
Ferrying Vehicular Data in Cloud Through Software
Defined Networking
Prasan Kumar Sahoo, Yoppy Yunhasnawa

Dept. of Computer Science and Information Engineering
Chang Gung University, Guei-Shan, 33302, Taiwan (ROC)

Email: pksahoo@mail.cgu.edu.tw, M0329016@stmail.cgu.edu.tw

Abstract—In Vehicular Ad Hoc Network (VANET), huge
amount of data requests are made by the users from the
vehicles traveling through a city. The requested data need to
be transmitted and processed by the cloud service providers to
maintain the quality of service. In this paper, data transmission
time is computed when vehicular data is transmitted to the
cloud though the road side units and OpenFlow switches in a
Software Defined Network (SDN). The proposed scheme allows
some sorts of traffic engineering methods that can be used to
address the connectivity problems involving transmission delay
and packet loss of the vehicles in a smart city. Simulation results
show that the proposed mechanism can achieve better packet
delivery rate and least round-trip time as compared to similar
data transmission protocols.

I. INTRODUCTION

The numbers of hand-held devices have increased signifi-
cantly due the advancement of mobile communication tech-
nology. On the other hand, vehicular information technologies
such as VANET and navigation system have become more and
more sophisticated [1]. These technologies are improving the
vehicular connectivity experience by which both of the driver
and passenger can have easier data access from the inside of
their vehicle. In VANET, Road Side Unit (RSU) is used as an
instrument to gather data from the vehicles in the road, which
is used as a medium to transfer the data from the city cloud
to the vehicles.

Guaranteeing quality of connectivity for every vehicle reg-
istered in a smart city vehicular network is not a trivial
matter due to several factors such as the variety of vehicle
movements and traffic density. In a smart city, traffic condition
in each road varies time to time. On the one hand, there are
some roads that have less traffic in which the communication
between each passing vehicle and the corresponding RSU is
established smoothly due to the fact that all of those vehicles
only need smaller amount of time connecting with the RSUs
as they travel to the next road. Consequently, workload of the
corresponding RSU will also be less. However, on the other
hand there are roads that have more traffic. For example, red
traffic light on a busy road intersection or any roads near
the shopping center/mall area in which the workload of the
corresponding nearby RSU will become more.

In case of a heavily congested roads, both drivers and
passengers might become bored and may interact with their

This work is partly supported by the Ministry of Science and Technology
(MOST), Taiwan under the grant number 105-2221-E-182-050.

devices inside their vehicle to look for some entertainment
programs by requesting various services from the city cloud
in form of game, video, advertising, news, social media and
others. As a result, the corresponding RSU near the road
will become overloaded because of the increasing number
of vehicles sending and receiving large amount of data to
and from the city cloud, simultaneously. Furthermore, this
problem can be worsened, if another section of nearby road
also suffers heavy traffic jam. In other words, if more nearby
RSUs are being overloaded, the corresponding aggregation
switch will also have higher chance of becoming overloaded.
Thus, the total value of round trip time (RTT) will increase
significantly and finally affects the users’ experience as the
packets transmission is being delayed.

The rest of the paper is organized as follows. Related works
are given in Section II. System model of the proposed work is
given in Section III. The proposed round trip time computation
is described in Section IV. Performance evaluation of the
protocol is made in Section V and concluding remarks are
made in Section VI.

II. RELATED WORKS

Methods of traffic engineering and load-balancing in a
cloud-connected network by utilizing SDN controller have
been proposed by some handful papers before. The effective-
ness of traffic engineering in an existing network with SDN
architecture incrementally applied is evaluated by the author
in [4]. In that work they demonstrate how SDN controller can
significantly improve utilization of the network while at the
same time reducing the rate of packet loss and delay. Their
work is able to solve traffic engineering problem in a hybrid
network environment consists of traditional and OpenFlow
switching devices. In contrast, our work considers a network
environment that uses 100% OpenFlow-enabled switches that
are controlled by an SDN controller.

