An Intelligent Modulation Controller with Fuzzy Function for IEEE 802.11 Multi-Rate/Range Transmission

Shiann-Tsong Sheu, Jenhui Chen, and Yung-Da Wang

Dept. of Electrical Engineering, Tamkang Univ.

Tamsui, Taipei Hsien,

Taiwan, R.O.C.

Outline

- IEEE 802.11 Network
- Multi-rate and Multi-range Transmission
- MAC Delay & Packet Error Rate
- Fuzzy Rate Controller
- Simulation Model
- Simulation Results

IEEE 802.11 Network

- shared wireless access network connects mobile hosts to internet
- Data rate can be up to 11Mbps
- The highest data rate is depending on the link quality and the transmission distance

IEEE 802.11 Network

- The DSSS PHY
 - 1Mbps uses Differential Binary Phase Shift Keying (DBPSK)
 - 2Mbps uses Differential Quadrature Phase Shift Keying (DQPSK)
 - 5.5, 11Mbps uses complementary code keying (CCK)
- The FHSS PHY
 - 1. uses 2- or 4-level Gaussian Frequency Shift Keying (GFSK) modulation

 IEEE 802.11b PLCP sublayer supports
2 / 5.5 / 11 Mbps

A higher data rate may incurs a higher packet error rate

 Every mobile host needs decide a proper transmission rate to deliver packets

Multiple Data Rates

Higher rate is the best choice ?

When we need the lower rate ?

Transmission Range vs. Data Rate

- Different rates can be derived by using different modulation techniques
- Low speed data rate provides a longer transmission distance

What Rate We Need

- High speed data rate improves throughput
- Low speed data rate guarantees packet error rate

Average MAC Delay

Analysis parameters:

- ◆ 0.001 packet arrival rate
- ✤ 200 bytes data payload

Packet Error Rate vs. Transmission Distance

- The PER is measured under different transmission distance
- There are some gray areas
- Problem : how to choose to proper data rate to minimize the packet error rate ?

Fuzzy Rate Controller

- Choose the proper transmission rate to transmit packets will derive the maximal network utilization
- We use fuzzy control to choose data rate to accommodate the varying channel condition and transmission distance from time to time

RSSI Membership Function

- In IEEE 802.11, RSSI values are measured in the range from 0 through RSSI maximum
- This parameter can be obtained by the PHY sublayer from antenna when receiving a PPDU

 \Box Max. RSSI value = 63,

MAC delay and PER Membership Functions

Rule Table

Max–Min scheme is used to generate the fuzzy results

 Results indicate how to switch speed rate : un-change, raise or slowdown

RSSI	PLR	MD	Rate Control
S	Н	Н	$\overline{\mathbf{V}}$
S	Н	Μ	$\overline{\mathbf{V}}$
S	H	L	$\overline{\mathbf{V}}$
S	Μ	Н	$\widehat{\mathbf{t}}$
S	М	М	
S	М	L	-0-
S	L	Н	
S	L	М	-0-
S	L	L	

RSSI	PLR	MD	Rate Control
F	Н	Н	$\overline{\mathbf{L}}$
F	Н	М	
F	Н	L	Ţ
F	М	Н	仑
F	М	М	-)-
F	М	L	$\overline{\Gamma}$
F	L	Н	$\widehat{\mathbf{t}}$
F	L	М	-)-
F	L	L	Ţ

RSSI	PLR	MD	Rate Control
W	Н	Н	Ţ
W	Н	М	
W	Н	L	Ŷ
W	М	Н	-0-
W	М	М	-)-
W	М	L	-)-
W	L	Н	-)-
W	L	М	-)-
W	L	L	

Simulation Model

100m X 100m square area

- The considered data rates and the associated transmission ranges :
 - ✤ 2Mbps 150m
 - 💠 5.5Mbps 80m
 - 11Mbps 50m
- Destination is randomly selected form all mobile hosts.
- Packet arrival rate is 0.001.
- Average packet length is 200Bytes.

Simulation Results

Conclusions

- The proposed fuzzy controller can provide
 - Iow packet error rate
 - Iow access delay
 - maximal channel utilization