
Journal of Network and Computer Applications 66 (2016) 236–249
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

pksahoo
journal homepage: www.elsevier.com/locate/jnca
Big data analytic architecture for intruder detection in heterogeneous
wireless sensor networks

Suvendu Kumar Mohapatra a, Prasan Kumar Sahoo b, Shih-Lin Wu b,c,n

a Department of Electrical Engineering, Division of Computer Science and Information Engineering, Chang Gung University, Kwei-Shan 333, Taiwan, Republic
of China
b Department of Computer Science and Information Engineering, Chang Gung University, Kwei-Shan 333, Taiwan, Republic of China
c Center for Biomedical Engineering, Chang Gung University, Kwei-Shan 333, Taiwan, Repubic of China
a r t i c l e i n f o

Article history:
Received 28 August 2015
Received in revised form
14 December 2015
Accepted 7 March 2016
Available online 10 March 2016

Keywords:
WSN
Barrier coverage
Intruder detection
Big data
Spark
x.doi.org/10.1016/j.jnca.2016.03.004
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: d0121007@stmail.cgu.edu.tw (S
@mail.cgu.edu.tw (P.K. Sahoo), slwu@mail.cg
a b s t r a c t

Barrier coverage in Wireless Sensor Networks (WSNs) is an important research issue as intruder
detection is the main purpose of deploying wireless sensors over a specified monitoring region. In WSNs,
excessive volume and variety of sensor data are generated, which need to be analyzed for accurate
measurement of the image in terms of width and resolution. In this paper, a three layered big data
analytic architecture is designed to analyze the data generated during the construction of the barrier and
detection of the intruder using camera sensors. Besides, a cloud layer is designed for storing the analyzed
data to study the behavior of the intruder. In order to minimize the number of camera sensors for
constructing the barrier, algorithms are designed to construct the single barrier with limited node
mobility and the barrier path Quality of Sensing (QoS) is maintained with a minimum number of camera
sensors. Simulation results show that our algorithms can construct 100% of the barrier with fewer
number of camera sensors and average data processing time can be reduced by using parallel servers
even if for larger size of data.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced development and improvement in Micro-Electro-
Mechanical Systems (MEMS) technology, mixed with low power,
small in size, minimum cost sensors can be equipped in Wireless
Sensor Network (WSN). Now-a-days various types of sensors such
as microwave sensors, thermal sensors, laser sensors and camera
sensors are available according to the applications and working
environments. Those sensors are static or having limited mobility
(Dantu et al., 2005; El-Moukaddem et al., 2013; Janansefat et al.,
2013; Chellappan et al., 2007) to gather and process environ-
mental information. Camera sensors are different from the general
sensors in terms of image capture capability and are used for
number of applications such as border surveillance (Tao et al.,
2012; Cheng and Tsai, 2012), and intruder detection (Keung et al.,
2012; Sahoo et al., 2013). Area, point and barrier coverage are
critical coverage issues in WSN, and are the parameters to appraise
the quality of surveillance. In this paper, we are interested to focus
on the barrier coverage problem. Barrier coverage (Shih et al.,
2010) is the line coverage to cover all possible crossing paths of the
.K. Mohapatra),
u.edu.tw (S.-L. Wu).
intruder within the monitoring region. In directional camera
sensor (Tao et al., 2012; Cheng and Tsai, 2012; Wang and Cao,
2012), the sensing range is an arc having a field of view with a
finite angle and the intruder is picked up within the arc range.
However, previous barrier construction protocols do not consider
the mobility of the sensors, camera rotation and Quality of Mea-
surement altogether. Hence, we design here an efficient barrier
construction algorithm by considering all the above parameters.

In our barrier construction algorithm, we use microwave sen-
sors (Dual Technology Motion Sensor) and directional camera
sensors. Microwave sensors detect the movement of the intruders
whereas camera sensors are used to identify the image of an
intruder. Intruder detection (Keung et al., 2012; Sahoo et al., 2013)
is a part of border surveillance in which the intruder is captured by
the sensors which are present along the barrier line. Once the
barrier network is established, colossal amount of streaming data
are generated by the camera sensors, which is difficult to handle
and analyze using the traditional data processing platforms.
Therefore, big data analytic platform is used here to process the
gigantic image data.

In order to analyze the data generated by the camera sensors,
big data is the best solution to manage those unstructured
streaming data with a cost effective manner, which is very decisive
in terms of volume, velocity, variety and value. Volume handles

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.03.004
http://dx.doi.org/10.1016/j.jnca.2016.03.004
http://dx.doi.org/10.1016/j.jnca.2016.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.03.004&domain=pdf
mailto:d0121007@stmail.cgu.edu.tw
mailto:pksahoo@mail.cgu.edu.tw
mailto:slwu@mail.cgu.edu.tw
http://dx.doi.org/10.1016/j.jnca.2016.03.004


S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 237
enormous amount of data generated continuously by many dif-
ferent camera sensors. Velocity focuses on the tremendous speed
at which the camera sensor data (bytes) are coming for processing.
Variety defines that the diversified data format arrives from var-
ious sources. Value represents the meaningful information by
converting the data insights. In the industry level data scale and
cutting-edge network technology, new challenges force the
researchers as well as developers to improve in solutions for data
collection, transmission, processing and storage. Virtualization
technology acts as a backbone of various big data analysis tools
such as Hadoop, where chunks of data are processed in parallel. To
support such batch processing parallel execution, Hadoop
MapReduce framework (Dean and Ghemawat, 2008; Yang and
Chen, 2015) is used. However, the Spark platform (Zaharia et al.,
2012) is employed for the realtime coordinated streaming data
processing for the intruder detection. A cluster of slave nodes are
used in the data analysis with complex work flows, which are
controlled by the Spark master nodes. The analyzed data are
stored in Cassandra (Lakshman and Malik, 2010) distributed
database in the data centers.

1.1. Motivations

Barrier construction and intruder detection using wireless
camera sensor network is highly essential and is convenient in
surveillance system. However, to the best of our knowledge no
barrier construction protocol proposed so far considers all the
three functionalities such as node mobility, rotation of the camera
sensors and Quality of Measurement of WSN to detect the intruder
efficiently. Moreover, camera sensors are normally expensive and
efficient detection of an intruder with a minimum number of
camera sensors is a challenging research issue. Hence, the main
motivation of our proposed work is to reduce the number of
camera sensors for constructing the barrier to detect the intruder
by combining all those three parameters. Besides, high volume of
streaming data are generated from the camera sensors once the
barrier is constructed, which need to be analyzed for detecting the
intruder properly. However, it is very difficult to analyze those
low-latency and high volume of unstructured streaming data
manually or in any batch processing big data framework such as
Hadoop. In Hadoop, the complete batch data must be loaded
before the processing is done, which encounters the startup delay
with intermediate data shuffling overhead during computation.
Therefore, we propose an in-memory data processing Spark plat-
form to handle such real-time data sets.

1.2. Contributions

The main contributions of our work can summarized as follows.

� A barrier construction mechanism in heterogeneous WSN is
designed with a minimum number of camera sensors to collect
the huge amount of real time image data for the analysis.

� Quality of Sensing (QoS) is maintained throughout the barrier
path with a minimum number of camera sensors.

� A big data analytic architecture is designed to analyze and store
the low-latency big data generated from the wireless camera
sensors.

� A Graphics Processing Unit (GPU) enabled Spark cluster is pro-
posed for the in-memory data processing and frame-by-frame
analysis of the realtime visual streaming data.

� Based on the analysis of the big data in our proposed Spark
platform, intruder detection mechanism is also designed.