Author in [5] proposed a method to significantly reduce
the rate of packet loss also in a hybrid network by utilizing
network packets’ header. In this work, they employed piggy-
backing method using packet’s header to update every path’s
load in the network whenever every packet arrives at any
switching devices and finally the SDN controller will decide
how much data rate can enter the network’s ingress switch.
Their method is proven very effective in avoiding network
path congestion. Another work by authors in [6] demonstrates

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-5090-0724-0/16/$31.00 ©2016 IEEE

the benefits of traffic-aware VMs placement in enhancing the
network scalability. The main goal of their work is to produce
the most optimal VMs allocation on a group of physical
machines by analysing the characteristic of traffic patterns
between all VMs. Yet, the proposed method considers only
the network link utilization or network congestion, without
any thought about the workload in each VM by which the
latency of the service can be seriously affected.

Authors in [7] proposed an idea to enable zero over-head
communication between users and servers by considering jobs
arrival rate. While their scheme successfully eliminates any
overhead caused by scheduling in each job’s critical path,
they do not separate the jobs type and treat them equally.
Finally, the author of [8] proposed a method to reduce a
cloud data center network’s Round Trip Time. They consider
different type of request as well as the load of every path in
the network. In the work they collected all available routing
paths in the entire network and then estimate the paths’ load
based on packets’ arrival rate and switching devices processing
capability. All of those paths then sorted and filtered according
to the least load. They also filter the destination VM based on
the request type and estimate all VM load to find the correct
VM with the least load. The combination of the least loaded
network path and VM resulting in the minimization of overall
RTT. Although they successfully reduce the RTT in a fixed
network, they do not consider the dynamic back-trip path.
For any given packet, they will use the same path used by
incoming request packet for the outgoing response packet. In
a mobility-enabled network, it is very crucial as requesting
nodes can move at any time to any place.

III. SYSTEM MODEL

In this system model we assume in a smart city vehic-
ular network there are many vehicles {V1, V2, ...Vm} and
each of the vehicle Vi has different position in latitude
V x
i and longitude V y

i . Those vehicles are traveling along
many different roads which have their area fully covered by
communication range with radius RSUr

i of a set of road-
side units (RSUs) {RSU1, RSU2, ...RSUm} installed across
the entire city. All of those RSUs are grouped into some
clusters {ClusRSU1, ClusRSU2, ...ClusRSUm} based on
their geographical adjacency. For each RSU cluster ClusRSUi

there will be single SDN switch SWi acting as the aggregation
switch for all RSUi member of that cluster such that the
total number of RSU clusters is equal with the total number
of SDN switches installed around the city. Each and every
SDN switch is assumed to be connected in MESH topology
with all available VM VMi,j serving different request types
in the smart-city cloud. Every link that allows a packet to be
delivered from any vehicle through RSU to SDN switch, until
it reaches a specific destination VM we named it as packet
route Pathi and every packet route will have different value
of round-trip time RTTi.

IV. PROPOSED PROTOCOL

Both of the transmission delay and packet loss problems will
be considerably difficult to handle by conventional aggregation
switches because that kind of switching devices work indi-
vidually in nature as they adopted distributed non-collective
routing algorithm instructed in each device’s logic board. This
independent work causing each switching device ignoring the
work of other switching devices thus they become blind of
the global view of the entire network topology, furthermore
preventing advanced technique of congestion control and load
balancing to be applied on the city’s already complicated
vehicular network.

In this research work we propose a way to work out the
problem by considering the usage of SDN switches as the
replacement of conventional aggregation switches installed
in the smart-city’s vehicular communication network. SDN
switch allows centralized communication network manage-
ment, thanks to its separated data and control plane [2].
With the help of OpenFlow protocol, the routing logic of
the switching device can be moved to a separate controlling
entity away from the physical network itself [3]. Consequently,
those controlling entity is able to gather the information of all
available routing paths from the entire network resulting in the
complete understanding of the global view of the network.

Based on the known location information of a moving
vehicle and the comprehensive knowledge of all available
routing paths across the entire city’s vehicular network, we
can then easily select and sort the most optimal routing path
for the vehicle at a specific time in a specific transmission
grid. In this work, we try to select the best routing path to be
assigned to each registered vehicle by considering the value
of RTT, a chunk of time needed by a request to travel from its
sender until it reaches a specific destination VM in the cloud
plus the time needed by the consecutive response packet to
travel from the VM back to the requesting vehicle.

