuristic algorithm to minimize the tree’s cost so that the
derived cost is close to the minimum cost. Several polynomial-time heuristic algorithms
[5, 6, 7] have shown that the derived cost is twice the optimum in the worse case. Secondly,
the multicast members are allowed to leave or join the multicast tree during the transmission
period. Two famous heuristic algorithms, the greedy algorithm [11] and the weighted greedy
algorithm (WGA) [5], are proposed to solve the dynamic problem. Besides, there is some
work describing alternative routing schemes which ensure that the network restores itself
under any single link failure [8, 9, 10].

In this paper, we not only consider link by link or path by path, but also consider a whole
tree in network topology. Besides, none of the previous work considers the operations
of node joining and leaving. We focus on how to protect an established SMT. Intuitively,
constructing another independent multicast tree will provide the best reliability. However,
a considerable amount of network bandwidth will be wasted also. Therefore, we do not
focus on developing a heuristic algorithm for SMT but rather on finding a suitable Steiner
backup multicast tree (SBMT) from an established SMT. In other words, we will deal with
the problem of how to find the SBMT with the minimum bandwidth in order to derive
the maximum degree of reliability. A statistical approach is employed to determine the
important edges (paths), denoted as critical edges (paths) in this paper, in the SMT which
are the candidates to be protected. Because the multicast members may dynamically join or
leave, it is desirable to have a scheme to quickly modify the SBMT to respond to the change.
In this paper, we also propose an efficient strategy to adjust the SBMT to accommodate the
changed SMT. In the proposed strategy, both SBMT and SMT are used to assist finding a best
attachment node when a node is joining. This strategy not only saves much computation
time for a node’s joining but also results in an acceptable total cost.

In an unreliable network, lots of edges/nodes in SMT may fail during the service holding
time. As the SBMT quickly takes over the failure path one by one, the cost of the recovery
tree will become higher and higher. Therefore, the way of finding the SMT and SBMT over
an unreliable network should be different from the traditional approach. The cost difference
between SMT and SBMT should be as small as possible. In this paper, we propose another
enhancement algorithm to construct the SMT and SBMT for unreliable networks.

The rest of this paper is organized as follows. Section 2 addresses the characteristics
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of SBMT. Section 3 introduces the proposed algorithm for constructing the Steiner backup
multicast tree (SBMT). Section 4 introduces the strategy for a node’s dynamic joining and
leaving. We also describe the enhancement algorithm for establishing both SMT and SBMT
in unreliable networks. Second 5 shows the simulation model and results. Some conclusions
are given in Section 6.

2 Definitions and Analysis

2.1 Second Best Steiner Multicast Tree

Before proceeding, we formally define the graph terminology and SMT problem. Let G =

(V,E) be a graph with a finite set of vertices V and edge set E. Also, a cost function, w : E→ Z+

(where Z+ stands for the set of positive real numbers excluding 0), assigns a positive integer
number (cost) to each edge in G. For simplicity, we assume the graph is undirected. That
is, (u, v) and (v,u) are the same edge and w(u, v) = w(v,u). In this paper, the terms vertex
(edge) and node (link) are used interchangeably. The degree of a vertex is the number of
edges incident on it. A path from vertex u to vertex v is a sequence of vertices and edges
u, (u, v1), (v1, v2), · · · , (vk, v), v and is denoted as u

p−→ v. A bridge is defined as an edge whose
removal disconnects G. We also define an undirected graph to be a connected graph if every
pair of vertices is connected by at least one path.

Definition 1 Given a set D ⊆ V, the SMT problem is to find a tree T that contains all vertices in D
such that the total cost w(T) is minimal. That is,

∑

e∈T,e∈E
w(e) is minimal.

Basically, protecting a constructed SMT means finding a different multicast tree with
enough pre-reserved bandwidth for the edges excluded from SMT. These edges are denoted
as ‘backup’ or ‘standby’ edges. A good backup multicast tree should not only maximize the
number of backup edges but also minimize the amount of reserved bandwidth. However,
it is hard to achieve these two goals at the same time. For example, if an algorithm is
designed to find a tree with the maximum number of backup edges, the maximum amount
of bandwidth will be wasted and the call blocking probability will become higher accordingly.
Briefly speaking, from the user’s point of view, the maximal degree of connection reliability
should be provided during the call holding time; but from the network point of view, the
network performance will suffer from obtaining a larger call blocking probability. In fact, it
is meaningless to protect all edges in a tree. That is, the main concern of devising the backup
multicast tree for a practical network is how to minimize reserved bandwidth rather than
how to completely provide backup links for all edges. In this paper, the proposed algorithm
of constructing the backup multicast tree starts by finding a tree of the second minimal cost;
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Figure 1: The SBS is derived by replacing edge (u, v) with path x
p−→ y.

and then, the tree is adjusted step by step until the reliability criterion is satisfied. The second
best SMT (SBS) problem is defined as follows.