� Our proposed algorithms can provide 100% barrier coverage
with a minimum number of camera sensors.
Remainder of this paper is organized as follows. Section 2
describes the related works on barrier coverage and intruder
detection using heterogeneous sensors. In Section 3, the big data
analytic architecture is described. The wireless sensor layer is
described in Section 4, which includes the barrier construction
algorithms. Big data analytic with cloud based storage layer is
described in Section 5. Simulation results are given in Section 6,
and Section 7 concludes the work.
2. Related work

Comprehensive studies have been carried out on barrier cov-
erage issues in WSN. Directional sensor networks (Tao et al., 2012)
use directional sensors to construct the strong barrier. The objec-
tive was to diminish the total number of sensors and save the
energy by minimizing the maximum rotation angle. However,
most of the existing solutions are centralized and take longer time
to detect the intruder. In distributed barrier coverage with β-QoM
(Cheng and Tsai, 2012), wireless visual sensors construct the bar-
rier by maintaining β-breadth to increase the quality of monitor-
ing (QoM). Authors have proposed two β-breadth belt-barrier
construction algorithms without rotation of the sensors, in
which barrier is constructed with β-breadth. Distributed β-
breadth belt-barrier construction algorithm with rotation is pro-
posed, in which barrier is constructed by camera sensors with
rotation capability. Their main contribution is to minimize the
number of visual sensors by maintaining the quality, the number
of sensors can still be minimized by adding limited mobility to the
sensors. Also resolution factor can be calculated by maintaining
the distance from the location of the intruder.

It is to be noted that mobility in camera sensor networks
(Dantu et al., 2005; El-Moukaddem et al., 2013) has heightened
the monitoring quality. Sensors with controlled mobility (Vecchio
and Lopez-Valcarce, 2015) can enhance the deployment strategy,
adaptive sampling, hole detection and repair capability and event
detection mechanism can even become better. MICAbot (Janan-
sefat et al., 2013) is inexpensive, adaptable and modular mobile
robots, which are used in large scale distributed sensor networks.
By using those mobile sensors, we can build the barrier network in
an efficient way. Now-a-days, many camera sensors (Mehta et al.,
2009) are available for constructing the wireless sensor networks
to detect the intruders. In Hoseini et al. (2012), the coverage
problem of three dimensional objects by enabling the tilt, zoom
and pan functionalities of the camera sensors is investigated. In
their proposed solution, a circular target model is used to deter-
mine the full coverage. In Chen et al. (2010a), the object coverage
problem with rotating capabilities of camera sensors is explored.
In order to reduce the redundant image data, they map the pro-
posed problem to the set coverage problem.

Authors in Chow et al. (2007) have analyzed the angle coverage
problem in visual sensors and propose an algorithm to achieve full
view of the target. By preserving 360° angle, they propose an
energy efficient algorithm, which tries to minimize the transmis-
sion cost over the network. In Zanella et al. (2014), authors have
focused on a smart city vision as an application of Internet of
Things (IoT). The main goal is to collect environmental data and
monitor the public street light. However, the massive IoT data
storage is not considered. Authors in Jiang et al. (2014) have pro-
posed a cloud based data storage framework for both structured
and unstructured data. The data are collected by sensors and RFID
readers and the main advantage of this framework is to combine
and extend multiple databases with Hadoop to store. But no
analysis is done on this huge stored data.

Recently, many computation intensive (Bhattacharya et al.,
2014) and data intensive applications like border surveillance,



Table 1
Comparison and contributions.

Related works Barrier QoS Mobility Intruder Det. Big Data Cloud

Robomote (Dantu et al., 2005), MRCD (El-Moukaddem et al., 2013), IACW (Vecchio and Lopez-Valcarce, 2015) ✓

SBP (Tao et al., 2012), LBCP (Chen et al., 2010b) ✓ ✓

D-Trib (Cheng and Tsai, 2012), B3CA (Guo et al., 2014) ✓ ✓ ✓

MR (Dean and Ghemawat, 2008), DATA (Yang and Chen, 2015), EO (Bhattacharya et al., 2014) ✓ ✓

Our algorithm ✓ ✓ ✓ ✓ ✓ ✓

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249238
digitized medical records, scientific data reports, semantic web
and bioinformatics have generated a substantial amount of data,
which need to be processed continuously and systematically. An
effective data management and analysis technique is required for
large-scale data, which is quite interesting but challenging too.
Therefore, big data has drawn attention from industry, academia,
scientist and government as well. However, inadequate research is
not only on the quality measurement of the image in terms of
width and resolution but also on the limited mobility on camera
sensors. To get rid of this problem, we propose an energy efficient
barrier construction algorithm where all camera sensors are hav-
ing limited mobility. Also we provide a better solution for intruder
detection with the help of this barrier line. Eventually, the camera
sensor data are processed by the Spark big data analytic platform.
Comparison of our proposed protocol with the existing works are
listed in Table 1.
3. Big data analytic architecture

Recently, inadequate research have accomplished on the
architectural design of big data and its analytical aspects referring
to the border surveillance applications. Big data is an emerging
solution for the sensor data analysis as it deals with very large sets
of complex data originating from camera and microwave sensors,
which become very difficult to process using traditional database
management tools. We have pointed out some of the key
requirements of a new approach to design the big data platform in
an innovative way such that it would address the major challenges
related to the big data applications in security domain with
Fig. 1. Big Data analytic architec
existing technologies. We are going to present a logical big data
architecture in border surveillance applications that will be sup-
ported by extended cloud computing platform. In this section, we
are inclined to propose a cloud based big data architecture for
analyzing the camera sensor's data, which is used in the purpose
of border surveillance.

A layered-wise big data analytic architecture is presented for
the intruder detection and analysis as shown in Fig. 1. In order to
get efficient results in terms of analysis, storage and performance
in border security applications, we develop the big data archi-
tecture to integrate the wireless network of camera sensors, big
data and cloud platform altogether. Accordingly, as shown in Fig. 1,
the whole architecture is divided into Wireless sensor layer, Big
data layer and Cloud layer. Each layer not only addresses the data
flow in big data but also emphasizes on the efficient way of data
collection, optimum storage and effective way of data analysis.

Wireless sensor layer is the 1st layer, where sensors are
deployed to form the barrier and to collect the data time to time.
This layer is further divided into wireless microwave sensor and
wireless directional camera sensor sub-layers. In microwave sen-
sor sub-layer, the barrier is constructed with the help of micro-
wave sensors to sense the presence of any intruder. Once the
microwave sensors sense the presence of any intruder, the signal is
passed to the camera sensor sub-layer to activate them. Upon
receiving the signal from the microwave sensors, the camera
sensors are activated and are enabled to take the image of the
intruder. The barrier is constructed with the help of camera sen-
sors to capture the image of the intruders. The image captured by
the camera sensors are sent to the sink for analysis. Basically, the
ture for intruder detection.



Fig. 2. Deployment of microwave motion sensors and camera sensors.

Fig. 3. Length and width of an image for QoS.

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 239
wireless sensor layer is responsible for the collection of data
through the camera sensors.

Big data layer is the 2nd sub-layer of the architecture, which is
responsible for the streaming data processing, analysis and iden-
tifying the intruders. In this layer, the data collected by the camera
sensors are managed, analyzed and integrated so that the func-
tionalities of the big data analysis is performed on the collected
data. A Spark platform is used to process the streaming camera
data, where a Streaming Request Handler (SRH) is used as an
interface between the wireless sensor layer and big data layer to
manage the flow of large volume of streaming data. The con-
tinuous streaming video frames are divided into sub-frames based
on the data processing response time, which could be less than
one second. In Spark, the sliced Streaming Data Frames (SDFs)
known as Resilient Distributed Data sets (RDDs) are transferred to
the local cache present in the Spark workers through Spark
manager. Without any ambiguity, SDFs and RDDs are used inter-
changeably in this paper.

Let χ number of Spark workers be present in our architectural
model, which are controlled by the master node. A Spark Executor
is present inside the Spark worker for the task execution. Trans-
formation and Output are two sub-modules that exist inside the
Spark Executor, where Transformation is responsible to analyze the
data sets and Output is used to save the processed data. Transfor-
mation is executed through two stages, i.e. Video Frame Back-
ground Filtering in Stage 1 and Intruder Detection Analysis in
Stage 2. The filter and join operations are facilitated by Spark on
the window frames present in the local memory, which is utilized
for the background elimination (Lima et al., 2014) to prune large
volume of unwanted data and aggregation, respectively in the
stage 1. Hence, the images of the intruders are only present as the
output of the stage 1 and proceed to detection phase present in
stage 2 of Transformation module. The data saving operation is
carried out on each SDFs for external storage purpose. However,
the fault tolerant, storage and backups are controlled by the zoo-
keeper as a coordinator present in-between the big data and
cloud layer.

