
The Journal of Systems and Software 119 (2016) 149–161

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Design and implementation of a novel service management

framework for IoT devices in cloud

Chinmaya Kumar Dehury, Prasan Kumar Sahoo

∗

Dept. of Computer Science and Information Engineering, Chang Gung University, Kwei-Shan, 33302, Taiwan(ROC)

a r t i c l e i n f o

Article history:

Received 8 March 2016

Revised 21 May 2016

Accepted 22 June 2016

Available online 24 June 2016

Keywords:

Cloud computing

SaaS

IoT

Docker

a b s t r a c t

With advent of new technologies, we are surrounded by several tiny but powerful mobile devices through

which we can communicate with the outside world to store and retrieve data from the Cloud. These de-

vices are considered as smart objects as they can sense the medium, collect data, interact with nearby

smart objects, and transmit data to the cloud for processing and storage through internet. Internet of

Things (IoT) create an environment for smart home, health care and smart business decisions by trans-

mitting data through internet. Cloud computing, on the other hand leverages the capability of IoT by

providing computation and storage power to each smart object. Researches and developers combine the

cloud computing environment with that of IoT to reduce the transmission and processing cost in the

cloud and to provide better services for processing and storing the realtime data generated from those

IoT devices. In this paper, a novel framework is designed for the Cloud to manage the realtime IoT data

and scientific non-IoT data. In order to demonstrate the services in Cloud, real experimental result of im-

plementing the Docker container for virtualization is introduced to provide Software as a Service (SaaS)

in a hybrid cloud environment.

© 2016 Elsevier Inc. All rights reserved.

1

v

n

t

m

t

f

t

n

m

o

p

s

s

F

w

a

u

t

p

U

i

v

i

t

t

c

d

i

d

a

h

b

n

h

T

e

a

t

H

h

0

. Introduction

Internet of Things (IoT) is the upcoming technology to con-

ert an object into smart objects by connecting them to inter-

et. This allows us to control any tangible object remotely. The

erm IoT coined (Epc symposium, 2003) for supply chain manage-

ent and came to the attention when Auto-ID center launched

heir initial vision of the epic network for automatically identi-

ying and tracing the flow of goods in supply-chains. According

o an estimation made by Cisco, 50 billion devices will be con-

ected to internet by 2020 forming a large dense IoT environ-

ent (Internet of things , iot). These IoT devices include intelligent

ven, smart watch, smart air quality monitor, heart monitoring im-

lants, rescue operation etc. Different sensors such as temperature

ensor, gyro sensor, accelerometer, pressure sensor, and humidity

ensors play an important role in establishing IoT environment.

rom above discussion, the basic definition of IoT can be derived as

orldwide collaboration and formation of massive network among

ll physical entities or objects to reach common goals through

nique addressing schemes by embedding RFID tags, sensors, ac-

uators etc. As defined by the International Telecommunication
∗ Corresponding author.

E-mail addresses: d0321009@stmail.cgu.edu.tw (C.K. Dehury),

ksahoo@mail.cgu.edu.tw (P.K. Sahoo).

t

m

m

n

ttp://dx.doi.org/10.1016/j.jss.2016.06.059

164-1212/© 2016 Elsevier Inc. All rights reserved.
nion (ITU) (Itu-t recommendation database, 2016), IoT is a global

nfrastructure for the information society, enabling advanced ser-

ices by interconnecting physical and virtual things based on ex-

sting and evolving inter-operable information and communication

echnologies.

In Atzori et al. (2010) , authors discuss three main visions of In-

ernet of Things. The Semantic-oriented vision states that the in-

reasing number of IoT devices increases the complexity in han-

ling those devices. Huge amount of data are being generated

n every instance of seconds, and the data exchange among IoT

evices also increases exponentially. The semantic-oriented vision

ddresses the aforementioned issue, where the representations of

uge data, storage, search, and organize information become cum-

ersome. The idea behind semantic-oriented vision is to propose

ew semantic technologies, which can exploit new solutions to

andle such massive amount of data generated by IoT devices.

he Internet-oriented vision states that distributing unique IP to

ach object to connect to the internet is difficult and inefficient

s the number of IoT object increases. The existing internet pro-

ocol may not be able to handle billions of smart IoT objects.

ence, how to connect several objects to the internet and how

o identify uniquely the data generated from those objects is the

ain concern in internet-oriented vision. Things-oriented vision

ainly refers to the tracking of each object with specialized tech-

ology such as RFID tag. RFID tag is most popular technology in

http://dx.doi.org/10.1016/j.jss.2016.06.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.06.059&domain=pdf
mailto:d0321009@stmail.cgu.edu.tw
mailto:pksahoo@mail.cgu.edu.tw
http://dx.doi.org/10.1016/j.jss.2016.06.059

150 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

a

o

i

S

t

v

c

s

(

i

m

a

w

i

R

p

t

t

l

e

e

c

i

o

I

d

h

e

w

d

e

(

n

D

d

t

h

t

I

p

s

c

F

i

p

a

(

p

a

c

o

a

a

c

a

e

L

s

t

c

u

p

fi

w

establishing an IoT environment. But things oriented vision indi-

cates researchers to go beyond the RFID tag.

Cloud computing is a computing paradigm, where all comput-

ing resources such as memory, storage, processing capabilities are

rented from third party provider through internet. This paradigm

is unlike the traditional way of computation, where the users have

complete set of resources in a standalone personal computer to

perform any computation task. In cloud computing, all the re-

sources are accessed through web application and it is a poten-

tial platform for different companies, organizations, individuals, re-

searchers for its capability to scale up and scale down the re-

sources as per the requirement. Mainly, the computation power

and the storage power are the two features cloud computing plat-

form focuses on. Everything cloud provides to the users is called

as service. These services are of three types. Software as a Ser-

vice (SaaS) at the top of the control hierarchy gives users mini-

mal control over the cloud resources. The users can use the rented

software only and the underline environment is kept hidden from

the users. On the other hand, Platform as a Service (PaaS) facil-

itates users to customize the platform, which includes the appli-

cation and middleware, to develop own application. Infrastructure

as a Service (IaaS) gives users full control to customize the envi-

ronment for developer. The customization includes the application,

development platform, middleware, the operating system and the

required resources such as mefmory, storage, CPU etc. Here, the

users have no idea regarding the underline environment such as

the hypervisor, physical server etc. All the services are deployed in

any one of the four different recommended models; Private cloud,

Public cloud, community cloud and hybrid cloud. Different models

are categorized solely based on the concern targeted user.