Definition 2 Given a set D ⊆ V, the SBS problem (SBSP) is to find a tree T that contains all vertices
in D such that the cost difference between w(T) and w(SMT) is minimal and ∃e ∈ T, e < SMT. That
is, ∑

e∈T−SMT,e∈E
w(e) −

∑

e′∈SMT−T,e′∈E
w(e′) is minimal.

In this paper, we will show that the problem of finding a SBS is still very difficult. Before
introducing the NP-completeness of the SBS problem (SBSP), we first introduce a crucial
NP-complete problem: minimum edge SMT problem (MESP) as follows:

Definition 3 Given a set D ⊆ V and a positive integer k, the MESP is to find a tree T that contains
all the vertices in D such that the number of edges in T is less than or equal to k.

It has been shown that the MESP is NP-complete [12]. Now, we use the following theorem
to show the NP-completeness of SBSP.

Theorem 1 Given an undirected graph G = (V,E), a multicast member set D ⊆ V and a positive
integer k, the problem of determining whether there exists a multicast tree T = (VT,ET) such that
D ⊆ VT and |ET| = k is NP-complete.

Proof. We prove this theorem by showing that the SBSP has the same complexity as the
MESP. Consider the simplest version of SBSP that assumes each edge has the same cost c in
the graph. Let the total cost of the SMT T′ be C. We know there are C/c edges in T′. We
know the second best SMT, say T, has a larger total cost than T′. If we let k = C/c + 1 (i.e.,∑

e∈T w(e) − ∑
e′∈T′ w(e′) = c), the simplest SBSP is reduced as the MESP. Since the MESP is

NP-complete, we know the simplest SBSP is also NP-complete. As a result, we conclude
that the SBSP is NP-complete.

Because solving SBSP is difficult, we propose a heuristic algorithm to find the SBS.
Before describing how to derive the SBS, we first introduce a method to determine whether
there exists another multicast tree that differs from SMT. Let T denote the obtained SMT.
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It is obvious that each edge in T is a bridge. If an edge, say (u, v), is removed from T, it
decomposes T into two subtrees T1 and T2 accordingly. For simplicity, let V1 and V2 denote
the sets of vertices of T1 and T2, respectively. We have u ∈ V1 and v ∈ V2. It is clear that
a different multicast tree will be derived if there exists at least one alternative path x

p−→ y
(x ∈ V1, y ∈ V2) , which connects these two subtrees T1 and T2 as shown in Fig. 1. Notice that
nodes x and y may be the same as nodes u and v, respectively. Let Se(T) denote the set of all
available alternative paths for an edge e in T. Therefore, the set, denoted as S(T), contains all
possible paths for constructing different multicast trees from T and can be obtained by the
following equation:

S(T) =
⋃

e∈T
Se(T). (1)

Clearly, if S(T) = φ, no other multicast tree can be found.

Lemma 1 Let G = (V,E) be an undirected connected graph with cost function w : E → Z+ and
suppose that |E| ≥ |V|. Let T be a SMT of G for a multicast group. Assume set S(T) is not empty.
Let x

p−→ y be the path of the minimum cost in S(T) and x
p−→ y ∈ S(u,v)(T). Then, the tree

T − {(u, v)}⋃{x p−→ y} is the SBS of G.

Proof. Recall that any path in Se(T) connects two subtrees T1 and T2, which are decomposed
by removing an edge e in T. Therefore, if a path x

p−→ y of the minimum cost c in S(u,v)(T)

is added into T, it will form a cycle in T. That is, u
p−→ x

p−→ y
p−→ v

p−→ u. If we remove
the edge (u, v) from T, another multicast tree T′ in G will be derived. The total cost of
this new multicast tree is w(T′) = w(T) − w(u, v) + w(x

p−→ y). Because T is SMT, we have
w(u, v) ≤ w(x

p−→ y). In other words, w(T) ≤ w(T′) and, thus, T′ is the found SBS.
Usually, the selected alternate path of edge (u, v) is the loop-free second-shortest path

from u to v. It is important to note that there is no cycle and only one path exists from
source to each vertex in D of the SMT [11]. The same property should be maintained during
construction of the SBS. Obviously, the derived SBS is one of the SBMTs for a given SMT. For
simplicity, in the following descriptions of algorithms, we consider the SBS as the desired
SBMT. Because most of the edges of SBS overlap those of SMT, the SBMT (i.e., SBS) provides
low reliability. A simplex example of constructing SMT and SBMT is given in Fig. 2. The
number above each link is the cost of the link. Although the cost difference is minimal (=1),
there are five overlapping edges. This is quite unsafe for SMT even though this SBMT is
established. Therefore, we adjust (remove) the overlapping edges between SMT and SBMT
one by one. The decision to remove an overlapping edge depends on that edge’s importance.