Finally, the 3rd layer known as the Cloud layer in the archi-
tecture is responsible for storing the analyzed data for visualiza-
tion. This upper layer is extended to the physical storage layer and
Cassandra distributed database, which are used for storing all
types of analyzed data in the data centers (DC). However, Cas-
sandra is also used to store the intermediate data in the local
cache, which is synchronized by the zookeeper. In this cloud layer,
the useful information like intruder image, detection time and
location are stored in image and text formats for the future use or
decision making.

Let us consider a scenario where an intruder enters into the
surveillance area. At the entrance of the surveillance area, first the
intruder is detected by the microwave motion sensors and the
sensed signal is transmitted to make the camera sensors active.
Then the detected video frames or images by the camera sensors
are sent from the sensor layer to the Spark platform for processing.
Hence, the intruder image analysis jobs are assigned to the
respective Workers by the Spark Master present in the big data
logical layer, where all the data analyses are accomplished. The
analyzed data are sent to the Cassandra distributed databases
present in the cloud's logical layer via Zookeeper for storage and
future usage. In this fashion, the wireless sensor layer, big data
layer and cloud layer collaborate with each other for data collec-
tion, analysis and storage, respectively.
4. Wireless sensor layer

The sensor layer comprises the construction of double barrier
with help of camera and microwave sensors. Let us consider a
Heterogeneous Wireless Sensor Network (HWSN) in which wire-
less camera sensors are deployed randomly over a rectangular
monitoring region and microwave sensors are deployed determi-
nistically along the border of the monitoring region as shown in
Fig. 2. It is assumed that sensors are self-organized after the
deployment and can be connected with each other. Each camera
sensor has a finite field of view, which is different from the con-
ventional sensors. The complete deployment method with con-
struction of the barrier is described in the following sections.

4.1. Problem formulation

Let R be the rectangular monitoring region that comprises m
number of microwave sensors (M)¼{M1, M2,…,Mm} and n number
of camera sensors (C)¼{C1, C2,…,Cn}. The microwave sensors are
static and are deployed uniformly along the border of the mon-
itoring region such that entry of any target can be first detected by
them. The camera sensors have limited mobility and are deployed
randomly with the Poisson distribution. Let λ40 be the density of
the nodes and n(R) be the number of camera sensors deployed
over the region R.

Definition 1 (Crossing path). A crossing path is defined as the
breadth to breadth movement of an intruder from one side to
opposite side across the monitoring region. Else, it is referred to as
a non-crossing path.

Definition 2 (Length of an image (Li)). Length of an image i is
defined as the vertical contribution of an object within the sensing
range of a camera sensor.

Definition 3 (Width of an image (Wi)). Width of an image i is
defined as the horizontal contribution of an object within the
sensing range of a camera sensor.

Definition 4 (Quality of Sensing (QoS)). The lowest width and
length of an image i that are maintained by a sensor within its
sensing range is called Quality of Sensing. As shown in Fig. 3, Wi



Table 2
Algorithm 1: Boundary node selection algorithm.

1. Notation : CNL: Central line;
2. BW : Borderline at West side;
3. H: Horizontal contribution;
4. Sk : Sink node;
5. Ci : ith camera sensor;
6. Ni : One hop neighbor of node i;
7. Bi : Set of Boundary nodes i, for all i¼1,2,…,n;
8. BN : Boundary node;
9. BHi : Horizontal contribution of a boundary node i;
10. Θi : Rotation angle of ith camera sensor;
11. BNmsg : Message that contains location, radius of sensing range, residual

energy and ID of a boundary node;
12. BNRply : Reply message from the node;
13. Rc : Radius of communication range of a camera sensor;
14. Rs : Radius of sensing range of a camera sensor;
15. REi : Residual energy of ith camera sensor;
16. THE : Threshold Energy;
17. dðBi ;CLÞ : Euclidian distance between ith BN and central line (CNL);
18. dðBi ;BW Þ : Euclidian distance between ith BN and west borderline (BW);
19. BoundaryNodeSelectionðÞ
20. Sk¼(0, 0); #Starting location
21. BN1¼Sk;
22. H¼horizontal contribution of Sk;
23. do{
24. Sk broadcast BNmsg to its one hop neighbor;
25. Ni unicast BNRply message to sender Sk;
26. if(REiZTHE){
27. BN verifies whether it has horizontal contribution or not;

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249240
and Li are taken as the image width and length respectively, hence
QoS¼Wi� Li.

Definition 5 (Residual Energy (RE)). Residual energy is defined as
the remaining energy state of a sensor node at any point of time.

Definition 6 (Threshold Energy (THE)). Threshold energy is the
minimum energy level maintained by the sensor node to perform
any task.

Let radius of sensing range, radius communication range and
location of ith directional camera sensor Ci be Rs, Rc and Loc(xi, yi),
respectively. The sensing region of a camera sensor is a sector in
the two dimensional plane, which refers to the directional sensing
model. These camera sensors have a finite field of view of angular
range (0rΘrΠ

2 ), whereΘ represents the offset angle of a camera
sensor. The communication region of a camera sensor is a circle in
two dimensional plane. It is assumed that communication range of
the camera sensor (Rc) is twice of its sensing range (Rs). If sensors
Ci, and Cj are located at Loc(xi, yi), and Loc(xj, yj), respectively, they
can collaborate to detect any event within their sensing range if
the following two conditions are satisfied.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ2þðyi�yjÞ2

q
r2Rs ð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ2þðyi�yjÞ2

q
rRc ð2Þ

Taking Si and Sj as the sensing range of the camera sensors Ci
and Cj, respectively, a barrier is constructed if the sensing range of
those two overlap with each other, i.e. if Si⋂SjaΦ, where ia j.
Considering this condition, the next goal is to construct the barrier
with a minimum number of camera sensors and to maintain the
Quality of Sensing (QoS).

4.2. Barrier construction algorithm

In this section, three phases of the barrier construction algo-
rithm are explained in detail. The three phases describe about the
barrier construction with microwave sensors, selection of bound-
ary camera sensors and selection of non-boundary camera sensors.
As shown in Fig. 4, let BE, BW, BN, and BS be the borderlines of the
monitoring region ðRÞ along east, west, north and south, respec-
tively. MLE, and MLW are the middle points of the border lines BE,
and BW, respectively and the central line (CNL) is obtained by
connecting these mid points MLE, and MLW. Taking this physical
scenario, three phases of the barrier construction algorithm can be
designed as follows.

4.2.1. Barrier construction with microwave sensors
The microwave sensors are deployed deterministically along a

straight line on the south side (BS) of the monitoring region, which
is the entrance side as shown in Fig. 2. Let m number of microwave
sensors (M)¼{M1, M2,…,Mm} be present at their locations
Fig. 4. Monitoring region with border and central lines.
Locx¼{x1, x2,…xm}, where xirxj. MSr is the sensing radius and Mc

is the communication radius of each M. If LR is the length of the
monitoring region R, the required number of microwave sensors M
to be deployed is LR

MSr
.

Any movement of an intruder within sensing range of a
microwave sensor can be captured. Two microwave sensorsMi and
Mj can cooperate with each other to detect any event within their
sensing range if j Locix�Locjx jr2MSr . It implies that the sensing
range of MSr

i and MSr
j are overlapping with each other, i.e. MSir⋂

MSjraΦ for ia j. By drawing a line from the west (BW) to the east
borderline (BE) of the monitoring region through the sensing range
of all microwave sensors M, the microwave sensor barrier is con-
structed as shown in Fig. 2. Any intruder that crosses this line can
be detected by a microwave sensor Mi.

