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Abstract. The study of magnetohydrodynamics (MHD) deals with the flow of an electrically conducting fluid in the presence 
of an electromagnetic field, which has many applications in astrophysics, geophysics and engineering. Objective of the present
study in this paper is to consider the effect of dissipation and Hall current on the MHD free convection flow with mass transfer in 
a porous vertical channel. An exact solution of the governing equations is obtained by solving the complex variables. The effect 

of Hall parameter ),(m Hartmann number ),(M and Concentration parameter )( cS on the velocity and temperature of the 
fluid is studied. Simulation results show that the shear stress of primary and secondary velocity for the lower plate increases with 
increase in the strength of Hall parameter )(m and decreases with increase in Hartmann number )(M and concentration 

parameter )( cS .

INTRODUCTION

Magnetohydrodynamics (MHD) or hydromagnetics is a simplified model of magnetized plasma in which plasma 
is treated as a single fluid and can carry an electric current. By saying single fluid, it is meant that there is only one 
density, i.e. the mass density and temperature, and there is also only one velocity, since electrons and ions cannot be 
treated separately. Though, an infinitesimal element of each fluid is assumed to contain an arbitrarily large number 
of charged particles of the corresponding species, it is too small compared to the spatial scale over which 
macroscopic thermodynamic or field quantity varies. Besides, the contribution of the electrons to fluid inertia could 
be neglected as the mass of an individual electron is so much smaller than that of an individual ion.

The magnetic field responding to the electric field as usual is actually adverted by the velocity field, since the 
latter is related in a constitutive way to the electric field, which is the ideal MHD model. The study of the problem 
of heat and mass transfer of an electrically conducting fluid through a channel has many engineering applications 
such as cooling of nuclear reactors, rocket technology etc. Authors in [1] have studied the hydromagnetics free 
convection flow of a viscous incompressible fluid. Authors in [2], [3], [4] have studied free convection flow with 
mass transfer in the presence or absence of magnetic field. However, authors in [5], and in [6] have studied the 
effect of Hall current on a steady hydromagnetics free convection flow.

The Hall effect on oscillatory hydromagnetics free convection flow past an infinite vertical porous flat plate has 
analyzed in [7]. Authors in [8] have studied the effect of viscous dissipation in natural convection in the absence of 
magnetic field. However, in the above investigations they have not considered the mass transfer and Hall effect 
simultaneously. Also, in the above studies the effect of viscous dissipation which plays an important role has been 
neglected. The objective of the present study is to consider the effect of dissipation and Hall current on the MHD 
free convection flow with mass transfer in a porous vertical channel.

The rest of the paper is organized as follows. Mathematical formulation of the said problem is made in Section II 
and possible solution is derived in Section III. Effect of viscous dissipation is analyzed in Section IV. Simulation 
results of various physical parameters on the flow are discussed in Section V and concluding remarks are made in 
Section VI.
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MATHEMATICAL FORMULATION

Consider the free convection flow of an electrically conducting fluid in a vertical channel, where the plates are 
separated by a distance of h units from each other. It is considered that the 'x -axis is parallel to the plate and 'y -

axis is normal to it. There is a uniform suction 0V on the wall 0y and a uniform injection 0V on the wall hy .

A uniform magnetic field 0H acts normal to the channel neglecting the induced magnetic field. Considering the 
above assumptions, the magnetic field equation can be:

)0,,0( yHH (1)
This assumption is justifiable only when the magnetic Reynolds number is very small [9]. Using Maxwell’s 

equation ,0Hdiv we can have

0HH y (2)
From the equation of conservation of electric charge, we have

0Jdiv (3)
Neglecting the polarization effect, we take

0E (4)
Taking Hall current into account, the generalized Ohm’s law is given by

)()(
0

BqEBJwJ ee (5)

Taking equation of continuity, ,0qdiv it is obtained that .0
y
v

Hence,

0, 00 VVconstantv (6)
Now, using equation 3 and 6, we get,

),,(
),0,(

0 wVuq
JJJ yx (7)

Using relations given in equation 7 in equation 5, we have 

0
2

0
2

( )
1

( )
1

x

z

J mu w
m

J u mw
m

(8)

For a fully developed steady free convection flow and mass transfer, the governing equations may now be 
written as

22
0 *

0 2 2
'

1
B u mwdu d uV g T g C

dy dy m
(9)

22
0

0 2 21
mw wdw d wV

dy dy m
(10)

2
2 2

0 2 [( ) ( ) ]
p p

dT k d T du dwV
dy C dy C dy dy

(11)