The underlined technology that makes the cloud environment

possible is virtualization (Gurav and Shaikh, 2010). Virtualization

technology allows the physical resources to be shared by multi-

ple users without the knowledge of each other. The cloud comput-

ing environment is becoming matured as virtualization technology

becoming more matured. This technology enhances the efficiency

in resource utilization and power consumption (Qian et al., 2015).

In cloud environment, the physical resources are provided to the

users in the form of virtual machines. These virtual machines act

like physical machines to the users and users have the capability

to customize the virtual machine at any instance of time. On the

other hand, the alternative to hypervisor based virtualization tech-

nology, Linux container technology is evolving as potential technol-

ogy to provide SaaS (Li et al., 2015). Container based virtualization

is lightweight virtualization technology, enabling high resource uti-

lization and less overhead, suitable for hosting software (Joy, 2015).

The rest of the paper is organized as follows. Brief summary

of related literature and motivation behind our proposed work are

given in Section 2 . The proposed framework for managing the re-

altime data in Cloud is designed in Section 3 . Performance anal-

ysis of our proposed framework is given in Section 4 . Implemen-

tation of Docker platform for virtualization in Cloud is described

in Section 5 . Performance evaluation of our framework and exper-

imental results of Docker platform are given in Section 6 and con-

cluding remarks are made in Section 7 .

2. Related works

Applying cloud computing concept to IoT environment is be-

coming mostly discussed research area now-a-days. These two

technologies can be applied to diversified environment such as

home security, emergency control, traffic control, building manage-

ment, smart cities, health care system, fire detection, dam moni-

toring system etc. Authors around the world are proposing their

views in merging power of IoT and cloud computing in different

environments. For example, in Yu et al. (2015) authors propose the
pplication of IoT in cloud based building management. The goal

f this application is to reduce the energy consumption by build-

ng management system with realtime building energy forecasting.

imilarly, in Suciu et al. (2015) , authors propose e-health applica-

ion of IoT and cloud computing in convergence with big data. The

olume of data generated by IoT devices in health care system is

onsidered as big data and hence it gives many challenges such as

torage and processing. According to authors, Machine to Machine

M2M) communication enabled by IoT paradigm not only plays an

mportant role in tele-monitoring e-health architecture, but also

akes the architecture secure. However, the major problem of this

rchitecture is that the realtime emergency tasks are not processed

ith highest priority. The model architecture for remote monitor-

ng cloud platform of healthcare information (RMCPHI) (Luo and

en, 2016) is designed for managing the healthcare information by

rioritizing and scheduling the realtime emergency tasks. However,

he proposed framework does not give any insight how to priori-

ize the tasks. Besides, execution of emergency tasks before dead-

ine is not emphasized, which is a major pitfall of this framework.

Authors in Schaffers et al. (2011) ; Vlacheas et al. (2013) ; Zanella

t al. (2014) propose their architecture for building the socio-

conomic developed and secure smart city by applying IoT and

loud computing paradigm. Authors also emphasize on different

ssues such as heterogeneity among IoT devices, unreliable nature

f associated services etc. The current discussion on application of

oT and cloud computing in building smart city is heading towards

eveloping urban IoT architecture, which can handle a variety of

eterogeneous connected IoT devices and different types of gen-

rated data form those connected devices. IoT can be combined

ith cloud computing considering a generalized environment as

iscussed in Li et al. (2013) ; Bai and Rabara (2015) ; Khodadadi

t al. (2015) with different research issues. Authors in Li et al.

2013) , propose the IoT service delivery on cloud in efficient man-

er that can be scaled up and scaled down as per the requirement.

omain mediator is proposed to handle the heterogeneity of IoT

evices. However, although the utilization of IoT devices are op-

imized by sharing them among multiple users, a little attention

as been paid how to handle the users who need less computa-

ion resources for few time period. A data-centric framework for

oT applications in cloud (DCFIC) (Khodadadi et al., 2015) is pro-

osed, which can handle data filtering by balancing the load and

cheduling the cloud resources. However, it is not clear how DCFIC

an handle the workload of real and non-realtime data requests.

urther, the framework does not emphasize on the computation

ntensive requests.

Meanwhile the power of cloud computing is applied to sup-

ly chain management in order to improve the inter-operability

nd efficiency among stake holders as discussed in Yinglei and Lei

2011) ; Liu et al. (2013) . In Yinglei and Lei (2011) , authors pro-

ose cloud computing based architecture for supply chain man-

gement. The traditional legacy applications are provided through

loud provider online. The proposed architecture takes advantages

f SaaS model to provide services to its user. In Liu et al. (2013) ,

uthors propose trusted model of cloud based supply chain man-

gement system where they consider six trust factors such as

ommunication, learning capacity, participation, usability, security

nd reliability. Pharmaceutical industrial context was considered to

valuate the proposed trust model. On the other hand, authors in

eukel et al. (2011) propose another service model inspired from

upply chain system. They map the basic cloud computing concept

o the basic concept of supply chain system. The goal of supply

hain system is to effectively handle all vehicles while efficiently

sing the available resources. From this basic goal, authors pro-

osed Supply Chain as a Service (SCaaS) to reach the goal of ef-

cient utilization of resources and delivery of Quality of Service

ithout compromising Service Level Agreement.

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 151

d

a

d

i

(

i

i

c

i

a

q

H

m

S

c

w

d

d

s

c

A

s

fi

t

n

s

r

s

t

t

h

u

m

d

l

f

2

r

r

s

m

r

c

A

t

b

r

t

s

S

v

e

d

d

n

v

t

s

h

i

Fig. 1. The proposed Cloud Framework.

b

s

l

c

C

s

s

p

n

c

i

t

e

a

s

3

M

r

d

s

A

d

F

a

t

s

s

a

s

c

a

m

c

l

o

A
Authors in Jiang et al. (2014) design a storage framework for IoT

evices in cloud, which combines multiple databases with Hadoop

nd enables the cloud service provider to handle the diversified

ata and store them in a distributed manner. Considering process-

ng capability of the cloud computing, authors in Wang and Ranjan

2015) introduce a brief summary on currently available solutions

n processing huge amount of distributed data followed by research

ssues associated with processing of those distributed IoT data. Se-

urity is another major factor need to be taken into account while

ntegrating IoT with cloud. Authors in Suarez et al. (2016) propose

 secure IoT data management architecture considering other re-

uirements such as naming, inter-operability and energy-efficiency.

owever, though data storage or data processing is considered in

ost of these works, priority of the users to maintain fairness and

ervice Level Agreement (SLA) among users are not taken into ac-

ount, which are the major drawbacks in the above mentioned

orks.