2.2 Critical Edge

Now we deal with the problem of having too many overlapping edges between SMT and
SBMT. The crux of the problem is how to choose a proper overlapping edge to replace at each
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Figure 2: An example of overlapping edges between SMT and SBMT.

step. It is clear that the most ‘critical’ edge in all paths from source to every multicast member
in a multicast tree should not fail. In other words, if it fails, many multicast members would
no longer be able to receive packets sent from the source. Thus, we define a weighting
function g(e) to determine the importance of edge e in a multicast tree by calculating the
number of paths passing through edge e among all paths from source to every destination
node. Once again consider Fig. 2(b), for example. Since there are three paths, s

p−→ a, s
p−→ e

and s
p−→ h, that pass through edge (s, a), the passing time of the edge (s, a) is three. So, we

have gSMT(s, a) = 3. Similarly, gSMT(a, d) = gSMT(d, e) = 2. Also we obtain gSBMT(s, a) = 2
because of paths s

p−→ a and s
p−→ e as shown in Fig. 2(c). The number beneath each

edge in the parentheses is the weight of the corresponding edge. Now, we can determine
which overlapping edge is the proper candidate to replace. That is, the edge, say e, with the
maximum value of gSMT(e) + gSBMT(e) (e ∈ TSMT and e ∈ TSBMT) will be selected. We denote
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such an edge as a ‘critical’ edge for both SMT and SBMT. In Fig. 2(d), edge (s, a) is the critical
edge.

2.3 The Analysis of Critical Edges

As described above, an edge e is selected for adjustment with the maximum value of gSMT(e)+
gSBMT(e). After replacing it, a new critical edge will be investigated and replaced, if any. Of
course, there should exist lots of critical edges in the network and we need to adjust all
of these critical edges in SBMT. In some situations, all overlapping edges may be replaced
successfully. But the SBMT will waste bandwidth seriously as mentioned before. The key
points are (i) how to define an edge as highly critical, and (ii) how to quantify the number
of existing critical edges. Before describing this problem, some statistics terminology must
first be addressed. Let µ and σ denote the mean and standard deviation of a set of data,
respectively. The proportion of data falling within k standard deviations of the mean, which
is called Chebyshev’s Theorem [12], is given by 1 − 1/k2, where k > 1. The reason for
employing Chebyshev’s theorem to distinguish critical edges is that Chebyshev’s theorem
can be applied without information on the shape of a data set’s distribution. That is, an edge
e is a critical edge if it satisfies gSMT(e) + gSBMT(e) ≥ µ + kσ. It is obvious that the number of
critical edges depends on k. Denote R as the ratio of the number of critical edges to the total
number of edges in SMT. We have R � 1/2k2 and it varies from 0 (k ≈ ∞) to 0.5 (k ≈ 1). In
the case R > 0.5, the SMT would require that more than half of edges be protected by SBMT.
This would be impractical and inefficient for a network with a low link failure probability.
Let Fr denote the normalized reliability factor of SMT. We let Fr = 2R (i.e., 0 < Fr < 1) and
the corresponding k will be roughly derived by the following formula:

k ≈
√

1
Fr
. (2)

Let CE denote the set that contains all critical edges in graph for a given k (from a given
Fr). We have

CE = { e | gSMT(e) + gSBMT(e) ≥ µ + kσ, e ∈ TSMT and e ∈ TSBMT}. (3)

The procedure of finding a different route to replace each critical edge in SBMT is repeated
until CE = φ. We note that each time a critical edge is adjusted, set CE should be re-estimated.