2

0 2

' 'dC d CV D
dy dy

(12)
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The boundary conditions are:

1 1

2 2

0,  =0, = ,  ' at 0
0,  =0, = ,  ' at 

u w T T C C y
u w T T C C y h

(13)

On introducing the following dimensionless variables,

0 0

2 2

1 2 1 2

', ' , ,

',

y u wu w
h V V

T T C CC
T T C C

(14)

equations 9-12, can be written in the dimensionless form (on dropping dashes) as 
2

2

2

1

0
1 c

d u du
R d d

RM u mw RG RG C
m

(15)

2

2 2

1 0,
1

d w dw RM mu w
R d d m

(16)

2 22

2

1 0,
.

c

r

Ed d du dw
R P d d R d d

(17)

2

2

1 0
c

d C dc
RS d d

(18)

where, the dimensionless parameters are 0V hR
v

is the Reynolds’s number, 1 2
3

0

g T T
G

V
is the Grashof 

number, 1 2
3

0

*
c

g C C
G

V
is the modified Grashof number, p

r

C
P

k
is the Prandtl number,

2
0 1 2/C pE V T T C is the Eckert number, c

vS
D

is the Schmidt number. M is the Hartmann number.

The modified boundary conditions are:
0,  1,  1 at =0
0,  0,  0 at =1

u w C
u w C

(19)

SOLUTION 

The solution of the governing equations 15-18 has been made using successive approximations. We first solve 
the system on neglecting the viscous dissipation in equation 17 and subsequently solve for the dimensionless 
temperature on inclusion of the viscous dissipation. Neglecting viscous dissipation, the equation 17 becomes

2

2 0r
d dRP
d d

(20)

The solution for and C satisfying the approximate boundary conditions from equation 19 is given by
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11
1

r

r

RP

RP
e

e
(21)

and
11

1

c

c

RS

RS
eC

e
(22)

Introducing u iw , equations15 and 16 can be written together as
22

2
2 2

1
1 c

MR imd dR R G G C
d d m

(23)

Substituting and C from equations 21 and 22 in equation 23 and solving for , we can have
5 5 7 7 1 2

5 5 7 7 1 2

1 6 2 6 3 8 4 8 1 1 1

1 6 2 6 3 8 4 8 2 2 2

[ ( ) ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ( ) ]

a a a a a a

a a a a a a

b e cos a b e sin a b e cos a b e sin a p e q e s

i b e sin a b e cos a b e sin a b e cos a p e q e s
(24)

5 5 7 7 1 2
1 6 2 6 3 8 4 8 1 1 1( ) ( ) ( ) ( )a a a a a au b e cos a b e sin a b e cos a x b e sin a p e q e s (25)

The secondary velocity is given as:
5 5 7 7 1 2

1 6 2 6 3 8 4 8 2 2 2( ) ( ) ( ) ( )a a a a a aw b e sin a b e cos a b e sin a b e cos a p e q e s (26)

Where 2 2 1/4
5

1 ( )
2 2

a R a b cos
2 2

2 1
2 2

4 4,  ,  
1 1

MR MR ba R b tan
m m a

EFFECTS OF VISCOUS DISSIPATION

Now considering the effect of viscous dissipation in the free convection flow, the energy equation can be written 
as:

2 22

2 r r c
d d du dwRP P E
d d d d

(27)

Using the non-dissipative solution for u and w , the right hand side terms of equation 27 becomes

5 7 1 2 1

31 2 2

3

2 2
2 2

3 4 5 6 7 7

8 7 9 6 10 8 11 6

12 6 13

( )

            ( ) ( ) ( ) ( )

( )

a a a a C
r c

cc c c

c c

du dwP E p e p e p e p e p e sin c
d d

p e cos c p e sin a p e cos c p e sin a

p e cos a p e 54 4

5 6

8 14 8 15 8

16 8 17

( ) ( ) ( )

( )

cc

c c

sin a p e cos a p e sin a

p e cos a p e

(28)

Putting equation 28 in equation 27, the complete solution of this equation becomes
5 71 1 2 1 1

1 1 2 2

32 2

2 2
3 4 3 4 5 6 7 7 8 7

9 7 10 7 11 6 12 6

13 6 14 6 15

( ) ( )

     ( ) ( ) ( ) ( )