Knowing the estimated value of RTT precisely is very
important because RTT itself is proportional to how much load
in a routing path, moreover the load value is also proportional
with the possibility of congestion. Finally, the most important
contributions of this work consists of an analysis about the
total value of RTT of a certain routing path in the smart-city
vehicular network as well as a set of protocols that aims to
reduce the probability of transmission delay and packet loss
in between vehicle and city cloud data exchange.

A. VANET Layer

In VANET layer we divide a smart-city area into a group of
smaller rectangular area based on the communication radius of
every RSU installed across the city. This rectangular area, we
name it as transmission grid. Transmission grid is a logical grid
in the shape of equal-sided rectangle inside a circle formed by
rotating an RSU communication radius.

If an RSUi has the communication radius RSUr
i , then

RSUi will be the center of a transmission grid TGi that has

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

Fig. 1. Transmission Grid.

Fig. 2. Proposed Packet Header.

equal length in all of its sides TGs
i where:

TGs
i =

1

2

√
2RSUr

i (1)

The formed transmission grid TGi should have a maxi-
mum and minimum location range based on the Cartesian
position of road-side unit RSUi that become its center. The
maximum/minimum X position TG

x−max/min
i is the maxi-

mum/minimum latitude for any vehicle to be considered inside
the coverage area of transmission grid TGi and the same
thing applies for the maximum/minimum Y TG

y−max/min
i

as longitude. If coordinate of the RSU that consists of latitude
RSUx

i and longitude RSUy
i are known, then:

TG
x−max/min
i = RSUx

i ±
√
2RSUr

i (2)

And,
TG

y−max/min
i = RSUy

i ±
√
2RSUr

i (3)

Respectively.
1) Registration and De-registration: In order to make sure

that every vehicle registered in the smart-city network does not
experience any packet loss, their movements should be well
monitored. So, we assume that SDN controller should have a
capability in storing and maintaining the location information
attached in data packet sent by each and every vehicle from
the entire city network. The monitoring process consists of
two different processes called registration and de-registration.
Each of the process will be enforced every time a vehicle
entering and exiting a transmission grid.

Registration process is a location recording process enforced
at the time a vehicle Vi is entering the area of a transmission
grid TGi. In this process, the corresponding road-side unit
RSUi will inform the SDN controller that the vehicle Vi

is currently under its ’jurisdiction’. Road-side unit RSUi

will modify the header of all data packets sent by vehicle
Vi filling the rsu id slot with its ID. At the moment the

packet forwarded and then retrieved by an SDN switch, SDN
controller will read the packet header and then updating the
registered vehicle table in its memory by adding a new
record containing the ID of vehicle Vi and ID of RSU RSUi

exactly the same as written in in the packet header. In addition,
the record will also contain ’IN’ flag for coverage status
column.

De-registration process happens at the time a vehicle Vi

is exiting the area of transmission grid TGi. The overall
steps are similar to the registration process, however for
de-registration process the corresponding RSU RSUi will
inform SDN controller that the vehicle Vi is no longer in its
jurisdiction. In respond to this signal, SDN controller will also
make a new entry in registered vehicle table containing ID
of vehicle Vi and the ID of RSU RSUi but with ’OUT’ flag
for coverage status column.

One of the most important benefits from these two pro-
cesses is that the SDN controller will always know where is
exactly the vehicle Vi currently resides. Accordingly, the SDN
controller will be able to prevent any packet loss whenever a
response packet sent from the service provider VM back to
the requesting vehicle at the time the packet arrived at any
SDN switch by performing location checking in its memory.

Following is the complete vehicle handoff mechanism in an
algorithm form describing how a vehicle movement from one
transmission grid to another transmission grid will be handled.

B. SDN Layer

This layer covers communication aspect that occurs in the
city wired network along the way from one transmission grids
RSU to the very first SDN switches connected to it until finally
the very last SDN switch connected to the cloud. The protocol
in this layer heavily depends on the analysis of how much
average time needed by packets to travel from an RSU to a
final SDN switch. That chunk amount of time we named it
DTT (Data Transfer Time) will determine whether a certain
path is in heavily loaded, congested, or normal condition.
The main purpose of this layer is to minimize overall DTT
for the packet as well as avoiding network congestion while
maintaining balanced load at the same time.

1) Packet Time in the Network: In this work, DTT is
regarded as one of two important RTT components because
the value of DTT will considerably affects the total value of
RTT as packets may spent most of their living time in the
chosen network paths. DTT itself is a result of combination
between average packet sojourn time tSWwait in the network
and packet processing time by the switch tSWprocess in all
network nodes.