The study in Lee et al. (2014) illustrates the architecture and

esign principles of vehicular cloud networking that handles the

ata generated by different sensors fitted within a vehicle. Con-

idering road safety and passenger comfort, another generic cloud

omputing model (Bitam et al., 2015) is proposed for Vehicular

d hoc Networks (VANET). In Mallissery et al. (2015) , authors de-

ign a secure VANET cloud application to ensure minimum traf-

c congestion, traveling time, accidents and environmental pollu-

ion. However, the authors have not emphasized on the real and

on-realtime data requests generated from different vehicles. Be-

ides, it is found that proposed frameworks do not consider the

equests on priority basis. Apart from aforementioned applications

uch as smart cities, health care system, and building management,

he capability of IoT and cloud computing has also been applied

o dam monitoring and pre-alarm system (Sun et al., 2012), in-

ome environment condition monitoring (Kelly et al., 2013), vehic-

lar data cloud service (He et al., 2014) etc. However, in the above

entioned related works, authors have not considered the realtime

ata analysis and service models for the cloud. Based on the above

iterature survey, we present the motivation behind our work as

ollows.

.1. Motivation

In this subsection, we present the motivations behind our work

elated to how to design the cloud platform that can handle the

ealtime data generated by the IoT devices and batch data for the

cientific computation and storage. Although, IoT is the answer for

any issues while making human life more comfortable and luxu-

ious, this also introduces many challenges. Storage and computing

apability are the major challenges of IoT devices such as sensors.

t the same time, Cloud computing addresses these two issues for

he data generated by IoT devices. IoT devices are mainly responsi-

le for generating huge amount of data. As we discussed earlier, in

eal world IoT devices are of many kinds. For example, the sensors

hat are fitted in human body, monitor different factors of patients

uch as monitoring hemoglobin in blood, body temperature, etc.

uch kinds of IoT devices, generate very small amount of data but

ery frequently. On the other hand in surveillance system, the cam-

ras that are setup to detect the intrusion generate large volume of

ata very frequently. Some IoT devices generates huge amount of

ata, but in specific time interval. Our basic concern is that the

ature of data varies from one device to another based on the en-

ironment. The application specific data are diversified by their na-

ure, type, volume and variety. We assume here that those diver-

ified data needs special attention unlike the conventional way of

andling the huge amount of data.

In future, we will experience different types of IoT applications

n our daily life. Different specific applications enable our life to
e more comfortable, automatic and luxurious. But, from cloud

ervice provider (CSP) point of view, this may introduce another

evel of complexity as they may need to handle different appli-

ations or different environments at the same time. For example,

SP may need to provide the resources for many smart services

uch as smart cities, emergency control, smart health care system,

mart traffic control system, smart home security etc. In many ap-

lications, IoT devices generate data on realtime basis. Those data

eed to be stored time to time and they also need to be pro-

essed on realtime. This motivates us to think towards combin-

ng the power of IoT technology and Cloud computing paradigm

o build an underlined framework that cannot only handle differ-

nt smart services or smart environments but can also utilize the

vailable resources efficiently to maximize the revenue for cloud

ervice provider.

. Proposed cloud framework

In this section we design a cloud framework SMFIC (Service

anagement Framework for IoT devices in Cloud) to handle the

ealtime data generated from various IoT devices and social me-

ia as well as the non-realtime data for scientific computation and

torage. The basic architecture of our SMFIC is depicted in Fig. 1 .

s shown in the figure, the proposed SMFIC framework can be

ivided into three different layers with five major components.

rom the application and service point of view, the three layers

re the Consumer layer, Service Provider layer and the Middle layer

hat brokers the services and available resources between the con-

umer and service provider and works on demand and supply ba-

is. The five different components reside in those three layers and

re known as the actors. The actors in this architecture are cloud

ervice provider, cloud broker, cloud auditor, cloud consumer, and

loud carrier. In the background, Cloud carrier plays a vital role

s backbone of the cloud environment as all communications are

ade through the cloud carrier. Cloud provider also known as the

loud service provider and cloud consumer are the two end of a

ine. Cloud service provider (CSP) provides the physical resources

n rented basis in the form of services such as IaaS, PaaS, and SaaS.

ll the services are meant for cloud consumer. Every time cloud

152 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

Fig. 2. Layer-wise architecture of the Cloud Framework.

m

q

z

e

m

o

I

3

g

s

o

a

c

a

h

v

c

n

m

t

m

i

3

c

c

c

u

l

d

h

a

t

s

u

3

t

w

q

A

r

e

r

t

g

r

t

c

q

b

b

A

i

d

t

d

3

s
consumer consumes services from CSP, Service Level Agreement

(SLA) must be established between the consumer and provider. In

general, the communication between cloud consumer and cloud

provider is made by cloud broker. Cloud auditor is responsible for

auditing and assuring the standard of the service provided by CSP.

Considering above discussed cloud framework, the layers of

proposed architecture are App layer, App handler layer, App man-

ager layer and Physical layer as depicted in Fig. 2 . These four lay-

ers can be mapped into our proposed three layers of the cloud

framework. App layer is responsible for generating realtime data

or batch data to store in the cloud. The request to process those

stored data are also generated from App layer. Hence, App layer

can be mapped to the cloud consumer layer based on their na-

ture of work. App handler layer, on the other hand is responsi-

ble for storing the data and processing the requests. This layer acts

as a broker between the cloud and the actual IoT application. All

the demands from the users and supply of the resources from the

cloud provider can be negotiated through the App handler layer.

Hence, the job of the App handler layer is similar to the job of the

cloud broker. App handler layer is also responsible for analyzing

the requests to determine the category of service required by the

cloud consumer. For the sake of simplicity, we have considered 3

types of services such as SaaS, PaaS and IaaS and the type of ser-

vices may vary according to the requirement of users in App layer.

For example, for home security service, cloud service provider may

be interested in providing Security as a Service, for research orga-

nization, cloud provider may provide Computation as a Service etc.

Within the cloud provider, the huge amount of physical resources

is managed by App manager layer through the resource virtual-

ization, which is similar to the role of the service provider layer

in cloud framework as shown in Fig. 1 . The required amount of re-

sources to process the incoming requests is further provided by the

App manager layer based on the resource availability. In the next

subsequent sections, we will elaborate about all layers in-details.

3.1. App layer

This layer is also considered as data source layer. Huge amount

of realtime and batch data is being generated by different IoT de-

vices based on different environment and send to the cloud to

store for future analysis. For example realtime data generated from

the smart traffic system, early earthquake detection and batch data

generated from the sensors monitoring pollution levels in sea. We

assume that the data generated by IoT devices can be used by
ultiple applications/ environments. Similarly, different sets of re-

uests generated by other users, such as scientific research organi-

ation, belongs to this layer. Request could be generated by differ-

nt mobile devices, and users of social media. The cloud environ-

ent provides enough resources to process and store those data

n a realtime basis. The App layer is composed of two sub-layers:

oT sub-layer, Non-IoT sub-layer, as depicted in Fig. 2 .