4.2.2. Selection of boundary camera sensors
In this algorithm, one camera sensor located on the western

(BW) borderline of the monitoring region is selected as the initial
node and another one located on the eastern (BE) borderline of the
monitoring region is selected as the terminal node. These two
nodes are termed as the boundary nodes of the monitoring region.
In order to select the starting node, the boundary camera sensor
selection algorithm as given in Table 2 is executed by a camera
sensor located at the western side (BW) border of the monitoring
region. Initially, location of the initiator is assumed to be at (0,0)
28. if(BHi4BHi�1)
29. H¼BHi;
30. else
31. H¼BHi-1;
32. if((d(Bi, BW Þ4Rs) && (BW ⋂Bi¼ϕ))
33. Rotate an angle Θi to intersect with BW;
34. else if(d(Bi, CLÞo d(Bi�1, CL) && (BHi4BHi�1))
35. BN¼Bi;
36. else BN¼Bi�1;
37. }
38. else{
39. Discard Bi
40. }
41. iþþ;
42. }While: Cn is not visited();
43. All other boundary nodes go to sleep mode except BN;



S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 241
and is considered as the sink node (Sk) among all camera sensors
Ci. Sk is treated as the first boundary node BN and Sk sends the
BNmsg to its one hop neighbors Ni and each Ni sends the BNRply

message to Sk, which contains the identification of the node,
sensing contribution toward the border line along with the mon-
itoring region and location information. Residual energy (REi) of
ith sensor is compared with Threshold energy (THE) and continue
for all n number of boundary nodes. If the residual energy of a
node is below the threshold energy, then simply discard it from
the boundary node selection set. The horizontal contribution
between any two neighboring camera sensors is compared and the
camera sensor having highest value of horizontal contribution is
stored in set H. Then, the distance between the nodes stored in set
H is calculated from the central line. However, if sensing range of a
neighboring node does not intersect the borderline, whereas its
horizontal contribution is more than its one-hop neighbors after
rotating through an angle Θi, then that node is selected as the
initial node.Finally, the camera sensor having the highest value of
the horizontal contribution and more closer to the central line is
selected as the initial node.

For example, as shown in Fig. 5, initially, sensing range of
camera sensor BHi was not intersecting the borderline, whereas its
horizontal contribution is more than its one-hop neighbor BHj

after rotating through an angle Θi and is closest to the central line.
Hence, BHi becomes the initial node after this rotation. This pro-
cess continues for all the n number of nodes. Once the boundary
node is selected, all other n�1 number of boundary nodes go to
the sleep mode. Execution of this algorithm is initiated by a
camera sensor located along the west side (BW) border of the
monitoring region and is continued until the terminal camera
sensor is selected along the east side (BE) border of the monitoring
region. Selection of intermediate non-boundary camera sensors is
done based on the algorithm described in Section 4.2.3. Once the
boundary camera sensors (initial and terminal nodes) are selected,
rest of the boundary nodes in the network can go to the power
saving mode.

4.2.3. Selection of non-boundary camera sensors
The non-boundary camera sensor selection algorithm is

designed to select the elite camera sensors to construct the barrier.
Each node is assigned a weight based on its mobility distance from
the central line of the monitoring region, residual energy level, and
angle of rotation. The entire monitoring region is divided into
subregions based on the sensing range (MSr) of the microwave
sensor (M). Though we present here the construction of barrier in
one subregion, practically barrier construction phase is executed in
parallel in each subregion. The whole procedure of barrier con-
struction is executed in two different phases as follows. It is to be
noted that each camera sensor knows its location information and
equation of the central line CNL. After deploying the camera sen-
sors randomly, each node calculates its distance from the central
line, which is considered as the magnitude of the mobility dis-
tance. As shown in Fig. 6(a), each node knows its required mobility
Fig. 5. Example of boundary camera sensor selection.
distance (di) from the central line CNL, for i¼ 1;2;…;n. Let REi and
THE be the current residual energy and threshold energy of a node,
respectively.

It is to be noted that threshold energy THE of a node is the
required energy to perform the sensing operation and to monitor
the network after construction of the barrier and is a constant for
all nodes of the network. Each node exchanges the value of REi and
required mobility distance di with its one-hop neighbors as shown
in Fig. 6(b). Upon receiving these values, each node compares the
value of REi with the value of THE and ignores the neighbors whose
REioTHE as shown in Fig. 6(c). This procedure is continued for all
nodes of the network and let k nodes out of n be the remaining
nodes in the monitoring area after discarding the nodes whose
REioTHE .

Let di be the distance of a camera sensor i from central line, γ be
the amount of energy consumed by moving it for unit distance,
and Θi be the angle of rotation of the camera sensor i such that its
sensing range can intersect with the sensing range of its one-hop
neighbors. Taking Ei as the initial energy of camera sensor i, energy
consumption of ith camera sensor Eic due to its mobility and then
rotation can be calculated as given in Eq. (3). The residual energy
REi can be calculated as given in Eq. (4). If REi4THE , the ith camera
sensor can move toward the central line based on the algorithm
given in Table 3.

Eci ¼ ðdinγÞþΘi ð3Þ

REi ¼ Ei�Eci ð4Þ

4.2.4. Selection of best non-boundary camera sensors
After selecting the non-boundary camera sensors based on

their mobility distance (d), the angle of rotation (Θ) is used to
select the best candidate for constructing the barrier with quality
of sensing. Here, the angle of rotation is used among the non-
boundary sensors to select a node that can have limited mobility
distance with least angle of rotation as shown in Fig. 7.

Prior to this selection, boundary node selection and limited
mobility non-boundary camera sensor selection algorithm are
executed and the values are stored in set BN and V, respectively.
Based on the communication range of a node, location of its one-
hop neighbors is stored in set Ni. For each node i, the weight Ψi

w is
calculated from the mobility distance and angle of rotation of a
camera sensor. The user defined threshold of image quality (α) is
the percentage of an image that is required for monitoring an
intruder calculated in advance and compared with the quality of
sensing (QoSi) of ith camera sensor. The weight (Ψi

w) and quality of
sensing (QoSi) of a camera sensor are compared with corre-
sponding values of its one-hop neighbors. A node having more
weight with better QoS is selected as the best non-boundary
camera sensor to form the barrier.

After several iterations of selection procedure of the non-
boundary camera sensors based on the angle of rotation, the
threshold of image quality α is compared with QoS to check
whether the barrier is constructed or not. As shown in Fig. 8, if the
sensing range of the boundary node BN and intermediate node Ci
intersects with each other, there exists a barrier between them by
maintaining the quality α. This procedure is continued until the
sensing range of intermediate sensors intersects with the terminal
sensor BNE present on east side of the monitoring region. The
algorithm of selecting the best non-boundary camera sensor to
form the barrier with the help of boundary camera sensors is given
in Table 4.

As described in Table 4, steps 1 through 13 are used to initialize
the data sets. By using step 15, Sk is selected as the boundary
sensor node as shown in Fig. 8, where SkABN. Two sensor nodes, A
and B are chosen as the neighboring camera sensors of Sk.



Fig. 6. Example of selecting non-boundary camera sensors.

Table 3
Algorithm 2: Selection of non-boundary camera sensors.

1. Notation : CNL: Centerline;
2. Ci : ith camera sensor node;
3. Nsi : Non-boundary camera sensors, where Nsi¼Ns1,Ns2,…,Nsn;
4. U : Intermediate remaining sensor nodes;
5. V : Total remaining sensor nodes;
6. Wi : Calculated weight for each camera sensor;
7. REi : Residual energy of ith camera sensor;
8. THE : Threshold energy;
9. Potentialnon-boundarycamerasensorsðÞ
10. Wi¼0;
11. REi¼0;
12. for(i¼ 0; ion; iþþ)
13. {
14. Calculate dðCi ;CNLÞ;
15. Calculate REi;
16. if(REioTHE)
17. {
18. Discard NSi, 8 i¼1,2,…,n;
19. U ¼ jCi�NSi j ;
20. }
21. V¼U;
22. Return V;
23. }

Fig. 7. Example of selecting non-boundary camera sensors based on angle of
rotation.

Fig. 8. Barrier construction procedure.

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249242
The weight factor Ψi
w is calculated for each node as given in

steps 18 and 20 by considering the angle of rotation ΘA and ΘB as
given in step 19. The QoS parameter for both nodes A and B is
checked in step 21 and QoSA and QoSB are compared with the
predefined quality (α) in steps 22 through 30. As given in steps 31
through 35, the barrier is constructed between nodes A and B by
comparing the sensing range of camera sensors A and B. By
repeating the steps from 18 through 35, the barrier construction
procedure is continued until the complete barrier is formed by
taking the non-boundary and boundary camera sensors. The
example of such barrier construction is also shown in Fig. 8. Here
minimum numbers of sensors are selected to construct the barrier
as a result of which data redundancy and length of the routing
path is reduced. Once the barrier is constructed, the data collection
phase is carried out and the data packets are sent frame by frame
to the base station with a minimum routing cost.

4.3. Energy consumption analysis

In this section, we analyze the energy consumption of a sensor
including the motion and camera sensors by constructing the
barrier, detecting the intruder and transmitting the image data to
the sink for the ultimate processing by the big data analytic cen-
ters. According to Sinha and Chandrakasan (2001), Chen et al.
(2010c) and Halgamuge et al. (2009), energy consumption
depends on the sensing energy (ESE), rotational energy (ERot),
processing energy, transmission and receiving energy and state
transition energy.