DTT = tSWwait + tSWprocess (4)

In a smart-city network, a packet route Pahthj can be
formed by connecting several network nodes comprises of dif-
ferent number of RSUs and switching devices. In our VANET
topology as described in Layer 1 part, RSU can be connected
to other RSU, but RSU connections will always ended up in

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

the first SDN aggregation switch. So, once the packet reaches
an SDN switch, it will not go into any other RSU, instead it
will go to the next switching devices until finally reaches its
destination VM. Each RSU node RSUi,j in Pathj will have
different number of vehicles nVi that are currently resided
in their respecting transmission grid TGi. Using that packet
route Pathj , each packet from each of those vehicles will be
processed one time in each network node before they reach
the final SDN switch. If the packet processing policy is first
come first serve, then packets traversing this packet route can
be modeled as M/M/1 queue. If nVi in each RSUi,j is known
and the processing capability of every RSU µRSUi,j and SDN
switch µSWi,j serving as the path’s network nodes are also
known, then the average packet sojourn time in the path will
be,

tSWwait =

(
nRSUk∑
j=1

ρRSUj,k

µRSUj,k −
(∑nVj

i=1 Vi,j ∗ λpVi,j

))

+
ρSWk

µSWk − µRSUnRSUk−1,k

(5)

Where,

ρRSUj,k =

(∑nVj

i=1 Vi,j ∗ λpVi,j

)
µRSUj,k

(6)

And,

ρSWk =
µRSUnRSUk−1,k

µSWk
(7)

Assuming the processing capability of all RSUs is uniform
as well as the SDN switches, the value of processing time
tSWprocess with the number of RSU nodes and SDN switch
nodes known can be calculated as,

tSWprocess =

(
nRSUk∑
i=1

1

µRSUi,k

)
+

(
nSWk∑
j=1

1

µSWj,k

)
(8)

2) Addressing Request Priority Issue: In a smart-city net-
work, there might be a set of different request types SReq
= {Req1, Req2, ...Reqj} that have different bandwidth re-
quirements {RBw1, RBw2, ...RBwj} and different priority
values {Pv1, Pv2, ...Pvj}. This different priority values can
be made based on the service policy of the network or to
satisfy the quality of service for paying users above the non-
paying ones. If all of the request types are treated as if they
have the same priority value Pv, all of the Reqj in SReq
will compete for limited bandwidth of packet route Pathk

bw

whenever they traverse the route Pathk at the same time.
This may cause some undesirable delay for higher priority
user if lower priority requests win the bandwidth competition
and this is most likely to occur because in most case, lower
priority requests will be more in number compare to the
higher ones. To combat this problem, SDN controller should

not allow any set of requests SReqk to traverse certain path
Pathk at the same time directly. Instead, it should specify
which requests have highest priority and how many number
of other lower priority requests can be put in a set SReqk
at a time such that the total value of priority Pvktot can be
maximized without the total bandwidth of the set SReqk
exceeding the total bandwidth Pathk

bw of the selected packet
route Pathk. We see this problem is equivalent to classical
knapsack 0/1 problem that can be solved using a number of
handful existing algorithms. For our protocol, we consider the
usage of dynamic programming approach to solve the problem
because the simplicity nature of the algorithm.

The proposed mechanism works by dividing the knap-
sack main problem into sub-problems. First of all, a two-
dimensional place-holder matrix with the size of row j equals
to number of distinct item + 1 and the size of column w equals
to the maximum path bandwidth Pathk

bw + 1 is created. Then,
it will initialize the values of first row and column of the matrix
into 0. After that, the algorithm will try to find the maximum
value of priority Pvktot that can be hold by the path Pathk.
This is done by iterating through matrix rows representing
request types SReq where in each row the algorithm will also
also compare the bandwidth requirement RBwj of current
request type Reqj with incremental bandwidth Pathk,i

bw; i =
{0, 1, 2...Pathk

bw} of the path bandwidth Pathk
bw represented

in matrix column. If current request Reqj of the request set
SReq has total bandwidth requirement exceeding the current
iteration of Pathk,i

bw , the Reqj can not be a part of the solution.
Hence, we put the value of last request type Reqj−1 into
current matrix cell. Otherwise, we choose the greater value
between request type in previous iteration Reqj−1 and current
request type Reqj . Finally, by finishing all the iteration, the
maximum priority value Pvktot the sack Pathk able to hold
can be found in the bottom-right corner of the matrix. To
find the combination of requests that sum into the maximum
value, the place-holder matrix needs to be traced back. While
iterating back from the bottom-right corner of the matrix, the
algorithm compares current cell with one-cell above it. If the
current cell value equals to the value of on cell above, the
current cell value will be marked as ’added’ and all of the
’added’ cell value is the request type Reqj that is added into
final set of the solution SReqk.