     ( ) ( )

a aa a a c c

c c c c

cc c

c c e q e q e q e q e q e cos c q e sin c

q e sin c q e cos c q e sin a q e cos a

q e sin a q e cos a q e co 3

3 3 4 4

5 54 4

5 5

6 16 6

17 6 18 6 19 8 20 8

21 8 22 8 23 8 24 8

25 8 26

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

C

C C C C

C cC C

C C

s a q e sin a

q e sin a q e cos a q e cos a q e sin a

q e cos a q e cos a q e cos a q e sin a

q e sin a q e c 6
8 27( ) cos a q e

(29)
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Using the boundary conditions given in equation 19 in equation 29 and solving for the constant 3c and 4c , we 
have

1 1
5 7 1 2

1

1

2

2 2
3 4 5 6 8 7

7 7 9 7 10 7 11 6 12 6 13 6

14 6 16 6 5 6 17

( ) ( ) [ ( )
( 1)

( ) ( ) ( )] [ ( ) ( ) ( )

( )] [ ( ) ( )

a a
a a a a

a

c

c

e e q e q e q e q e q sin c
e

q cos c q sin c q cos c e q sin a q cos a q sin a

q cos a e q sin a q cos a q 3

4

5 6

6 17 6 18 6

20 8 21 8 22 8 19 8 24 8 23 8

25 8 26 8 27

( ) ( ) ( )]

[ ( ) ( ) ( ) ( )] [ ( ) ( )

( ) ( )]

c

c

c c

sin a q sin a q cos a e

q sin a q cos a q cos a q cos a e q sin a q cos a

q sin a q cos a e q e

(30)

A. Shear stress

For the primary flow, the shear stress at the lower plate 0 is given as

0
p

u
(31)

Hence, 1 1 1 2 4 8 1 5 2 6 3 7p p a q a b a b a b a b a                                                                 (32)

For the primary flow, the shear stress at the upper plate 1 is given by

*
1]p

u
(33)

51 2

7

1 1 1 2 2 5 6 2 6 6 1 5 6 1 6 6

4 8 8 3 7 8 3 8 8 4 7 8

[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( )]

aa a
p

a

p a e q a e b a sin a b a cos a b a cos a b a sin a e

b a cos a b a cos a b a sin a b a sin a e
(34)

For the secondary flow, the shear stress at the lower plate is

0]s
w

(35)

Hence, 1 6 2 5 3 8 4 7 2 1 2 2s b a b a b a b a p a q a                                                                 (36)
For the secondary flow, the shear stress at the upper plate is

*
1]s

w
(37)

5

7 1 2

1 6 6 1 5 6 2 5 6 2 6 6 3 8 8

4 7 8 3 7 8 4 8 8 2 1 2 2

[ ( ) ( ) ( ) ( )] [ ( )

      ( ) ( ) ( )]

a
s

a a a

b a cos a b a sin a b a cos a b a sin a e b a cos a

b a cos a b a sin a b a sin a e p a e q a e
(38)

B. Rate of Heat transfer 
The dimensionless rate of heat transfer at the lower plate 0 is

1

1

1
0]

1

a

a
a eNu

e
(39)

The dimensionless rate of heat transfer at the upper plate 1 is

1

* 1
1]

1 a
aNu
e

(40)

C. Concentration gradient
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The concentration gradient at the lower plate is
2

2

0 2
0]

1

a

G a

c a eC
e

(41)

The concentration gradient at the upper plate is

2

2
1]

1G a

acC
e

(42)

RESULTS AND DISCUSSION

The effect of various physical parameters on the flow of the viscous fluid in the presence of magnetic field is 
studied by means of several graphs and numerical tables. The velocity and temperature profiles for different values 
of Hall parameter m , Hartmann number M , Grashof number G , Reynolds number R , Eckert number 

cE , Concentration parameter cS , and Prandtl number rP are shown in Figures 1 to 6.

FIGURE 1. Primary velocity profile for different values of 
m , cS , R and M , When 1.0rP , 0.01cE

2.0cG , 5.0G

FIGURE 2. Secondary velocity profile for different values of 
m , cS , R and M , When 1.0rP , 0.01cE

2.0cG , 5.0G
Figure 1 shows the effect of Hall parameter m , Hartmann number M , Concentration parameter cS , and 

Reynolds number R on primary velocity ( u ) on keeping other parameters constant. It is observed that the 

primary velocity increases with increase in Hall parameter m , but decreases with increase in Hartmann number

M , Concentration parameter cS , and Reynolds number R . It is found that for higher values of  ( 50)R R
, the primary velocity u approaches to zero. Figure 2 displays the profiles of secondary velocity w for 

different values of , ,m M R and cS . Similar effects are observed on the secondary velocity as in the primary 
velocity. However, the secondary velocity has larger values than the primary one for the same value of the above 
parameters.