Taking PWrk, SVol, SCur and SDur as the working power of a sensor,
supply voltage, sensing current, and sensing duration, respectively,
the following equations are derived.

PWrk ¼ SCur n SVol ð5Þ



Table 4
Algorithm 3: Selection of non-boundary camera sensors using angle of rotation.

1. Notation : CNL: Central line;
2. Ci : ith camera sensor;
3. Ni : One-hop neighbors of camera sensor i;

4. Ni
s : Non-boundary camera sensors, where Ns

i¼Ns
1,Ns

2,…,Ns
n;

5. U: Intermediate remaining camera sensors;
6. V : Potential non-boundary camera sensors;
7. Ψ i

w : Calculated weight for each camera sensor i;
8. Θi : Angle of rotation;
9. REi : Residual energy of ith camera sensor;
10. THE : Threshold energy;
11. BNs¼Sensing range of boundary sensor;
12. BNE¼Boundary sensor along east side;
13. BNW¼Boundary sensor along west side;
14. SNCSPARðÞf;
15. BN¼BoundarynodeSelection();
16. for(i¼ 0; io j; iþþ)
17. {
18. Calculate Ψi

w¼Ei�(di n γ ), where γ¼unit of energy consumed to move a
unit distance;

19. Check for Θi;
20. Update Ψi

w¼Ψi
w - (Θi nδ ), where δ¼unit of energy consumed to rotate a

unit angle;
21. Calculate QoSi¼Wi x Li;
22. if(QoSi¼QoSi-1¼α)
23. if(Ψ i

w4Ψ i�1
w )

24. Select Ci;
25. else Select Ci�1;
26. if(QoSi4QoSi�1)
27. if(QoSi4α)
28. Select Ci;
29. else if(QoSi�14α )
30. Select Ci�1;
31. if(Rs&&BNsaϕ)
32. Draw horizontal line (barrier) from BNW to Rs;

33. else if(Rs&&Ni
saϕ)

34. Draw horizontal line (barrier) from Rs to Ns
i;

35. else Draw horizontal line (barrier) from Rs of ði�1Þ th sensor to Ni�1
s ;

36. }
37. do{
38. Repeat Barrier Construction steps from 31 to 35 to draw the barrier line in

the network;
39. }while (Rs&&BNEaϕ)

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 243
For transmitting k bytes of data, energy consumed by a sensor
can be calculated as follows.

ESE ¼ k n SCur n SVol n SDur ð6Þ
The energy consumption for reading/writing k bytes of data can

be calculated as follows.

ERW ¼ k n SVol n ðCWr n TWrtþCRd n TRdÞ ð7Þ
where EWrt¼energy consumption for writing data, ERd¼energy
consumption for reading k bytes of data, TWrt¼time required to
write, TRd¼time required to read, CWr¼current for writing 1 byte
of data, CRd¼current for reading 1 byte of data. Finally, the total
energy consumption (ETot) is given in Eq. (8).

ETot ¼ ðSCur n SVol n SDurÞþERot
þSVol n ðCWr n TWrtþCRd n TRdÞþEProþETrnþERcvþESt

)
ð8Þ
5. Big data analytic and storage layer

5.1. Big data analytic layer

The big data analytic layer is responsible for processing, ana-
lyzing and identifying the intruders based on the data collected by
the camera sensors. In this layer, the detail process of trespasser
detection is explained. Data are the substantial element of big data
analysis and in case of border surveillance, the camera sensor data
are even more essential for security purpose. However those
streaming video data are huge in size with high arrival rate.
Though several big data processing models such as Hadoop, Storm,
and Spark exist to deal with these situations, we select the Spark
streaming model as it provides the most appropriate data engi-
neering technique for real-time intruder detection. Prior to data
analysis, it is assumed that huge amount of data is collected by
those camera sensors to obtain the quality image without losing
any necessary information. This colossal intruder data are pro-
cessed in three different phases, i.e. intruder detection and data
acquisition phase, intruder data management phase, and intruder
data analysis phase, which are described in the subsequent
subsections.

5.1.1. Intruder detection and data acquisition phase
Intruder detection is a major activity under border security

monitoring along with habitat monitoring. In Keung et al. (2012),
authors propose a k-barrier coverage model, which uses mobile
sensors to detect the moving intruder. Prior to this work all others
have used the static sensor for target detection. Authors in Keung
et al. (2012) mapped this problem to the classical kinematic theory
to establish a relationship between the moving intruder and
moving sensors as gas molecules. In this formulation, detection
depends on sensor's moving speed (Vm), sensing range (Rs) and
time duration (τ). Both sensors and intruders move with a con-
stant velocity where intruders path intersect with the sensor's
traveling path. In this process, an intruder is detected, if it inter-
sects with the sensor's path along with the sensing range of the
sensor. However, it could be possible that an intruder is unde-
tected, if it is not within the sensing range of a sensor and also
even if the intruder is detected, the sensor cannot communicate
instantly with other sensors to pass the information. In Sahoo et al.
(2013), authors have proposed the centralized, distributed,
sequential boundary node selection algorithms with target track-
ing algorithm. However, the quality of sensing in terms of image
resolution is not discussed in this work. In our proposed work, we
not only focus on the detection of an intruder but also maintain
the quality of detection.

In this subsection, the intruder detection with guaranteed
quality of sensing and data transmission mechanism are illu-
strated. We use dual technology to save energy and enhance the
lifetime of the network. It is assumed that the intruder will
maintain a constant velocity while crossing the monitoring region.
The main purpose of this analysis is to detect an intruder with
minimum energy consumption that trespasses across the mon-
itoring region. Dual technology microwave sensors (Dual Tech-
nology Motion Sensor) have a field of view consisting of a Doppler
microwave detector with two receiving channels and a dual ele-
ment infrared detector, which are used for primary detection of
the intruders. Detection of an intruder occurs only when the
microwave and passive infrared protection patterns overlap. In
order to detect the intruders using microwave motion sensors, the
whole monitoring region of area WR � LR is divided into grids.
Thus, the total number of horizontal partitions is WR=Rs¼P and
the total number of vertical partitions is LR=MSr¼Q. After parti-
tioning the monitoring region into grids, Red and Yellow zones are
demarcated as shown in Fig. 9. The Red zone (ZR) is the most
probable zone to identify the intruder, whose area can be
demarcated as LRnðWR=2RsÞ. Yellow zone (ZY) is the alert zone to
wake up the camera sensors whose area is demarcated as
LRnðWR=RsÞ.

When an intruder enters into the monitoring region, Mm can
detect the intruder within its sensing range. Mm will wait for Δty

units of time in the yellow zone and then communicate to the
camera sensor present within its communication range. After Δt



Fig. 9. Detection of intruder and data transmission. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249244
time, camera sensors are activated as shown in Fig. 9. If a camera
sensor does not detect any intruder within Δtr time, it informs to
neighboring camera sensor present in the next grid to active. For
quality monitoring, the resolution of the intruder's image needs to
be checked and maintained during detection. Taking ZW

Y, ZWR and
VI as the width of the Yellow zone, width of the Red zone and
velocity of the intruder, respectively. Waiting duration of the
microwave sensor (Δty) and wireless camera sensors (Δtr) can be
derived as given in Eqs. (9) and (10), respectively.

Δty ¼ ZY
W=VI ; ð9Þ

Δtr ¼ ZR
W=VI ; ð10Þ

where Δty and Δtr are the time to detect the intruder in yellow and
red zone, respectively. Hence, the image frames are captured
within the red zone only and are transmitted to the next hop
camera sensors with a beacon message including the destination
sink node's id represented as the dotted arrows in Fig. 9 or we can
use any existing collaborative multi-hop routing algorithm (Jiang
et al., 2015). The data packets are guaranteed due to short range,
energy saving, low power transmission mode by which the quality
of the data packets are maintained. The first label of the data
aggregation is accomplished by combining the images within each
active grid. Subsequently, the accumulated data are dispatched to
big data processing system for analysis.