3) Congestion Avoidance and Load Balancing: In this
protocol, a packet route or a path is defined as a wired network
link that connects one RSU in a transmission grid to any final
switching device that is connected to any VM in the city
cloud. A packet route can be consisted of several to many
connected network nodes (more than one RSUs and switches)
and we assume that the SDN controller has the ability to
maintain all available packet routes information from the entire
city network. That information includes the address of every
network nodes that forms each of those packet routes. Every
packet route will be stored as a record in a data table and
each record should be associated with one unique path ID.
Each of the recorded packet routes will have different DTT
value and this value must be continuously updated by the

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

SDN controller periodically every certain amount of time. This
ability is very important to be possessed by SDN controller
in order to guarantee that network data is relevantly reflected
the physical vehicle traffic condition in city road.

Given the scenario of a certain congested road sector in a
city network, we want to minimize the round-trip time of every
packet in that sector. First of all the SDN controller should
find all available packet routes {Path1, Path2, ...Pathk} in
that congested sector’s transmission grid TGi by selecting all
packet routes that are originated from the transmission grid’s
respective RSU RSUi. Those set of packet routes then labeled
as the admissible paths. Prior to those filtering, for each path
Pathk in the set, SDN controller then count the number of
vehicle nV Pathk currently using the path. Based on those
known traffic in particular path, the SDN controller will be
able to estimate the current DTTk of every path Pathk.

With the value of all DTTk known, SDN controller will be
able to calculate the average DTT avg dtt across all packet
routes in admissible paths set. The next step, SDN controller
will select every path Pathk from admissible paths that
has DTTk that is more than 150% of avg dtt and then
labels all of those paths as overloaded path and grouped
into overloaded paths set. After that, the SDN controller
will select every path Pathk from admissible paths set
that has DTT less than 50%of avg dtt, labels them as
underloaded path and put it in underloaded paths set
respectively.

Now two different paths ’buckets’ have been categorized
by the SDN controller, the overloaded paths bucket and
the underloaded paths bucket. Upon the formation of those
buckets, for each path current path in overloaded paths
bucket, the SDN controller will find the most under-loaded
path in underloaded paths bucket. The ’most under-loaded’
means a Pathk that has smallest value of DTTk and this
path then labeled as the recipient path. Next, the SDN
controller will move a portion of traffic traffic portion
from current path to recipient path. This is done by
changing every vehicle’s V Pathq,k packet route assignment
that is included in the traffic portion. SDN controller then
will recalculate both of current paths and recipient path’s
DTT values. If recipient paths DTTrecip is still below
avg dtt, SDN controller should continue adding another
traffic portion from current path traffic and recalcu-
late DTTrecip until its value become equals or exceeds
100% of avg dtt. Whenever that condition is satisfied, the
recipient path is removed from underloaded paths bucket.
As long as the current path’s DTTcur still not less than or
equals to 100% avg dtt, the SDN controller will continue
to find again another most under-loaded path, set it as new
recipient path and finally apply the knapsack function to
allow prioritization of the incoming requests.

The mechanism works by continuously monitoring and
recalculating the value of DTT . Using this mechanism, con-
gestion should be always avoided, as there will be no path that
has load more than the average load. Also at the same time,
because of DTT is estimated by considering the processing

Fig. 3. Communication sequence between controllers.

capability and current job in every network node, the overall
load in all SDN switched can be balanced. All of the benefits
can be achieved provided that, the estimation of DTT can be
done in short amount of time.