.1.1. IoT sub-layer

IoT sub-layer is composed of all possible IoT devices, which can

enerate either realtime or batch data. The generated data can be

tructured, unstructured or semi-structured. Mostly, small amount

f data are generated very frequently by different sensors. The data

re generated so frequently that the aggregate amount of data be-

omes in thousands of petabytes of data. For example, a modern

ircraft generates terabytes of data in every hour of flight. This

uge amount of data is referred to as big data. Along with the

olume, velocity and variety of the data, the data generated may

ontain unnecessary and ambiguous data. The value of the data

eeds to be extracted from the raw data for decision making that

ay need more computing capacity, which may not be fulfilled by

he device itself. Furthermore, those processed data can be used by

ultiple applications such as the data from air pollution monitor-

ng devices can be accessed by multiple government agencies.

.1.2. Non-IoT sub-layer

Non-IoT sub-layer is responsible for generating requests to pro-

ess those stored data. This sub-layer is composed of different

omponents or users such as individual researcher, smart health-

are centers, government agencies, commercial companies etc. Let

s consider an example to differentiate the IoT and non-IoT sub-

ayer. In a smart health care center, the patient can be fitted with

ifferent sensors those generate huge amount of data. On the other

and, doctors may send requests to the cloud to analyze and visu-

lize the past health records of the patient. In this scenario, doc-

ors, researchers data request and storage belongs to the non-IoT

ub-layer, whereas the devices fitted in the patient’s body come

nder the IoT sub-layer.

.2. App handler layer

Cloud computing environment is designed to provide mainly

wo features; computation power and storage capabilities. But,

hen IoT environment is combined to cloud, different types of re-

uests and data such as realtime and batch data are received by

pp handler layer, which resides in the cloud. Different types of

equests such as request to analyze satellite data, medical image

tc can be generated by users in App layer. On the other hand,

ealtime and batch data also generated by App layer. We assume

hat all the diversified data and requests need specific set of pro-

rams to store and to process. Keeping in mind the aforementioned

equirements, a separated sub-layer is designed and incorporated

o App handler layer, called App handler along with a specialized

omponent is introduced within App handler layer, called as Re-

uest preprocessor as depicted in Fig. 3 . Multiple App handlers can

e implemented within App handler layer depending on the num-

er of environments the cloud service provider is providing. Each

pp handler communicates with data station regulator that resides

n Shared data station to access the data that are sharable among

ifferent applications. In the next sub-sections, we discuss about

he App handler, Request preprocessor and Shared data station in

etails.

.2.1. Request preprocessor

The requests are received by the cloud with the help of the

ensor virtualization components, which reside in the App handler

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 153

Fig. 3. Proposed architecture of the App Handler layer.

Fig. 4. Various components of App Handler.

l

a

i

F

t

s

w

f

r

m

p

d

t

3

p

l

w

a

p

t

o

t

a

i

i

T

a

t

o

p

p

n

S

c

h

m

n

m

a

s

b

m

t

t

f

g

t

i

i

r

t

r

l

s

m

m

A

t

f

c

t

3

w

d

b

t

p

e

d

h

a

s

D

v

d

v

r

T

w

A

l

f

w

3

a

t

a

h

a

c

a

H

t

c

a

ayer. As discussed earlier, the received request can be for the stor-

ge or processing of the stored data. The data come into the cloud

n the form of structured, unstructured or semi-structured format.

urthermore, the data could be from any types of sensors such as

emperature sensors, GPS sensors, pressure sensors, humidity sen-

ors etc. We assume that the incoming data may be ambiguous,

hich may contain unnecessary data such as sensor hardware in-

ormation. The job of Request preprocessor is to forward the data/

equest in a predefine format to the respective App handler by re-

oving unnecessary ambiguous data. In results, App handler com-

onents have no idea regarding the underlying sensors. App han-

ler component will receive the request/data that is exactly what

hey need for further actions.

.2.2. App handler

After requests are preprocessed by Request preprocessor, the

rocessed requests are sent to the respective App handler sub-

ayer. The processed request is then executed by this sub-layer. As

e know, cloud provider may provide services to different smart

pplications or environments. For example, cloud provider may

rovide services to the government agency for smart cities applica-

ion and at the same time this may provide services to a research

rganization in terms of high speed computing service for scien-

ific data analysis. Dedicated App handler is implemented for each

pplication and each component of the App handler is depicted

n Fig. 4 . The processed request forwarded by the sensor virtual-

zation component is received by Realtime request scheduler (RTRS) .

he processed request may come either from IoT devices or from

n individual. Some requests require very small amount of compu-

ation such as visualizing past health record of a patient. On the

ther hand, some requests such as request that needs the specific

latform and resource set require a dedicated virtual machine to

rocess. Depending on the amount of resource required and the

ature of the request, the incoming request can be categorized into

aaS, PaaS or IaaS. Hence, this is the job of the App handler to

lassify the incoming request into aforementioned categories. To

andle those realtime requests coming to cloud, the App handler

ay face insufficient amount of resources and hence App handler

eed to send the resource demand frequently to App manager. This
ethodology helps cloud service provider to handle realtime data

nd requests.

Another important component of App handler is the App re-

ource distributor (ARD) , which distributes the limited resources

ased on the requests. App resources manager (ARM) component

anages the resources among various requests. Before scheduling,

he scheduler informs about the resources requirement of requests

o the ARM. ARM then verify whether the requirements can be

ulfilled with current available virtual resources or not. If the ag-

regate amount of required resources by all the requests is less

han that of the available virtual resources, App resource manager

ndicates ARD to do the resource distribution. Each small request

s hosted by container launcher. Here, small request refers to the

equest, which is required by the SaaS environment. Hence, con-

ainer launcher is placed to serve each SaaS request. For each SaaS

equest, a separate dedicated container is launched by container

auncher to provide the secure and isolated environment.

Each separate dedicated container is responsible for hosting a

ingle request. In case of data analysis and processing, the request

ay need huge amount of input data. Those required data are

ade available to the container that hosts the respective request.

ccording to the proposed design framework, the container needs

o communicate with the shared data station for the input data be-

ore sending the request for the input data. The Shared data station

ontains the data those are sharable among the multiple applica-

ions.