3 Steiner Backup Multicast Tree (SBMT)

3.1 Fixed SMT Algorithm (FSA)

We now present the algorithms for deriving the SBMT. In this section, we propose two
different algorithms: the fixed SMT algorithm (FSA) and the adaptive SMT algorithm (ASA).
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In FSA, the total cost and topology of SMT are kept unchanged. All actions are focused on the
SBMT. That is, the cost and the topology of the SBMT are changed dynamically during the
procedure of adjustments. This algorithm employs the KMB heuristic algorithm to construct
the TSMT [7]. The basic concept of the KMB is briefly addressed as follows. Given a connected
graph G = (V,E) with a set D ⊆ V containing the multicast members (D = {d1, d2, · · · , d|D|}),
it constructs a complete graph G′ = (D,E′) from G. For each edge (vi, v j) ∈ E′, the cost on it
is assigned as the shortest path from vi to v j in G. A minimum cost spanning tree T′ can be
constructed from G′ by using either Prime’s or Kruskal’s algorithm [11]. Finally, each edge
in T′ is replaced by its corresponding shortest path in G in order to form a solution, which is
the SMT. It is obvious that, in each replacement operation, we must discard the edge in the
path, which forms a loop in SMT.

The FSA will replace an edge of the minimum cost in SMT by its second-shortest path
to form a SBMT. Let SP = {SP(u,v),∀ u, v ∈ D} denote the set of shortest paths between any
two vertices in D and SSP = {SSP(u,v), ∀ u, v ∈ V} denote the set of the second shortest paths
between any two vertices in V. The former is used to construct the temporary spanning tree
from the complete graph G′. The latter is used to construct the original SBMT and to back
up critical edges. The procedure of adjustment is repeated until there is no common edge
in CE. As a result, the SBMT is found. We note that the shortest path between any two
vertices in D and the second shortest path in V can be easily computed prior to executing
this algorithm by modifying Dijkstra’s algorithm [11]. We now formally address the FSA
algorithm in Fig. 3.

3.2 Adaptive SMT Algorithm (ASA)

When given a large Fr (i.e. smaller k), more edges in SMT are protected by SBMT and the
SBMT will have a large cost. In such a situation, the network utilization will be degraded
significantly by reserving bulk bandwidth. Besides, after the SBMT recovers many failures,
the multicast tree will become inefficient in terms of cost. This phenomenon caused by the
network is quite unreliable. Therefore, we propose an adaptive SMT algorithm (ASA) to
find a tolerable primary multicast tree and a better backup tree such that the cost difference
between them is minimal. We note that such a criterion is quite different from establishing
the minimum cost Steiner tree.

The ASA first finds the shortest path and the second shortest path from the source to
each destination. Let node s denote the source node in D and SP = {SP(s,u),∀ u ∈ D − {s}}
and SSP = {SSP(s,u),∀ u ∈ D − {s}} denote the sets of the shortest path and the second
shortest path from source node s to each vertex in D − {s}, respectively. For simplicity, let
P = SP

⋃
SSP = {P1,P2, · · · ,P2|D|−2} where w(Pi) ≤ w(P j) if i < j. The ASA tries to separate

set P into two subsets, say PA and PB, such that the cost difference between them is as small
as possible (we note that PA and PB contain the edges in SMT and SBMT, respectively). For
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F SMT A (FSA)
Input: an undirected graph G = (V,E) with cost function w : E→ Z+, a set D ⊆ V
Output: two trees TSMT and TSBMT; TSMT is the minimum cost Steiner
multicast tree and TSBMT is a Steiner backup multicast tree
Employ the Dijkstra’s algorithm to derive the SP and SSP sets
Construct the TSMT by KMB algorithm
Choose an edge (p, q) from TSMT of the lowest cost
TSBMT = TSMT − {(p, q)} ∪ SSP(p,q) // replace one of SP by SSP
For each edge (u, v) in TSMT and TSBMT

For each edge (r, s) in path SP(u,v)
If ((r, s) does not create a cycle in TSMT) add (r, s) to TSMT
If ((r, s) does not create a cycle in TSBMT) add (r, s) to TSBMT

Find CE = {e|gSMT(e) + gSBMT(e) ≥ µ + kσ, e ∈ TSMTande ∈ TSBMT}
While (CE , φ)

Find an edge e from CE such that gSMT(e) + gSBMT(e) is maximal
TSBMT = TSBMT − {e}

For each edge (r, s) in path SSPe
If ((r, s) does not create a cycle in TSBMT)

TSBMT = TSBMT ∪ SSP(r,s)
CE = CE − {e}

Return TSMT and TSBMT

Figure 3: Fixed SMT Algorithm (FSA)

simplicity, let Cost(S) denote the total cost of set S and is calculated as Cost(S) =
∑

Pi∈S w(Pi).
The ASA will minimize the difference between Cost(PA) and Cost(PB).