C. Cloud Layer

Layer 3 explains the scenario in handling request packets
journey from the last SDN switch toward a specific destination
VM. These packets will be processed in the VM until finally
the corresponding response packets are issued and their des-
tination RSU is decided by the SDN controller. In this layer,
the collaboration between SDN controller and cloud controller
is very important. SDN controller and cloud controller is
assumed to have communication link between them. This
means that they must be able to exchange bidirectional stream
of data directly. This information sharing between 2 controllers
will help SDN controller make better decision about which
VM should receive the request packet and which RSU should
receive the corresponding response packets.

Other than that, this layer of the protocol also needs
the cloud controller to have sufficient ability in maintain-
ing vm info table just like the SDN controller’s abil-
ity to maintain previously explained path info table. The
vm info table will store all useful information of every
usable VM in the cloud. These information including, but
not limited to, VM ID, current CPU load, and request type
served. All off the information are very essential for the SDN
controller in making correct VM selection.

So, upon the arrival of the first packet Packeti, j of request
Reqj to the last SDN switch on top of the wired network, the
switch will check its flow tables entry. If there is no forwarding
rule that matches packet’s sender address, source RSU, and
request type, the OpenFlow switch will ask for new flow by
sending the packet to the SDN controller. The SDN switch
then will determine the packet’s request type ReqTypej from
packet’s header. Subsequently, the SDN controller will form a
message vm info query containing ReqTypej information
and pass it to the cloud controller. This is the starting point
of the Layer 3. After the cloud controller received those
vm info query the following 2 main processes will be
started.

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

1) Data Processing Time (DPT): In our protocol, we define
data processing time abbreviated as DPT, as the time needed
by a specific destination VM to process certain type of request.
DPT is important as combining the best packet route with the
least DTT and the best VM with the least DPT as well as CPU
load will ensure minimum RTT for each request sent by users.
To choose the best VM instance for handling current request
type, we need to find each VM’s DPT value. Based on our
protocol flow, we observed that each VM in the city cloud that
is capable to handle a specific request type Reqj may have
different computational power compare to each other, therefore
each of them will also have different number of requests that
can be handled per unit time. This is what we define as the VM
processing capability µVMi,j . On the other hand, there will
always be a number of new requests per unit time redirected to
each VM based on the decision made by the SDN controller,
this is what we define as the request arrival rate λVMi,j .
Based on the known processing capability and request arrival
rate, we can also get the traffic intensity of each VM defined as
ρVMi,j . With all the three factors known, we can calculate the
average response time tV M i,j

process for each VM as follows.

tV M i,j
process =

1

µVMi,j − λVMi,j
(9)

Because overall DPT is a product of combination between
VM’s response time and the time spent by each request in
their queue tV M i,j

wait where,

tV M i,j
wait =

ρVMi,j

µVMi,j − λVMi,j
(10)

Hence, the final value of data processing time in i-th VM
instance serving request type j should be,

DPTi,j =
1 + (λVMi,j/µVMi,j)

µVMi,j − λVMi,j
(11)

2) Handling Incoming Request: As a control entity, cloud
controller should have the ability to retrieve necessary infor-
mation from all workable VMs in the cloud. All of those
information are stored as entries of vm info table in the
cloud controller’s memory. This table has 3 essential columns:
vm id, service type, and cpu load. The vm info table
will keep the record of information about every virtual
machine’s ID, service type and current CPU load that are
periodically updated every certain amount of time. This is
done in order to ensure VM information relevancy. vm id
and service type information might be obtained in a longer
interval, for example, on each time a VM instance is created,
or even just statically provided as the service type assigned
to a specific VM usually is fixed and rarely changed. While
the information about VM load must be gathered in shorter
interval, or if possible, every time cloud controller received
vm info query message because VM load is very dynamic
in nature.

The cloud controller will always wait for any
vm info query that comes from SDN controller. Whenever
it comes, cloud controller will immediately extract the

ReqTypej data. Proceeding to the next step, cloud controller
will search for any VMi record from its vm info table
that currently serving the same ReqTypej and also checking
their cpu load info. Each of those VMi record along
with its cpu load info then stored into a data structure
called vm info and then pushed into a prepared list
vm info list. This list is then encoded together with
received vm info query and finally sent back to the SDN
controller.