.2.3. Shared data station

Shared data station is designed to keep track of the input data,

hich are required by the multiple applications. For example, the

ata generated from air pollution monitoring devices can be used

y different research organization and government agencies. Mul-

iple applications may share the data with other applications. In

ractical scenario, different sets of data can be requested by differ-

nt applications. For example, Let us assume that three sets of data

 1 , d 2 , d 3 and two applications A 1 , and A 2 are present in the App

andler layer. Application A 1 may need data set d 1 and d 2 , whereas

pplication A 2 may need data set d 2 and d 3 . Hence, the relation-

hip between multiple applications and data sets is many-to-many.

ata sets are enclosed within separate Data Stations (DSs). To pro-

ide seamless access among App handlers without any conflict,

ata station regulator is introduced. Data from the DSs are pro-

ided to the App handler via data station regulator.

The App handler layer has the complete control over the virtual

esources to reconfigure and distribute among different requests.

he required virtual resources are allocated by App manager layer,

hich works closely with the physical resource layer. Hence, the

pp handler layer needs to communicate with the App manager

ayer to acquire the required computation and storage power in

orm of the container and virtual machine. In the next subsection

e will discus about the App manager in details.

.3. App manager

App manager is responsible for managing the cloud resources

nd provide the physical resources in the form of virtual resources

o different App handlers. App manager must also be capable of

llocating resources to the App handler on realtime basis as App

andler may send resource demand based on the incoming data

nd requests. The components those are involved in this pro-

ess are Physical resource distributor (PRD), Physical resource man-

ger (PRM) , and Virtualization environment (VE) as shown in Fig. 5 .

ere, we have incorporated the container technology to provide

he host application. Container based virtualization environment

an be provided to the cloud consumer as Container as a Service

s some providers have started implementing to commercialize it.

154 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

Fig. 5. Components of App Manager.

3

t

a

a

d

C

r

T

4

t

t

b

p

t

a

c

m

e

l

b

c

t

r

h

i

o

o

a

l

c

i

g

p

F

h

k

A

A

c

s

p

a

g

o

t

s

a

c

w

ψ

c

w

�
Physical Resource Distributor (PRD): Similar to the App resource

distributor component in App handler, PRD distributes the avail-

able physical resources among different App handlers. We can con-

clude here that the available physical resources are distributed

among requests in two different stages. In the first stage, the phys-

ical resources are distributed among different App handlers, which

reside in App handler layer in the form of virtual resources. In the

second stage, those virtual resources are distributed among the re-

quests by the App resource distributor. The resource requirement

of each App handler is received from the PRM. Based on the avail-

able physical resource, distribution is made. For fair distribution of

resources among App handlers, the cloud provider needs to imple-

ment the resource distribution strategy. The resource distribution

strategy will ensure the fairness and also ensures that best suit-

able physical servers are chosen to fulfill the resource demand. For

example, the demand for resources may come from different geo-

graphical locations. Resource demand from region A should be ful-

filled by the physical server present in the same or nearer region.

Physical resource manager (PRM): The resources that are dis-

tributed to App handlers, are managed by the PRM. The accep-

tance decision of the requirements of App handlers is made by the

PRM. If aggregate demand from all App handler is more than the

available physical resources at the cloud provider, the distributions

are made based on the priority and the implemented distribution

strategy. It is assumed that the priority of the App handlers is de-

cided by the cloud service provider.

Virtualization environment (VE): From the proposed frame-

work’s design point of view, virtualization refers to virtual repre-

sentation of physical resources. In standalone PCs, hard drive par-

tition is one of the examples. This is implemented by using virtu-

alization software. Operating system virtualization can run in mul-

tiple OSs at the same time in single computer system by using vir-

tualization software. Different types of virtualization could be stor-

age virtualization, network virtualization, server virtualization etc.

In our proposed framework, the physical resources are provided to

the App handler by the App manager in the form of virtual re-

sources. Those virtual resources including memory, network, stor-

age, etc are provided by encapsulating within a container or a vir-

tual machine. For three kinds of services, such as SaaS, PaaS, IaaS,

we have divided the virtualization environment into two types:

hypervisor based and container based as depicted in Fig. 5 . Hy-

pervisor based virtualization is implemented by different software

such as Hyper-V, XenServer, VMware ESXi etc. Similarly, container

based virtualization is implemented by software such as Docker,

LXC, lmcfty etc. The VE component provides the suitable environ-

ment based on the type of the services. For example, for SaaS re-

quest, the container based virtualization environment is provided.

For PaaS and IaaS, hypervisor based virtualization environment is

provided.
.4. Physical layer

The underlined infrastructure for all layers to work properly is

he set of available physical servers. We assume that the servers

re equipped with different sets of resources and hence all servers

re heterogeneous. Those underlined physical servers come un-

er Physical layer. This layer is composed of hardware such as

PU, memory, storage etc. and communication hardware such as

outers, switches, and power supply system, cooling system etc.

he actual process execution is carried out in this layer.

. Theoretical analysis

In this section, we present the mathematical representation of

he discussed service framework. The cloud service provider needs

o provide service to the users. The concern users are grouped

ased on the environment they are connected to. The services are

rovided to the App handler in terms of virtual machines and con-

ainers, which is then distributed to different users. App handlers

re bridge between the users and cloud service provider. As dis-

ussed earlier, cloud service provider may need to host environ-

ent where data are generated and stored on realtime basis. For

xample, in VANET, lots of data related to the traffic congestion,

ocation information need to be processed and stored on realtime

asis and hence the resource demand may vary time to time. To fa-

ilitate such environment, we design the framework in such a way

hat App handlers can send request to the App manager for more

esources at any instance of time. This will enable App handler to

andle the realtime data and requests.

It is assumed that each App handler is associated with prior-

ty, which is assigned at the time of SLA establishment. Priority

f an App handler can be defined as level of relative importance

f the service given through the respective App handler. For ex-

mple, suppose App handler 1 is designed to give health care re-

ated services and App handler 2 is designed to receive and pro-

ess micro-blog related requests. In these cases, while compet-

ng for the limited computation resources, App handler 1 must be

iven higher priority over App handler 2. Let CSP has m levels of

riorities termed as P 1 , P 2 , P 3 , . . . , P m

, where P 1 > P 2 > P 3 > . . . > P m

.

or each priority level, P a
i

is represented as the number of App

andlers, where 1 ≤ i ≤ m . App manager is providing service to

 number of App handles. Different App handlers are termed as

 1 , A 2 , A 3 , . . . , A k . Priority of an App handler can be represented as

p
i

= P j , where 1 ≤ i ≤ k , 1 ≤ j ≤ m . For example, A

p
3

= P 2 indi-

ates that P 2 is the priority of App A 3 . CSP is powered by a total of

 number of servers represented by S 1 , S 2 , S 3 , . . . , S s . Further, CSP

rovides r types of resources. Each resource type is represented

s R i , where 1 ≤ i ≤ r . We assume that the servers are hetero-

eneous, which indicates that different servers have different sets

f resources. � j
i

represents the maximum capacity of resource of

ype R j of server S i , whereas γ j
i

represents current capacity of re-

ource of type R j of server S i , where 1 ≤ i ≤ s and 1 ≤ j ≤ r . Total

mount of resources of type R j currently available at CSP can be

alculated as sum of the current capacity of resource of type R j
ith each server, which can be represented as

j =

s ∑

i =1

γ j
i
, where 1 ≤ j ≤ r (1)