Figure 3 and 4 represent the primary and secondary velocities for different values of Prandtl number rP and 
Grashof number, i.e., heating or cooling effect of the plates. In both figures, velocity increases on heating the plates
( 0)G , but decreases on cooling it ( 0)G . In increasing the Prandtl number rP , the primary as well as 
secondary velocities decrease.

020044-6



FIGURE 3. Primary velocity profile due to cooling and 
heating of the plates for different values of G and rP , when

2.0cG , 0.6cS , 5.0R , 1.0m , 8.0M .

FIGURE 4. Secondary velocity profile due to cooling and 
heating of the plates for different values of G and rP , when

2.0cG , 0.6cS , 5.0R , 1.0m , 8.0M .

Figure 5 shows the temperature profiles for various values of Eckert number cE . The temperature increases 

with increase in Eckert number. The temperature profiles corresponding to cE = 0.001, 0.01 and 0.1 represent the 

temperature distribution on considering viscous dissipation, but the curve corresponding to cE =0.0 shows the 
temperature without dissipation. In the same figure, it is observed that temperature falls with increase in Reynolds 
numbers. Figure 6 shows the concentration profiles for different values of concentration parameter cS and 

Reynolds number R . It is observed that concentration of the fluid decreases with increase in the value of cS or R .

The numerical values of the shear stress for both primary and secondary flows, i.e. *, ,p p s and *
s are 

tabulated in Tables 1 and 2. Table 1 represents the effect of , , cm M S on the shear stresses, when all other physical 
parameters are fixed. It is observed that the shear stress of primary and secondary velocity for the lower plate 
increases with increase in the strength of Hall parameter m and decreases with increase in Hartmann number 

M and concentration parameter cS . However, the result is reverse from both the shear stresses at the upper 
plate of the channel.

FIGURE 5. Temperature profile for different values of cE
and R , when 5.0G , 2.0cG , 0.6cS , rP 1.0 ,

FIGURE 6. Concentration profile for different values of cS
and R , when 5.0G , 2.0cG , 1.0m , 8.0M ,
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1.0m and 8.0M . 0.01cE , rP 1.0 ,.

TABLE 1. Effect of ,m M and cS on shear stress of primary and secondary flows, when G = 5.0, 

R = 5.0, rP = 1.0, cE =0.01.

m M cS p p s s

0.5 8.0 0.6 11.7269 -0.0933 2.4711 -0.0452
1.0 8.0 0.6 12.6102 -0.0968 4.5552 -0.0809
1.0 16.0 0.6 9.1355 -0.0496 3.4667 -0.0450
1.0 8.0 0.24 12.9677 -0.1681 4.8794 -0.1233
1.0 8.0 1.5 11.7914 -0.0623 3.9733 -0.0538

Table 2 represents the effect of R and G on shear stresses. It shows that the shear stresses for both primary and 
secondary flows on both the plates of the channel increase with increase in Reynolds number. However, the shear 
stress at the upper plate vanishes for higher value of R (i.e. 5.0R ). Also, it is found that on heating the plates, 
shear stress for both primary and secondary flow at the lower plate increases, whereas those at the upper plate 
decreases. Reverse effect is observed on cooling the plate.

TABLE 2. Effect of R and G on shear stress of primary and secondary flows, when 

m = 1.0, M = 8.0, rP = 1.0, cS = 0.06, cE = 0.01.

R G P P S S

50.0 5.0 127.2309 0.0000 16.7757 0.0000
10.0 5.0 25.4382 -0.0068 9.3465 -0.0064
5.0 5.0 12.102 -0.0968 4.5552 -0.0809
5.0 10.0 21.5373 -0.1580 7.7432 -0.1331
5.0 -5.0 -5.2440 0.0256 -1.8207 0.0235
5.0 -10.0 -14.1711 0.0868 -5.0086 0.0758

CONCLUSION

In this paper, effect of various physical parameters such as , cR S and rP on concentration gradients GC and 
*
GC also on the rates of heat transfer Nu and *Nu are studied. It is observed that the rate of heat transfer and 

concentration gradient at the lower plate increase with increase in value of Reynolds’s number, whereas those at the 
upper plate decrease. The concentration gradient at the lower plate increases with increase in concentration 
parameter cS , whereas the same at the upper plate decreases. Similarly, the rate of heat transfer at the lower plate 

increases with increase in rP , but at the upper plate decreases.
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