As the time when SDN controller receives vm info list
sent back by the cloud controller, it counts all DPTi,j of all
VMs and ultimately find the average avg dpt. Following the
process, SDN controller will select all VMi that has DPTi,j

more than 75% of avg dpt and put it into new list called
underloaded vm info list. Then the SDN controller will
extract the information about cpu loadi for each VMi in
the underloaded vm info list. The SDN controller then
select any VM that has smallest CPU load and then set
it as the destination VM . Following this decision, SDN
controller will encode the information of the selected VM
destination vm into a new flow and then installed the flow
to all OpenFlow switches that are connected to all VMs in
the cloud so that whenever any packets that are parts of the
current request Reqj are come they will be forwarded to the
destination vm.

3) Handling Outgoing Requests: At any time when the
first response packet is sent by VM to the first outgoing
OpenFlow switch SWout, the switch will forward that packet
to the SDN controller to determine which path should be
used. This is very important because at the time the request is
completely processed by the destination VM, it is very likely
that the vehicle sending those request already moved to another
transmission grid which means another RSU. If the packet is
sent using the same incoming packet route then it will never
reach the requesting vehicle.

SDN controller will decide which outgoing path should be
used to send the rest of the response packets by searching
the location information of the requesting vehicle based on its
address destination addr extracted from the response packet
header. The location information can be precisely retrieved just
by reading the last rsu id which has coverage status equals
to ’IN’ from the vehicle table previously recorded in Layer
1. Following the discovery of the present RSUi the vehicle
Vi being connected, the SDN controller will then select all
packet routes from its path info table that is originated from
SWout and ended at RSUi. Every record of the selected packet
routes has a field that stores the last Data Processing Time
(DTT) estimation previously done by the SDN controller at
Layer 2. Whenever the fields does not contain any value, the
SDN controller will estimate the path’s DTT and save it to
path info table for later usage.

Now that all selected paths have their DTT value, the SDN
controller will sort list of all selected packet info in ascending
order based on the DTT value. Then the first index of the
list will be selected as the target path Pathi in which the
rest of response packets will travel to reach the destination

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

TABLE I
REQUEST TYPES

Type Size of Request (KBytes) VM Processing Rate

1 2 3500

2 10 15000

3 50 90000

4 100 180000

vehicle Vi. The information of Pathi then encoded as a new
flow that finally installed by the SDN controller into flow
table of SWout. Prior to this flow installation, the rest of the
response packets will be forwarded to Vi via Pathi. This will
not change until all packets completely transferred and new
distinct response packets arrived at the SWout.

V. PERFORMANCE EVALUATION

The performance of our protocol is evaluated by using NS-
3 simulator. We created a custom node as the RSU object
as well as SDN Controller, Cloud Controller and VM. Three
RSU groups are created with three RSU in each group. For
each group, all of the RSU members are connected to a
single OpenFlow aggregation switch and all of the switches
are connected to a single core switch. From the core switch,
dispatched four links are connected to four instances of the
VMs serving four different types of requests. All OpenFlow
switches are controlled by a single SDN Controller, while all
of the VMs are controlled by also a single cloud controller.
Finally, random numbers of requests are set to come from each
RSU in each one second.

We compare our protocol with two existing protocols
namely OSPF [9] and WARRA. OSPF works by selecting
the shortest path of the network to reach the destination VM,
while WARRA works as explained in our Related Work part.
We also simulate our protocol using four different data types
where each data type differentiated based on its request size
and the time needed to handle certain size of the request by
certain destination VM. Table I describes the details of the
differences between all data types.

Fig. 4 and Fig. 5 show the comparison of DTT (Data Trans-
fer Time) and DPT (Data Processing Time) for different types
of requests. Overall, our protocol Smart Mobility Vehicular
Communication Protocol (SMVCP) achieves significantly less
DTT and DPT (below 4 seconds) for any type of request up
to 2000 requests, simultaneously.

In Fig. 6, we can see the overall RTT of SMVCP as
compared to other protocols. OSPF algorithm suffers from
the highest average RTT. This is happened because OSPF
will always choose the same shortest path resulting in the
increasing number of queuing packets over time in each switch
along the path. As the path load becomes more and more peak,
a large number of packet will stay in the queue as the request
continues to come. Furthermore, the condition is also worsen
by the absence of target VM selection in the algorithm. On the
other side, both of the WARRA and SMVCP do not experience

Fig. 4. Data Transfer Time (DTT).

Fig. 5. Data Processing Time (DPT).