Similarly, the maximum capacity of resource of type R j at CSP

an be calculated as sum of maximum capacity of resource type R j
ith each server S i , which can be represented as

j =

s ∑

i =1

� j
i

(2)

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 155

e

l

r

u

b

h

D

a

s

d

c

S

v

η

t

i

t

c

i

m

r

d

t

�

b

m

s

i

∑

i

t

t

d

t

t

o

t

b

p

c

m

d

r

c

θ

t

s

b

s

Fig. 6. Comparative views of Hypervisor based and Container based virtualization.

a

H

d

t

d

E

m

t

w

d

w

r

o

a

I

t

r

v

w

c

ω

5

h

t

a

p

U

s

p

c

m

o

t

t

e

t

c

m

t

t

i

It is assumed that 0 ≤ � j
i

< � j , which indicates server S i is

quipped with negligible amount of resource of type R j . Here, neg-

igible amount refers to the amount of resource required only to

un the server and that amount of resource is not intended for

sers. For example, storage server may be equipped with negligi-

le amount of computation capacity. The resource demand of App

andler is r -dimension resource vector and is represented as

t
i = 〈 R 1 , R 2 , R 3 , . . . , R r 〉 1 ≤ i ≤ k (3)

Where the App handler index is represented by i , 1 ≤ i ≤ k

nd t represents the current time. Hence, D

t
i

is the demanded re-

ource vector of App handler A i at time t . Resource demand vector

oes not contain the information regarding the number of users

onnected to the App handler as the number of users is dynamic.

imilarly the allocated resources at time t is r -dimension resource

ector and is represented as

t
i = 〈 R 1 , R 2 , R 3 , . . . , R r 〉 1 ≤ i ≤ k (4)

Where ηt
i

represents the allocated resources of all resources

ypes at time t to the App handler A i . To avoid congestion in send-

ng excess request for more resource demand, App handler needs

o wait for specific time threshold δk and the threshold value δk

an be decided by the App manager. The reason behind impos-

ng of this condition is to avoid the situation, where App handler

ay send the resource demand before allocation of the previous

esource demand. The boolean variable � indicates, whether the

emanded resource vector is fulfilled by the App manager at time

 or not.

t
i =

{
1 i f D

t
i
≤ ηi

0 Otherwise
(5)

Finally, the objective function of the cloud service provider can

e given as follows.

ax

k ∑

i =1

�t
i

ubject to,

f �t
i = 1 , then D

t
i ≤ ηt

i 1 ≤ i ≤ k

k

i =1

ηt
i ≤

〈
�1 , �2 , �3 , . . . , �r

〉

f �t
i = 1 , then �t

j = 1 1 ≤ j ≤ i

The meaning of this objective function is to provide services

o maximum number of App handlers. The first constraint ensures

hat the boolean variable will become 1 if and only if the resource

emand is fulfilled by the App manager. For all types of resources,

he total allocated resource to each App handler must be less than

he maximum capacity of the CSP, which is ensured by the sec-

nd constraint. On the other hand, the third constraint indicates

hat the demand of App handler with higher level of priority must

e fulfilled before the demand of App handler with lower level of

riority.

Furthermore, in the proposed framework the IoT devices are

onsidered to be heterogeneous and therefore the App handlers

ay receive the requests to process the realtime or non-realtime

ata. Let θ k be the time interval between two consecutive requests

eceived by the App handler A k . It is assumed that the requests

an be termed as realtime or non-realtime based on the value of

k is very small or very large, respectively. Using the virtualization

echnology, the incoming requests can be processed in parallel in-

tead of sequentially. Let αk be the number of requests, which can

e executed in parallel taking the currently available physical re-

ources by App handler A . Each App handler is engaged to receive
k
nd process unknown number of requests over a period of time.

owever, each request is assigned with a unique id as rqid . In or-

er to reduce the waiting time of the request to 0, the execution

ime E t
rqid

of a request arrived at time t with unique id rqid can be

erived as follows.

t
rqid = αk ∗ θk (6)

In other words, the request received by App handler A k at time t

ust have finished its execution within the time interval t through

 + (αk ∗ θk) . Each time a request arrives at App handler A k must

ait certain time before its execution. This waiting time is caused

ue to new stacks. As discussed earlier, each App handler needs to

ait δk units of time between two consecutive requests. Hence, a

equest that arrives at time t 1 has to wait for ω 1 = (δk − t 1) units

f time. It is also assumed that an App handler needs to wait for

nother small duration of time ω 2 after each resource is requested.

n other words, ω 2 is the time required to distribute the resources

o the App handler. Let ω 3 be the time required to schedule the

equest for the execution. Considering different delays caused by

arious components in our proposed framework SMFIC, the total

aiting time of a request received by the App handler A k at time t

an be derived as follows.

t
rqid = (δk − t) + ω 2 + ω 3 (7)

. Implementation of cloud platform

As shown in Fig. 6 , virtualization is done in two ways. Firstly,

ypervisor based virtualization and secondly, container based vir-

ualization. Containers are very light weight virtual machines that

re implemented at operating system level for running multiple

rocesses in isolated environment. These

containers are best suited for hosting applications or software.

nlike hypervisor, containers share the kernel of host operating

ystem. Hence, the container contains only the binaries of the ap-

lication and the supporting libraries. The application inside the

ontainer accesses the hardware resource via the kernel of host

achine. In our implementation we use Docker container technol-

gy (Docker - build, ship, and run any app, anywhere, 2016). On

he contrary, in hypervisor based virtualization, conventional vir-

ual machines are implemented at the hardware level with an op-

rating system. Each virtual machine has separate operating sys-

em and kernel. All the virtual machines on a single physical ma-

hine are controlled by the virtual machine monitor. This virtual

achine monitor is called hypervisor. Hence, unlike container, vir-

ual machine contains the application, the supporting libraries and

he underlined kernel. Hypervisor based virtualization is chosen to

mplement PaaS and SaaS model as depicted in Fig. 7 .

156 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

Fig. 7. Implementation architecture of SMFIC.

Fig. 8. Our implemented SaaS environment.

Fig. 9. Command to create VMs using Docker-machine package.