Actually, how to partition a set of numbers into two disjoint subsets so that the difference
of the sums of two subsets is minimized has been shown to be NP-complete [13]. Hence,
we propose a heuristic algorithm to solve this problem. Initially, let PA = P and PB = φ.
When Cost(PA) is larger than Cost(PB), paths of the smallest cost in PA are moved from set PA

to PB one by one until the condition is no longer satisfied. Contrarily, if Cost(PA) is smaller
than Cost(PB), a similar procedure is performed except that path(s) are moved from PB to PA.
To prevent the algorithm from executing infinitely, a threshold Epoch is employed to stop
the algorithm. When either the cost difference is zero or the iteration reaches the threshold
Epoch, the SMT and SBMT will be constructed from sets PA and PB, respectively. Two points
must be noticed during construction of SMT and SBMT. One is that both SP(s,u) and SSP(s,u)

for vertex u can not be located on the same tree because a loop would be formed. The other
is that if a loop is formed when adding a new path, the new added edges along this loop
should be discarded. An example of constructing SMT and SBMT is given in Fig. 4.

The graph G is a graph with 9 nodes. The cost of each link is given on the link shown
in Fig. 4(a). Let node s be the source node and let the multicast members be the nodes
a, c, g and h. First, the shortest path and the second shortest path from the source to
each multicast member are found. The cost of each path is recorded. All eight paths are
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Figure 4: An example of constructing the SMT and SBMT by adaptive SMT algorithm (ASA).

separated into two sets PA and PB according to the proposed strategy. We have two sets:
PA = {SP(s,a),SSP(s,c), SP(s,g), SSP(s,h)} and PB = {SSP(s,a), SP(s,c), SSP(s,g),SP(s,h)}. Moreover,
Cost(PA) = 22 and Cost(PB) = 23. We note that if both SP(s,u) and SSP(s,u) are assigned in the
same set, one of them must be moved to another set. Finally, each set will contain |D| − 1
different paths. Having both sets PA and PB, we may begin to build the SMT and SBMT,
respectively. The procedure is illustrated in Figures 4(b) and 4(c). The shaded nodes in
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A SMT A (ASA)
Input: an undirected graph G = (V,E) with cost function w : E → Z+, a set D ⊆ V and a threshold
Epoch
Output: two trees TSMT and TSBMT; TSMT is the primary multicast tree and TSBMT is a backup multicast
tree such that the cost difference between them is minimal, i.e., minimize Cost(TSBMT) − Cost(TSMT)
Employ the Dijkstra’s algorithm to derive the SP and SSP sets
P = SP ∪ SSP; PA = P; PB = φ
Loop = 0
While (Cost(PA) , Cost(PB) and ++Loop < Epoch)

if (Cost(PA) > Cost(PB))
Choose path p of the lowest cost from PA
PA = PA − {p}
PB = PB + {P}

else
Choose path p of the lowest cost from PB
PB = PB − {p}
PA = PA + {P}

For each vertex i where SP(s,i) and SSP(s,i) in a same set
Move one of them into another set

For each path P(s,v) in PA // construct the actual multicast tree TSMT
For each edge (r, s) in path P(s,v)

If ((r, s) does not create a cycle in TSMT) add (r, s) to TSMT
For each path P(s,v) in PB // recover the actual backup multicast tree TSBMT

For each edge (r, s) in path P(s,v)
If ((r, s) does not create a cycle in TSBMT) add (r, s) to TSBMT

Backup each critical edge as lines 10–19 in FSA algorithm
Return TSMT and TSBMT

Figure 5: Adaptive SMT Algorithm (ASA)

Fig. 4 are the multicast members and node s is the source node. Recall that when adding
the selected path to a multicast tree, edges along the added path that form a cycle will be
removed. Consider Fig. 4(b), for example. When adding SSP(s,c), two edges (s, d) and (d, c)
(shown by dotted line) are pruned from the SMT. Similarly, edge (c, g) is removed when
adding SP(s,h) in Fig. 4(c). After adding all paths in sets PA and PB, both SMT and SBMT
are constructed completely. Based on this method, there may still exist many overlapping
edges. Therefore, the following adjustment step is required and repeated until there is no
critical edge in CE. We now formally address the ASA algorithm in Fig. 5.

4 Dynamic Joining and Leaving in SMT and SBMT

4.1 Node Joining

The key point for node joining is how to find an optimal attachment point. Two methods,
WGA [5] and shortest path (SP) [11], are proposed for finding the attachment node. In WGA,

12



suppose a node s is the owner of the multicast tree and remains in this tree. A node u is
added to a multicast tree by choosing a node v in this tree which minimizes the function

w(v) = (1 − w) × d(u, v) + w × d(v, s), (4)

where 0 ≤ w ≤ 0.5 and d(x, y) is the distance(cost) from x to y. In the SP, a shortest path from
the source to the joined node is calculated. Since we have established a backup tree for the
SMT, both SMT and SBMT can be used to speed up the process of finding the attachment
point. There are four cases to be considered when a node is joined. For simplicity, let node
u be the new joining node in the following cases. An example of dynamic joining with four
cases is shown in Fig. 6.