Fig. 6. RTT Comparison.

the same problem because both of the algorithm always check
for the network path load and target VMs. Once, a path seen
to be saturated the algorithms will quickly assign other paths
to handle the rest of incoming request and the same thing also
applied for each VM in the cloud. Consequently, the packets
queue will be far shorter and the overall RTT also lessen.

In Fig. 7 we can see the throughput of SMVCP compared
with other 2 protocols. Throughput in the simulation is affected
by the rate of packet loss, means how many packets are
missing their target. In the figure, both OSPF and WARRA
experience a significant proportion of packet loss. This is
because both of the protocols does not consider the location
factor of the sender nodes (in this case, vehicles in city
network). Hence, whenever any sender node disconnected
from their RSU and then connected to any other RSU, the

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

Fig. 7. Throughput Comparison.

Fig. 8. VM Utilization Rate.

remaining response packet will fail to reach the sender node.
Therefore both protocol’s throughput is significantly reduced.
However the such thing is rarely happened in SMVCP case
because our proposed protocol always monitors the location of
every sender node. As a result, there will be very less discarded
packets.

Finally, Fig. 8 shows the variation of average VMs utiliza-
tion. From the figure we can see that OSPF algorithm suffers
from highest utilization percentage for all request type. This
is understandable due to the fact that the OSPF algorithm
works by selecting the shortest path only without considering
the load of the VM. In contrast, both WARRA and SMVCP
obtains almost utilization percentage load across all request
types because both of the protocols considers also the load of
the corresponding VMs.

VI. CONCLUSION

The existing SDN solutions for the cloud environment
mainly work by minimizing latency via load balancing and
traffic engineering in the area surrounding the network paths.
However without considering the load of the target VMs, the
significant amount of latency will still exist, which affects the
overall performance of the service. In order to address the
problem, protocol is designed to transmit data from vehicles to
the city clouds through the Openflow switches. The proposed
protocol minimizes the overall round-trip time by finding
the best routing path and the most proper destination VM
for specific type of requests. Furthermore, the protocol also
guarantees the delivery of the corresponding response packets

by determining current position of the sender vehicle. In the
future, we would like to design a better solution to further
support different parameters of request type such as request
privilege and security.

REFERENCES

[1] B. Kovacevic, M. Kkovacevic, T. Maruna, D. Rapic. Android4Auto: a
Proposal for Integration of Android in Vehicle Infotainment Systems. IEEE
International Conference on Consumer Electronics (ICCE), 2016: 99-100.

[2] M. Casado, M. J. Freedman, J. Pettit, et al. Ethane: Taking Control of the
Enterprise. SIGCOMM Computer Communication Review, 2007, 37(4):
1-12.

[3] N. McKeown, T. Anderson, H. Balakrishnan, et al. Openflow: Enabling
Innovation in Campus Networks. SIGCOMM Computer Communication
Review, 2008, 38(2): 69-74.

[4] S. Agarwal, M. Kodialam, T. V. Lakshman. Traffic Engineering in
Software-Defined Networks. Proc. of the 32nd IEEE International Con-
ference on Computer Communications, 2013: 2211-2219.

[5] S. Fang, Y. Yu, C. H. Foh, K. M. M. Aung. A Loss-Free Multipathing
Solution for Data Center Network Using Software-Defined Networking
Approach. IEEE Transactions on Magnetics, 2013: 2723-2730.

[6] X. Q. Meng, V. Pappas, L. Zhang. Improving the Scalability of Data
Center Networks with Traffic-Aware Virtual Machine Placement. Proc. of
the 29th IEEE International Conference on Computer Communications,
2010: 1-9.

[7] A. Nahir, A. Orda, D. Raz. Schedule First, Manage Later: Network-aware
Load Balancing. Proc. of the 32nd IEEE International Conference on
Computer Communications, 2013: 510-514.

[8] Haitao Yuan, Jing Bi, Bo Hu Li. Workload-Aware Request Routing
in Cloud Data Center Using Software-Defined Networking. Journal of
Systems Engineering and Electronics, 2014: 72-82.

[9] S. U. Malik, S. K. Srinivasan, S. U. Khan. Convergence time analysis
of open shortest path first routing protocol in Internet scale networks,
Electronics Letters, 2012, 48(19): 1188-1190.

2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