Fig. 10. Command for joining a VM into a cluster.

w

f

d

i

c

fi

r

a

t

a

o

T

m

a

c

A

S

t

s

c

o

a

The architecture of our Docker implementation is presented in

Fig. 7 . As shown in the figure, all the requests come to the cloud

through the web interface, which can further be extended to the

web application for more flexibility and more efficiency. Once the

request is received through the web interface, cluster manager will

process the request. As per our previous discussion, the cluster

manager is of two types, container cluster manager and VM clus-

ter manager. Container cluster manager is responsible for manag-

ing multiple clusters of containers. Similarly, VM cluster manager

is responsible for managing multiple clusters of VMs. Furthermore,

in a single physical machine, containers are placed above Docker

engine. In other words, Docker engine in a single physical machine

is responsible for creating, destroying and managing multiple con-

tainers. Each physical machine is setup with one Docker engine.

The container created to serve a request is immediately destroyed

after the request is processed. In our designed implementation ar-

chitecture, we have considered to assign multiple containers to

host one application or software. For example, to host a website,

multiple containers can be created to host the file system, database

system and other modules.

On the other hand, requests that need PaaS or IaaS are for-

warded to VM cluster manager whose responsibility is to forward

the request to a particular virtual machine based on VM selection

strategy. Multiple virtual machines are created in each physical

machine. VM manager in each physical machine creates, destroys

and manages the virtual machines. The container or VM selection

strategy is carried out in cluster manager.

In order to evaluate the performance of the proposed archi-

tecture, we have implemented the SaaS model onto our testbed.

The testbed is composed of 20 systems; each configured with 8GB

memory, 1TB of storage and is powered by Intel core i7-4790 CPU

@ 3.6GHz CPU. Ubuntu 14.04 operating system is installed in all

systems. For SaaS, we have developed a very basic application,

named as online C compiler . Here, the user needs to upload the

C source file through a web page. To receive the request, we have

deployed Apache web server. In the background, for deployment of

the container based virtualization technology, we have used Docker

package. This allows us to create any number of containers through

client console by executing following command, where the last ar-

gument is the image name of the application.

docker run < image name >

In our implementation, we have deployed the C environment

upon Ubuntu base image, which can be obtained from the Docker

repository using following command

docker pull Ubuntu:latest
After installing all required packages upon base Ubuntu im-

age, we have pushed the image with the name reachchinu/c-env to

Docker hub using following command:
docker push reachchinu/c-env
The received C source file by Apache web server is then for-

arded to the Docker engine through shell script program using

ollowing codes.

ocker run --rm
--workdir = /home/funlab/c_env/$1
-v /home/funlab/docker_app/cenv/$1:
/home/c_env/$1
reachchinu/c-env gcc ’prog.c’
-o output

The Docker engine then creates a new container from the built

mage. The whole process is shown in Fig. 8 . The newly created

ontainer interacts with the host file system to process C source

le and the result is stored back to host file system, which then

eturned to the user through a web page. Docker engine creates

nd destroys the new container for each request. At a particular

ime, all the available containers process the incoming requests in

n isolated manner.

We have further extended our experiment by forming a cluster

f container by using the Docker-machine tool and Swarm package.

he Docker-machine package allows us to create multiple virtual

achines within a single physical machine and treat them as sep-

rate machines. The screen shots of the command shown in Fig. 9

an be used to create a virtual machine using Docker-machine tool.

fter creating multiple number of virtual machines, the available

warm image from Docker hub is used to form a cluster of all vir-

ual machines. For this, the screen shot of the used command is

hown in Fig. 10 .

The IP and port of each virtual machine is used in forming the

luster. The cluster formation is further extended by combining an-

ther virtual machine from the Digital Ocean using the command

s shown in the screen shot in Fig. 11 .

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 157

Fig. 11. Command used to create VM in Digital Ocean.

6

t

s

e

c

6

d

m

t

i

o

m

m

q

s

T

s

m

w

t

1

r

h

v

i

i

h

t

a

1

s

w

6

b

F

p

n

e

t

I

q

t

r

C

c

r

r

t

t

1

0

a

r

r

d

t

b

a

s

e

I

b

o

q

t

t

t
. Performance evaluation

In this section, we evaluate the performance of our framework

hrough simulation and implementation in Docker (Docker - build,

hip, and run any app, anywhere, 2016) platform. Our simulation

nvironment, corresponding simulation, experimental results and

omparisons are described as follows.

.1. Simulation setup

The simulation of our proposed framework is conducted using

iscrete event java based simulator, which is designed based on

ulti-server queueing system. In our simulation, it is assumed that

he incoming requests follow Poisson distribution with mean rang-

ng from 10 ∼ 100 requests per unit time. The service duration

f each request follows random distribution and the resource de-

and of the requests is assigned randomly. The memory require-

ent of the request ranges from 2 MB ∼ 1024 MB and the CPU re-

uirement of each request ranges from 1 ∼ 2 cores. Similarly, the

torage requirement of each request is taken to be 10 MB ∼ 10 GB .

he requests are classified into two categories based on their re-

ource demand. Firstly, the requests with very small resource de-

and, which are served by small containers. Secondly, the requests

ith huge amount of resource demand, which are executed by vir-

ual machines.

In the simulation, the numbers of App handlers are set to be

5 and their priorities are assigned randomly. The priority values

ange from 1 ∼ 5. App handler with priority value 1 is treated as

ighest priority App handler, whereas App handler with priority

alue 5 is treated as the lowest priority App handler. The incom-

ng requests are assigned to the App handlers randomly. The prior-

ty of a request is determined by the priority of the assigned App

andler. The number of physical servers is set to be 50 throughout

he simulation with random assignment of the resources. Servers
Fig. 12. Average percentage of resource utilization
re equipped with varied amount of memory ranging from 8 GB ∼
6 GB and the number of cores ranges from 8 ∼ 32 in each physical

erver. The amount of storage for each server is randomly assigned,

hich ranges from 500 GB ∼ 1 TB .

.2. Simulation results

The average CPU and memory utilization with different num-

ers of real and non-realtime requests are simulated as shown in

ig. 12 (a) and (b), respectively. In Fig. 12 (a), it is observed that

ercentage of CPU utilization fluctuates in case of both real and

on-realtime requests, when the number of requests is less. How-

ver, the CPU utilization by realtime requests is more than that of

he batch requests when number of requests is more than 10 0 0.

t is also found that the CPU utilization by realtime and batch re-

uests becomes saturated when number of requests are increased

o more than 7500. The memory utilization by realtime and batch

equest is shown in Fig. 12 (b), which shows the similar trend with

PU utilization. It is also observed that the memory utilization in-

reases with increase in the number of requests, which gets satu-

ated when the number of requests exceeds 8500.