5.1.2. Intruder data management phase
It is to be noted that the image of the intruders captured by the

barrier camera sensors are of real time streaming data. It is very
difficult to handle those gigantic real-time video frames for pro-
cessing. A Spark streaming model is used to execute the surge
camera sensor data. A Streaming Request Handler (SRH) interface
is used in between the wireless sensor layer and big data layer to
control the stream of data sets. In Fig. 10, the input video frames
ðIvðx; y; tÞÞ at time t are divided into multiple small video segments
ðVsðx; y; tÞÞ by the SRH, where
Vsðx; y; tÞ ¼ fVs1ðx; y; tÞ;Vs2ðx; y; tÞ;Vs3ðx; y; tÞ;…;Vsmðx; y; tÞg. The
response time of each sub-frame is less than one second, which
enhances the execution speed. The sliced Streaming Data Frames
Fig. 10. Intruder streami
(SDFs) known as Resilient Distributed Datasets (RDDs) in Spark are
transferred to local caches by calling persist method present in the
Spark. In this case, fVs1ðx; y; tÞ;Vs4ðx; y; tÞ;Vskðx; y; tÞg SDFs are
stored in the local cache χ as shown in Fig. 10. The persistent data
are stored in local memory for future use. However, if the data size
exceeds the cache limit, then the selected data can move to the
disk based on the priority. Hence, the data are selected either from
the input stream directly or from the local cache for execution by
the Spark Executor for intruder detection.

5.1.3. Intruder data analysis phase
The intruder data are processed and analyzed in the Spark

Executor present in the core module of the Spark as shown in
Fig. 11. In the processing phase, we also intend to eliminate the
background image (Bouwmans, 2014) of the captured border
images by the camera sensors. The streaming data processing is
accomplished in two stages, i.e. Transformation and Action. The
background of the video frames are eliminated in the stage 1 of
transformation phase to identify the intruder and reduce the data
volume as the interest is on object rather than the background
scene. The filter method is used during this background subtrac-
tion process. In Fig. 11, the data stream ðVs1ðx; y; tÞÞ has three dif-
ferent frames, i.e. Vs11ðx; y; tÞ, Vs21ðx; y; tÞ, Vs31ðx; y; tÞ in which the
partial image of the intruder is captured with the background
ðBðx; y; tÞÞ. Therefore, the filter method is used on each frame to
generate the intruder image only. Taking n as the number of
frames per second in the video, the average ðBAvgðx; y; tÞÞ can be
calculated as follows.

BAvgðx; y; tÞ ¼
1
n

Xn
ı ¼ 1

ð1�ωÞVsıðx; y; t� ıÞþðωÞVsıðx; y; tiÞ ð11Þ

where ω¼ 1
t is the learning parameter. Hence, the incoming frame

Vsıðx; y; tÞ at time t is compared with the previously calculated
average background BAvgðx; y; tÞ. Let us consider an example where
5 number of frame images (n¼5) are coming at time instances
t ¼ f1;2;3;4;5g. The learning parameter ω is assumed to be 1.
According to Eq. (11), the background is calculated by taking the
average of 5 frames instead of a single frame, which is more rea-
listic. Hence, BAvgðx; y; tÞ can be represented as follows.

BAvgðx; y;5Þ ¼
1
5

X5
ı ¼ 1

ð1�1ÞVsıðx; y; t� ıÞþð1ÞVsıðx; y; tiÞ

BAvgðx; y;5Þ ¼
1
5

X5
ı ¼ 1

Vsıðx; y; tiÞ

9>>>>>=
>>>>>;

ð12Þ

Once the background ðBAvgðx; y; tÞÞ is calculated, a subtraction or
filtering process is carried out by comparing each upcoming frame
with the background frame to find the intruder image as shown in
Eq. (13).

Intðx; y; tÞ ¼ Vsıðx; y; tÞ�BAvgðx; y; tÞ
s:t: Intðx; y; tÞZ ITh

)
ð13Þ

where, Intðx; y; tÞ is the intruder image at time t and ITh is the
quality threshold parameter. However, in one frame the complete
image of the intruder may not be visible. To get rid of this problem,
the partial image of the trespasser is combined together by using
the join function to get the complete picture. Hence, only the
intruder image is sent to the stage 2 for intruder analysis. The
ng data processing.



Fig. 11. Intruder streaming data analysis.

Table 5
List of simulation parameters.

Number of nodes 100–1000
Monitoring area 1000 m�100 m
Sensing range (Rs) 5–20 m
Communication range (Rc) 10–40 m
Field of View (FoV) 30–90°
Quality of monitoring (α) 5 m�10 m
Mobility distance 1–5 m
Size of control packet 128 kb
Initial residual energy 100 J

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 245
intermediate data are stored in the local cache to achieve the data
locality in the next stage. This in-memory execution reduces the
processing time of large streaming data. In stage 2, the intruder
image is compared with the suspected person by using the map as
a transformation. If we want to compare the image with multiple
targets, then flatmap is used. We can also use any existing face
detection algorithms (O'Toole et al., 2007) as our map or flatmap
function. Eventually the analyzed data are transferred to the out-
put phase for storage purpose. All analyzed data are stored using
save method present in the Spark output.

5.2. Cloud layer

In order to analyze and detect the intruders, an organization
has to setup a large scale barrier coverage system with the help of
camera sensors and the collected data need to be stored and
analyzed time to time in a distributed service architecture. For
example, in military application, the data collected by the camera
sensors need to be stored in the systems, which should be fault
tolerant, highly available, and highly durable. It can be achieved
only if the data are stored in multiple facilities with error checking
and self-healing processes and should be accessible at any loca-
tion. By storing the larger size of image data in a highly virtualized,
distributed Cloud, features such as scalability, elasticity, fault-tol-
erance, self-manageability, and ability to run on commodity
hardware can be achieved.

Moreover, by storing data in on-premise data centers within an
organization's local network may have single point of failure and is
not cost effective as building an infrastructure from the ground up
will have an organization's own maintenance and administration.
Beside, a traditional data center can have limited capacity of sto-
rage and we cannot be able to change the amount of storage and
workload without purchasing and installing more equipment once
it is built. However, a cloud platform for the big data analysis can
act as an off-premise computing environment to store the data on
the Internet and can be available for analysis irrespective of any
locality. Hence, we propose here a Cloud layer for the physical
storage of big data through the Zookeeper.

In our proposed architecture, Cloud layer is the physical storage
layer, which is solely used for storing the analyzed data across
different data centers (DCs) in a distributed fashion. All DCs are
networked and distributed geographically. In this layer, it is pro-
posed that Zookeeper is used as a coordinator between the Spark
Executor and cloud repository for data storage purpose. Cassandra
distributed databases are used in the cloud and local cache as it
can store the real-time data sets in an effective manner. It can
support the fault-tolerant by clustering multiple database nodes
and backup nodes, which are also synchronized by the zookeeper.
Any data visualization technique can be applied on the stored data
to present the results in graphical or chart formats for the military
and research purpose by extracting the useful information. By
using this kind of architecture, the camera sensor streaming data
are efficiently handled, analyzed and stored for the intruder
detection application.
6. Simulation results

In this section, the performance of our proposed algorithms are
evaluated using NS-3 and CloudSim (http://www.cloudbus.org/
cloudsim/) simulators on Ubuntu platform. Directional camera
sensors are deployed randomly over a rectangular monitoring
region of size 1000 m�100 m. All simulation parameters are
setup according to the IEEE 802.15.4 MAC mechanism with AODV
routing protocol. The number of deployed sensors varies from 100
to 1000 in the simulation and the sensing range is set to be 5 m,
10 m and 20 m. The communication range is twice of the sensing
range and accordingly it is set to be 10 m, 20 m, 40 m. Throughout
the simulation, we have fixed the field of view (FOV) as 30°, 45°,
60°, 90°. Quality of monitoring is defined as the percentage of the
area of the image detected. In the simulation, the mobility distance
of each camera sensor is set to be 1 m, 2 m and 5 m. The size of the
control packet is 128 kb and the simulation is run for 25 rounds to
get average of the each simulated data. Performance evaluation is
done taking different number of directional sensors, sensing range,
field of view and quality of sensing in different scenarios and
detailed list of parameters used in the simulation is shown in
Table 5.

As shown in Fig. 12, it is observed that the percentage of barrier
construction rate increases monotonically with the increase in the
number of camera sensors.However, a less number of camera
sensors are required to achieve the same coverage with an
increase in the sensing range. Here, FoV and mobility distance are
kept constant. The reason is that when the radius of sensing range
increases, it enhances the barrier coverage probability.