Case 1: u ∈ TSMT and u ∈ TSBMT

This is the simplest case where the added node is already in both trees. This added node
is directly joined to both trees. Therefore, there is a unique path from source to this added
node. The topology and total cost of both trees are unchanged. In Fig. 6(b), node d is directly
joined to both trees.

Case 2: u ∈ TSMT and u < TSBMT

The node u is joined directly to SMT as described in case 1. In order to add node u into
SBMT, we attempt to find all paths in SMT from node u to the vertex which is also in SBMT.
Let Pn = {P|P ⊆ u

p−→ v, v ∈ TSMT and v ∈ TSBMT} denote the set of all available paths. We
choose the shortest path among Pn and add it to SBMT. In Fig. 6(c), node c is directly joined
to SMT and Pn = {c p−→ s, c

p−→ g}. Because c
p−→ g is the shortest path, it is added to SBMT.

We note that the path from s to c in SMT is different from that in SBMT.
Case 3: u < TSMT and u ∈ TSBMT

Obviously, the method is the same as case 2. Node u is joined to SBMT directly. Then,
we attempt to find the shortest path among Pn and migrate this path to SMT. In Fig. 6(d), b
is the added node and Pn = {b p−→ a, b

p−→ g, b
p−→ e}, therefore, b

p−→ a is added to SMT. We
note that the delay required for node joining in this case will be reduced significantly.

Case 4: u < TSMT and u < TSBMT

First of all, the WGA is used to find the attachment node in both trees. Then, the path
from node u to the attachment node is directly connected in both trees. In the case of adding
node f in Fig. 6(e), path c

p−→ f is placed in SBMT while d
p−→ f is placed in SMT.

4.2 Node Leave

Basically, we only consider the leaving node as an internal node or a leaf node for both
trees. If it is a leaf node, it is deleted and the ancestors of the node are repeatedly pruned
until a destination node or source node is reached. Otherwise, this node is just marked as
intermediate node only.
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Figure 6: Examples of node dynamic joining.

5 Simulation Model and Results

5.1 Simulation Model

In our experiment, we run two network models, a sparse network model (SNM) and a dense
network model (DNM). We say that a network belongs to SNM if |E| � |V|2. On the other
hand, a network belongs to DNM if |E| � |V|2 [11]. Both network models are similar to that of
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[5]. Nodes are randomly distributed in a rectangular coordinate grid. Each node is located
using integer coordinates. The distance is chosen for each pair of nodes in (0,L] from an
uniform random distribution. Each node in the simulation represents a switch or router,
which has some of the characteristics of an actual network. Also, each edge represents a
bi-directional physical link and is generated between pairs of nodes u, v with a probability
that depends on the distance between them. The edge probability is given by [5]

p({u, v}) = β exp
−d(u, v)

Lα
, (5)

where d(u, v) is the distance from node u to v, L is the maximum distance between two nodes,
and α and β are parameters in the range (0, 1] and control the characteristics of the graph
produced. Increasing β will increase the average vertex degree of the graph. Increasing α
will increase the ratio of longer edges relative to shorter ones. Finally, the cost of each edge
is set to the distance between its endpoints. In our simulations, a SNM is obtained when α
and β are set to 0.2 and 0.25, respectively while a DNM is obtained if both α and β are set
to 0.5. For both models, the maximal distance L between adjacent nodes is set to 50. For
each data point in the simulation results, 20 random graphs are generated for each model.
For each graph of the respective model, the corresponding multicast tree is established and
measured. Each reported data point is calculated as the average of the 20 collected data
points.

The performance of the proposed SBMT is evaluated in terms of the unreliable factor (Fu)
which is defined as follows:

Fu =
OE
E

(6)

where OE is the number of overlapping edges between SMT and SBMT and E is the number
of edges in SMT. The larger the Fu is, the less reliability the network has.

For investigating the efficiency of dynamic joining, a sequence of 1000 requests of adding
or removing nodes is monitored. The probability that a node adds to the multicast group
or removes from a multicast tree is determined by the probability function PC [5] which is
defined as follows

Pc =
α(n − k)

α(n − k) + (1 − α)k
, (7)

where k is the current number of nodes in multicast group, n is the number of nodes in
network, and α is a real-number parameter in the range (0, 1). The hit ratio Hr is defined as
the number of nodes added, which are just located within either SMT or SBMT, to the total
number of joining requests.