In this process, we should decrease the number of sensors to
achieve 100% of barrier coverage. In Fig. 13, it is noticed that the



Fig. 12. % of barrier construction with different sensing range.

Fig. 13. % of barrier construction with FOV.

Fig. 15. Performance comparison based upon # of nodes.

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249246
barrier coverage percentage grows when the number of sensors
increases with different FOVs.

The increment in barrier construction depends on the angle of
FOVs with constant sensing range and mobility distance. It is
analyzed that the barrier construction rate is also increased with a
small number of camera sensors, if the FOV increases.

The barrier construction time is simulated as shown in Fig. 14.
The time taken for barrier construction is reduced with an increase
in the sensing range where FOV and mobility distance are steady.
Fig. 14. Barrier construction time.
In Fig. 15, barrier construction performance comparison is done
based on the number of camera sensors.

In this figure, it is observed that a less number of camera
sensors are used to construct the barrier in our proposed algo-
rithm as compared to the SBP and B3CA (Guo et al., 2014) algorithm.

For 100% barrier construction, 50 number of camera sensors are
required by our protocol, whereas 80 and 190 number of camera
sensors are needed by SBP and B3CA, respectively. In Fig. 16, suc-
cessful barrier construction rate is compared with respect to the
Quality of Sensing (QoS). It is observed that our algorithm out-
performs as compared to the D-TriB and B3CA with different
widths. In this experiment, the length of the image is fixed to be
1 unit as it is not considered by other protocols. Mobility of the
sensors helps us to minimize the number of camera sensors during
the barrier construction, by maintaining the QoS. It is clearly
observed that the sensors having smaller FOV consume more
energy for rotation to maintain 100% barrier coverage as shown in
Fig. 17, where sensing range and mobility distance are unchanged.

The reason is that to achieve the QoS for a fixed percentage, we
need to intersect the sensing range of two neighboring camera
sensors. Hence, camera sensor with smaller FOV needs more
rotation to continue the barrier along with the QoS.

In Fig. 18, the total energy consumption is calculated taking
camera sensors as well as the static microwave sensors to main-
tain 100% coverage with fixed sensing range of the camera sensors.
It is found that the sensors having more mobility distance and less
FOV consume more power. Therefore, it is advisable to select a less
number of mobile sensors with larger FOVs to exhaust less energy.
In Fig. 19, the network lifetime is simulated and is confirmed that
the lifetime can be enhanced by choosing a less number of mobile
Fig. 16. Performance comparison based upon QoS.



Fig. 17. Energy consumption due to rotation.

Fig. 18. Total energy consumption with mobility distance.

Fig. 19. Network lifetime for different number of camera sensors.

Fig. 20. Average processing time with different number of servers.

Fig. 21. Spark-CPU Vs Spark-GPU.

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 247
sensors with larger FOVs and medium sensing range. However, in
this figure, the sensing range is fixed as 10 m. Number of nodes,
FOVs and sensing range greatly influence the network lifetime to
improve it.

We have also simulated the proposed algorithm using in
CloudSim simulator to study the processing time for different
number of servers. An efficient way of streaming data processing is
the main focus with processing and storage cost optimization. For
this reason, we have considered a scenario that consists of five
data centers with many servers in each data center. It is assumed
that the data centers are networked and are geographically dis-
tributed. The processing time is defined as the summation of both
execution time and data transfer time from different locations. Our
goal is to utilize the optimal number of data centers to study the
processing cost incurred by those data centers.

From Fig. 20, it is observed that the parallel servers can be
beneficial only when a large number of streaming data need to be
processed for background elimination. Initially, parallel servers
took more time for a less number of data size as compared to the
single server, since the data are distributed over different loca-
tions. However, when the camera sensor data size increases sig-
nificantly, a single server may not be able to accommodate all the
data. Hence, it takes much time as compared to the parallel ser-
vers. However, always increasing the number of parallel servers
does not give better result. In our simulation, it is observed that 25
parallel servers give higher performance in terms of processing
time when the data size is up to 85 GB, but the processing time is
almost constant until the data size is 100 GB as the data are highly
distributed.

In Fig. 21, the image analysis is performed by using the Spark
with Graphics Processing Unit (GPU). In the process of execution,
NumbaPro (http://docs.continuum.io/anaconda-cluster/examples/
spark-numbapro), NVIDIA and Compute Unified Device Archi-
tecture (CUDA) platform are used to support the image analysis in
Spark. From the simulation figure, it is clearly noticed that the
Spark-GPU works efficiently for the image analysis. The processing
time of Spark-GPU is 2� time (on average) faster than the Spark-
CPU. The processing time is higher in Spark-CPU with the increase
in the number of images (900–1000 images) as more disk I/O
operations are needed to achieve the data locality. By taking
advantage of GPU, if we scale up the number of CPU and GPU, the
execution time can be 18.6� faster (Li et al., 2015) as compared to
the only Spark platform.

Fig. 22 shows the utilization of data centers while processing a
huge number of records. In our simulation, we have set the input
data size in gigabytes ranging from 5 GB to 50 GB. Beside, we have
taken heterogeneous servers for each data center with an unequal
number of servers ranging from 30 to 50. From Fig. 22, we can
conclude that the CPU utilization of servers increases with an



Fig. 22. % of CPU utilization.

Fig. 24. Average link load in the cloud network.

Fig. 25. Cost incurred for processing data in distributed data centers.

S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249248
increase in amount of data size coming to different data centers.
However, when the amount of data exceeds the capacity of a
single data center, a new data center needs to be deployed to
balance the utilization. Our goal is to maximize the resource uti-
lization without compromising the processing deadline. However,
after attaining an optimum CPU utilization of data centers with
fixed size of data, if we increase the number of data centers, the
utilization percentage will decrease due to over distribution.

In Fig. 23, the system throughput is shown over a period of
time in the presence of multiple servers. The processing
throughput is defined as the amount of data segments executed
among different servers within the cloud network. Initially, the
system throughput is high with 5# of servers up to 12 s as the data
volume is low. Later on, the system throughput is increased with
the increase in # of servers over the time due to the increase in the
data volume. However, an increasing trend of throughput is
noticed up to 55 s, which remains steady after that time.

In Fig. 24, the average link load of the cloud network over time
is valuated. The ratio between the used bandwidth over the
capacity is defined as the link load between the data centers. In
this case, the average link load is observed during the peak time by
taking different size of the data packets. During the initial phase of
the graph, the load is steady up to 20 s due to data locality and less
workload. However, the load is increased between 20 and 40 s due
to high data volume and the intermediate data transfer between
the data centers for next level of processing. It is observed that the
packet sizes of the data are also responsible to increase the load on
the link of the data center network.
Fig. 23. System throughput.
As shown in Fig. 25, the incurred cost associated with different
number of distributed data centers across different geographical
locations is simulated. In the simulation, bandwidth cost, storage,
computation cost and data migration cost are taken into account.
For cost calculation, we have taken the pricing model of Amazon
Web Server (AWS) (http://www.aws.amazon.com/cloudcomput-
ing) for reference and found that higher cost is incurred if the
geographical distance is increased.However, this trend is not
always exactly the same for all the scenarios as many different
parameters are interrelated with each other.
7. Conclusion

In this paper, a big data analytic architecture is proposed to
process and analyze the data generating from the camera sensors
to form the barrier and to detect the intruders. In addition, a
barrier construction algorithm is designed to construct the barrier
with the help of a minimum number of camera and microwave
sensors. Beside, intruder detection technique is also introduced to
detect and identify the intruder within the specified region with a
threshold resolution. The QoS is maintained by taking size of the
intruder across the network. The intruder detection mechanism is
also introduced with cloud layer to store the data about the
intruders. The data size of the captured image is reduced by
eliminating the background images. A Spark streaming framework
is introduced to handle and process the huge volume of camera
sensor data in parallel. Taking different number of data centers
distributed geographically, the throughput, link load processing
cost are simulated and CPU utilization is evaluated with different
number of servers in the cloud environment. It is observed that
our proposed algorithms can be used for the border surveillance
applications to monitor the border round the clock using camera



S.K. Mohapatra et al. / Journal of Network and Computer Applications 66 (2016) 236–249 249
sensors and our big data architecture with cloud layer can give the
complete solution of analyzing the large volume of captured data.
Acknowledgments

This work is co-sponsored by the Ministry of Science and
Technology (MOST), Taiwan, under Grants 103-2221-E-182-029,
104-2221-E-182-004, 101-2923-E-182-001-MY3, 104-2221-E-182-
032 and is partly supported by Chang Gung University, Taiwan
under Grant UERPD2D0061.
References

〈http://www.aws.amazon.com/cloudcomputing〉.
Bhattacharya M, Islam R, Abawajy J. Evolutionary optimization: a big data per-

spective. J. Netw. Comput. Appl. 2014.
Bouwmans T. Traditional and recent approaches in background modeling for

foreground detection: An overview. Comput. Sci. Rev. 2014;11(2):31–66.
Chellappan S, Gu W, Bai X, Xuan D, Ma B, Zhang K. Deploying wireless sensor

networks under limited mobility constraints. IEEE Trans. Mob. Comput. 2007;6
(10):1142–57.