5.2 Simulation Results and Discussion

The performance of both models was compared by tree costs, Fu, and Hr. First of all, we
study the costs of SMT and SBMT constructed by the FSA and ASA for different sizes of
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Figure 8: Comparisons of tree costs obtained by FSA and ASA based on SNM under different
multicast sizes.

multicast group D in a graph with 100 nodes. The multicast size D is considered from 4
to 16 in steps of 2. Each subset D contains nodes selected at random from the 100 nodes.
For each algorithm, two curves are plotted for the tree costs of SMT and SBMT, respectively.
The tree costs obtained by different algorithms for DNM and SNM were shown in Figures
7 and 8, respectively. In Fig. 7, it is obvious that the FSA has the smallest Cost(SMT) and
the largest Cost(SBMT), respectively. Also, the cost difference between SMT and SBMT (i.e.,
Cost(SBMT)−Cost(SMT)) is dependent on the multicast size. We observe that the larger the
multicast size is, the larger the cost difference is.

Contrarily, the cost difference between SMT and SBMT derived by ASA is minimal for all
cases. Therefore, when most of links fail in the network, the employed multicast tree SMT
will be migrated into the SBMT and the total cost of tree will become very high if FSA is used.
On the other hand, the cost of tree is still almost the same as the primary multicast tree if ASA
is used. This implies that the proposed FSA and ASA are suitable for stable and unstable
networks, respectively. However, the total cost Cost(SMT)+Cost(SBMT) of ASA is larger than

16



0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Reliability Factor (Fr)

U
n

re
li

ab
le

 F
ac

to
r 

(F
u
) FSA (D=5)

ASA (D=5)

FSA (D=10)

ASA (D=10)

FSA (D=15)

ASA (D=15)

FSA

ASA

Figure 9: Comparisons of Fu obtained by FSA and ASA based DNM under different D and
Fr.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Reliability Factor (Fr)

U
n
re

li
ab

le
 F

ac
to

r 
(F
u
) FSA (D=5)

ASA (D=5)

FSA (D=10)

ASA (D=10)

FSA (D=15)

ASA (D=15)

FSA

ASA

Figure 10: Comparisons of Fu obtained by FSA and ASA based SNM under different D and
Fr.

that of FSA. Therefore, the timing of employing FSA or ASA is strongly dependent on the
link reliability of an actual network. When a user desires more than half of the edges to be
protected, the ASA algorithm should be applied to maintain a more reliable multicast tree
when networks incur fatal failures on many links. Fig. 8 illustrates the tree costs obtained by
FSA and ASA based on SNM under different multicast sizes. We can easily find that the FSA
still has the smallest Cost(SMT) and the largest Cost(SBMT). Also, the Cost(SBMT) of FSA is
smaller than Cost(SMT) of ASA when multicast sizes 8, 10, and 12 are considered. These are
quite reasonable because the total number of bridges in a tree constructed by ASA is smaller
than that constructed of by FSA. In other words, the number of overlapping edges between
SMT and SBMT constructed by ASA is less than that obtained when SMT and SBMT are
constructed by FSA.

The Fu of SMT was shown in Figures 9 and 10. The value of reliability factor Fr ranges
from 0.1 to 0.9. Intuitively, as Fr increases, the Fu of SMT decreases. Fig. 9 based on the DNM
shows that the Fu of the ASA is smaller than that of FSA except for the cases Fr ≥ 0.5 where
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D = 5 and Fr ≥ 0.8 where D = 10 and 15. We can also observe that the smaller the multicast
size is, the smaller the Fu will be derived in both algorithms. That is, the overlapping edges
are small for small multicast size. In general, the ASA algorithm can yield well results when
Fr ≤ 0.6. At this time, the Frs are bounded within about 0.23. This means that we plan
to establish a multicast service over an un-safety network by ASA, 77% link failure would
not only be tolerated but the cost of multicast tree would almost have the same cost as the
original one. This is another important fact to consider for employing the ASA algorithm.

For SNM shown in Fig. 10, the Fu of the ASA is smaller than that of FSA except for the
cases Fr ≥ 0.6 where D = 5 and Fr ≥ 0.8 where D = 5 and 10. Also, even when Fr = 0.9, it is
impossible to find a completely independent backup tree for SMT. The reason is that there
are too many bridges in SNM. In general, the ASA algorithm can yield good results when
Fr ≤ 0.4. At this time, the Fus are bounded within about 0.42. Obviously, the results are not
better than that of DNM. The key differences are that Fr is smaller and only 58% link failure
are tolerated.

The efficiency of dynamic joining with SBMT was shown in Figures 11 and 12 for DNM
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Figure 13: Comparisons of total number of multicast tree constructed by MST and ASA
based on DNM under different Fr.

and SNM, respectively. The ASA has the higher hit ratio HR than the FSA. This is because
the total number of nodes in SMT and SBMT in ASA is larger than that of FSA. As a result,
the probability of adding a node just located in either SMT or SBMT is higher. In Fig. 11, we
find that about 40% joining processes are improved when D = 16. We also found that when
a large Fr is specified, a higher HR is obtained. This is because a high reliability factor will
establish a ‘bigger’ SBMT. The maximal HR occurs when Fr = 0.9.

On the other hand, The ASA still has a the higher hit ratio HR than the FSA as shown in
Fig. 12. This is because the total number of bridges in SMT and SBMT in ASA is less than
that of FSA. As a result, the cost of the tree constructed by ASA is higher than that of the tree
constructed by FSA (as described above). In Fig. 12, about 50% of the joining processes are
improved when D = 16 since the total number of nodes in SMT and SBMT are larger than
that of DNM. The maximal HR still occurs when Fr = 0.9.

The total number of SMTs established for different group based on DNM and SNM is
shown in Figures 13 and 14. For both Figures, we used the minimal spanning tree (MST)
to construct all SMTs. Since there are no SBMTs, the total number of SMTs established is
independent of the Fr. On the other hand, ASA was used to construct both SMT and SBMT.
Since Fr affects the size of k, the total number of SMTs is dependent on the Fr. Therefore, it is
obvious that the MST can construct more SMTs than ASA no matter how much bandwidth
is assigned to for each edge. Note that the difference in the of total number of SMTs derived
by MST and ASA, respectively, in SNM is small. The reason is there are too many bridges in
the original graph.

The channel utilization (CU) was shown in Figures 15 and 16. We first define the channel
reservation (CR) as the total bandwidth reserved in advance and denote it as follows:

CR =
TESBMT × EBandwidth

EG × EBandwidth
, (8)
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Figure 15: Comparisons of CU constructed by MST and ASA based on DNM under different
Fr.

where TESBMT and EG denote the total number of edges in SBMT and G, respectively.
EBandwidth denotes the bandwidth assigned to each edge. Similarly, the CU for each established
SMT can be computed as follows:

CU =
TESMT × EBandwidth

EG × EBandwidth
, (9)

where TESMT denotes the total number of edges in SMT. Suppose the total number of SMT
derived by MST is MT and total number of SMT and SBMT derived by ASA is SST. The
total CU for MST and ASA can be computed as follows:

CUMST =

MT∑

i=1

CUi (10)

CUASA =

SST∑

i=1

CUi (11)
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Figure 17: Comparisons of SR constructed by MST and ASA based on DNM under different
Fr.

Obviously, from Figures 13 and 14, MT > SST. Thus, CUMST > CUASA. Also, the CUMST is
independent of Fr while CUASA is dependent of the Fr. That is, the larger the Fr was, the
smaller the CU is.

The surviving rate SR for DNM and SNM was shown in Figures 17 and 18, respectively.
We suppose a total of 10%, 20%, and 30% edges of SMT are derived by MST and ASA as a
result of failures in the network. The SR can be computed as follow:

SR =
Smember

|D| , (12)

where Smember denotes the total number of member nodes which remain in the SMT when
these edges fail. Obviously, ASA had higher SR than that of MST. In our experiment, almost
all failed edges can be backed up by SBMT. Contrarily, the SR of MST is very low since there
is not enough bandwidth to find another path to backup a failed edge. However, the value of
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Figure 18: Comparisons of SR constructed by MST and ASA based on SNM under different
Fr.

CUASA as shown in Figures 15 and 16 indicates that bandwidth must be reserved in advance
for backup. This will waste much bandwidth.

6 Conclusion and Remarks

In this paper, two algorithms for the Steiner backup multicast tree (SBMT) problem are
derived to find the SBMT in any network: the fixed SMT algorithm (FSA) and the adaptive
SMT algorithm (ASA). The algorithms are based on our observation that it is important to
protect the most critical overlapping edges between SMT and SBMT in order to obtain a
highly reliable network. To this end,we adopted a statistic-based reliability factor to classify
the critical edges in SMT. Simulation results show that the FSA and ASA are suitable for
stable networks and unstable networks, respectively. Moreover, when adding a node into
multicast group, both SMT and SBMT are used to find the best attachment node. Simulation
results show that the proposed SBMT provides a significant improvement on the node-
joining processes. Most of these simulation results remain the same when the network
model is changed. Thus, it is clear that our algorithms can be applied to any network model.
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