Chen, Tzung-Shi, Tsai, Hua-Wen, Chen, Chih-Ping, Peng, Jiun-Jie, 2010a. Object
coverage with camera rotation in visual sensor networks. In: Proceedings of the
6th International Wireless Communications and Mobile Computing Conference
(IWCMC '10), ACM, pp.79–83.

Chen A, Kumar S, Lai TH. Local barrier coverage in wireless sensor networks. IEEE
Trans. Mob. Comput. 2010b;9(4):491–504.

Chen, J., Salim, M.B., Matsumoto, M., 2010c. Modeling the energy performance of
object tracking in wireless sensor network using dual-sink. In: 16th Asia–Pacific
Conference on Communications (APCC), pp. 204–209.

Cheng Chien-Fu, Tsai Kuo-Tang. Distributed barrier coverage in wireless visual
sensor networks with β-QoM. IEEE Sens. J. 2012;12(6):1726–35.

Chow, Kit-Yee, Lui, King-Shan, Lam, E.Y. 2007. Achieving 360° angle coverage with
minimum transmission cost in visual sensor Networks. In: IEEE Wireless
Communications and Networking Conference, pp.4112-4116.

〈http://www.cloudbus.org/cloudsim/〉.
Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G., 2005. Robo-

mote: enabling mobility in sensor networks. In: Fourth International Sympo-
sium on Information Processing in Sensor Networks, pp. 404–409.

Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.
Commun. ACM 2008:107–13.

〈http://docs.continuum.io/anaconda-cluster/examples/spark-numbapro〉.
El-Moukaddem F, Torng E, Guoliang X, Torng E, Xing G. Mobile relay configuration

in data-intensive wireless sensor networks. IEEE Trans. Mob. Comput. 2013;12
(2):261–73.

Guo, L., Kim, D., Li, D., Chen, W., Tokuta, A.O., 2014. Constructing belt-barrier pro-
viding β-quality of monitoring with minimum camera sensors. In: 23rd Inter-
national Conference on Computer Communication and Networks, pp. 1–8.

Halgamuge MN, Zukerman M, Ramamohanarao K, Vu HL. An estimation of sensor
energy consumption. Prog. Electromagn. Res. B 2009;12:259–95.
Hoseini, S.M., Dehghan, M., Pedram, H. 2012. Full angle coverage in visual sensor
networks. In: 2nd International eConference on Computer and Knowledge
Engineering (ICCKE), pp. 260–265.

Janansefat, S., Akkaya, K., Senturk, I.F., Gloff, M., 2013. Rethinking connectivity
restoration in WSNs using feedback from a low-cost mobile sensor network
testbed. In: IEEE 38th Conference on Local Computer Networks Workshops
(LCN Workshops), pp. 108–115.

Jiang L, Xu LD, Cai H, Jiang Z, Bu F, Xu B. An IoT-oriented data storage framework in
cloud computing platform. IEEE Trans. Ind. Inform. 2014;10(2):1443–51.

Jiang D, Xu Z, Wang W, Wang Y, Han Y. A collaborative multi-hop routing algorithm
for maximum achievable rate. J. Netw. Comput. Appl. 2015.

Keung GY, Li B, Zhang Q. The intrusion detection in mobile sensor network. IEEE/
ACM Trans. Netw. 2012;20(4):1152–61.

Lakshman A, Malik P. Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 2010;44(2):35–40.

Li, P., Luo, Y., Zhang, N., Cao, Y. 2015. HeteroSpark: s heterogeneous CPU/GPU Spark
platform for machine learning algorithms. In: IEEE International Conference on
Networking, Architecture and Storage (NAS), pp. 347–348.

Lima DHS, Aquino ALL, Ramos HS, Almeida ES, Rodrigues JJPC. OASys: an oppor-
tunistic and agile system to detect free on-street parking using intelligent
boards embedded in surveillance cameras. J. Netw. Comput. Appl.
2014;46:241–9.

Mehta, V., Sheng, W., Chen, T., Shi, Q. 2009. Development and calibration of a low
cost wireless camera sensor network. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, pp. 110–115.

O'Toole AJ, Phillips PJ, Jiang Fang, Ayyad J, Penard N, Abdi H. Face recognition
algorithms surpass humans matching faces over changes in illumination. IEEE
Trans. Pattern Anal. Mach. Intell. 2007;29(9):1642–6.

Sahoo PK, Sheu JP, Hsieh KY. Target tracking and boundary node selection algo-
rithms of wireless sensor networks for internet services. Inf. Sci. 2013;230:21–
38.

Shih, Kuei-Ping, Chou, Chien-Min, Liu, I-Hsin, Li, Chun-Chih, 2010. On barrier cov-
erage in wireless camera sensor networks. In: 24th IEEE International Con-
ference on Advanced Information Networking and Applications (AINA '10),
pp. 873–879.

Sinha A, Chandrakasan A. Dynamic power management in wireless sensor net-
works. IEEE Des. Test Comput. 2001;18(2):62–74.

Tao Dan, Tang Shaojie, Zhang Haitao, Mao Xufei, Ma Huadong. Strong barrier cov-
erage in directional sensor networks. Comput. Commun. 2012;35(8):895–905.

Vecchio M, Lopez-Valcarce R. Improving area coverage of wireless sensor networks
via controllable mobile nodes: a greedy approach. J. Netw. Comput. Appl.
2015;48:1–13.

Wang, Yi, Cao, Guohong, 2012. Barrier coverage in camera sensor networks. In:
Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc '11), ACM, New York, NY, USA, p. 12.

Yang SJ, Chen YR. Design adaptive task allocation scheduler to improve MapReduce
performance in heterogeneous clouds. J. Netw. Comput. Appl. 2015;57:61–70.

Zaharia, M., Das, T., Li, H., Shenker, S., Stoica,I. 2012. Discretized streams: an efficient
and fault-tolerant model for stream processing on large clusters. In: Proceed-
ings of the 4th USENIX Conference on Hot Topics in Cloud Computing, Berkeley,
CA, USA, p. 10.

Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart
cities. IEEE Internet Things J. 2014;1(1):22–32.

http://www.aws.amazon.com/cloudcomputing
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref2
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref3
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref4
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref6
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref8
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref8
http://www.cloudbus.org/cloudsim/
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref12
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref12
http://docs.continuum.io/anaconda-cluster/examples/spark-numbapro
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref15
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref17
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref20
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref20
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref20
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref21
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref21
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref22
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref23
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref25
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref27
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref28
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref30
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref31
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref32
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref34
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref36
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref36
http://refhub.elsevier.com/S1084-8045(16)30011-X/sbref36

	Big data analytic architecture for intruder detection in heterogeneous wireless sensor networks
	Introduction
	Motivations
	Contributions

	Related work
	Big data analytic architecture
	Wireless sensor layer
	Problem formulation
	Barrier construction algorithm
	Barrier construction with microwave sensors
	Selection of boundary camera sensors
	Selection of non-boundary camera sensors
	Selection of best non-boundary camera sensors

	Energy consumption analysis

	Big data analytic and storage layer
	Big data analytic layer
	Intruder detection and data acquisition phase
	Intruder data management phase
	Intruder data analysis phase

	Cloud layer

	Simulation results
	Conclusion
	Acknowledgments
	References