In our simulation environment, both realtime and non-realtime

equests are associated with certain amount of data, which need

o be processed. In Fig. 13 , the average processing time along ver-

ical axis represents the average time required to process 50 TB,

0 0 TB and 50 0 TB of data, which are requested by 10 0 0 ∼ 10,

 0 0 number of requests. The time taken to process 50 TB, 100 TB

nd 500 TB of data is approximately 2 min, 4 min and 10 min,

espectively, when the processed data are requested through 10 0 0

equests. Similarly, the average time required to process 50 TB of

ata requested by 10 0 0 requests is approximately 2 min, whereas

he average time increases to approximately 6 min when the num-

er of requests increases to 10, 0 0 0. This inclination in time is

ttributed due to various factors. For example, the physical re-

ources need to be leased and released in form of VMs or contain-

rs as number of requests increases, which consume more time.

t is found that the processing time increases slowly as the num-

er of requests increases. On the other hand, considering the pri-

rity of the App handlers, average waiting time of respective re-

uests is depicted in Fig. 14 . It is found that the average waiting

ime of the requests with higher priority is less than the requests

hat belong to the lower priority. For example, the average waiting

ime of the requests that belong to the App handler with Priority 1
: (a) CPU utilization (b) Memory utilization.

158 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

Fig. 13. Average processing time of the requests for different data sizes.

Fig. 14. Average waiting time of the requests with different priorities.

Fig. 15. Average processing time of requests.

Fig. 16. Average delay (in sec).

t

e

i

F

i

c

s

r

i

e

0

v

d

w

q

b

m

m
ranges from 0.38 s to 0.44 s, whereas the average waiting time of

the requests belong to the App handler with Priority 5 ranges from

0.55 sto 0.645 s. The resources are distributed to the App handler

with highest priority followed by the App handler with lowest pri-

ority, which causes the increase in waiting time of the lowest pri-

ority App handlers.

6.3. Comparisons

In order to show the technical contribution of our proposed

SMFIC framework, it is compared with DCFIC (Khodadadi et al.,

2015) and RMCPHI (Luo and Ren, 2016). In the proposed frame-

work, the computational complexity is analogous to the process-

ing time of the request, which can be define as the sum of delay

and the time required to execute a request with certain amount

of input data. The average processing time of the requests is sim-

ulated as shown in Fig. 15 . The average processing time in SMFIC

framework varies between 26 s through 30 s, whereas average pro-

cessing time of the request in DCFIC framework ranges from 42 s
hrough 54 s. In the simulation, the incoming requests are consid-

red to be of limited lifetime. The average delay of the requests

s simulated and compared with other frameworks as shown in

ig. 16 . The average delay of a request is referred to the time spent

n the waiting queue to be executed, which includes the delay

aused by the resource unavailability and the delay due to new

tacks. The results are obtained with varied number of requests

anging from 10 0 0 to 10 , 0 0 0 . The average delay of the requests

n DCFIC framework ranges from 0.8 s to 1.45 s, whereas the av-

rage delay of requests in SMFIC framework ranges from 0.52 s to

.72 s. Container based virtualization technology enables us to pro-

ide the services in minimum delay with significantly less resource

emand, which decreases the average delay in the SMFIC frame-

ork.

The average resource utilization for different numbers of re-

uests is shown in Fig. 17 (a) and (b). The resource utilization can

e defined as the ratio of amount of allocated resources to the

aximum available resources in each server. In both CPU and

emory utilization, the proposed SMFIC framework outperforms

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 159

Fig. 17. Comparison in terms of resource utilization: (a) CPU utilization (b) Memory utilization.

o

e

t

t

s

r

i

w

i

i

C

8

o

m

m

v

t

a

a

c

s

f

s

o

t

r

o

b

A

w

p

t

p

a

m

o

t

A

e

t

Fig. 18. Average response time of VMs/Containers.

a

T

e

o

c

s

t

c

7

r

c

f

o

r

m
ver DCFIC and RMCPHI framework. In SMFIC, we have consid-

red that a physical server may suffer from resource fragmenta-

ion. In other words, the amount of aggregated resources allocated

o different virtual machines is less than the total amount of re-

ources equipped in the server. Hence, small amount of resources

emain unused. Those unused resources can be allocated by creat-

ng new container for the requests with smaller resource demand,

hich maximizes the utilization of physical resources. As shown

n Fig. 17 (a) for CPU utilization, it is observed that the utilization

ncreases with increase in the number of requests. However, the

PU utilization gets saturated when the number of requests crosses

0 0 0. The same trend is observed in case of memory utilization

f the physical servers as depicted in Fig. 17 (b). The maximum

emory utilization in the proposed framework is 73%, whereas the

aximum memory utilization in RMCPHI is 67%.

As discussed earlier, in our implementation, the container-based

irtualization is used along with hypervisor based virtualization

echnology. Docker is used to implement the container based virtu-

lization. Although, the proposed framework considers SaaS, PaaS

nd IaaS cloud model as depicted in Fig. 2 , for simplicity SaaS

loud model is implemented in our framework. Shell script, PHP

cripting language and Java language are used to implement the

unctionality of different components. In our experiment, it is ob-

erved that the performance of Docker container is better than that

f the virtual machines in terms of response time and processing

ime. In our implementation, response time is defined as the time

equired to start the VM or container and load the App/request

nto the memory. Similarly, the execution time is considered to

e the time required to start the VM/container and execute the

pp/request in the VM/container to get the desired output. Average

aiting time and average execution time are obtained from multi-

le experiments.

As shown in Fig. 18 , the average start-up time of a Docker con-

ainer is faster than that of the virtual machine. Hence, as com-

ared to the virtual machines, more number of containers can be

ssigned to a physical server without compromising the perfor-

ance of the containers. As the containers need smaller amount

f resources and share the same kernel among them, the execu-

ion time of the App running in the container is faster then the

pp running in the virtual machine, as depicted in Fig. 19 . In our

xperiment, we have assigned a request to obtain the execution

ime, which will generate a file containing 1GB of random data

F
nd search a random word within the file using grep command.

he execution time of the request is monitored. Each request is ex-

cuted by one VM/container and each VM and container executes

nly one request. The execution time includes the time required to

reate the VM/container and the time required to execute the as-

igned request. From the experimental result, it is concluded that

he performance of container is better than that of the virtual ma-

hines.

. Conclusions and future works

The proposed cloud framework combines IoT and cloud envi-

onment to provide services to both IoT and non-IoT users. IoT part

onsists of various IoT and non-IoT devices, which are responsible

or generating requests to process those stored data. The other part

f the framework is Cloud, where data storage and process are car-

ied out depending on the user requirement. Based on the requests

ade by the users, resources are given to process those requests.

or IoT and non-IoT users/devices, process and storage of realtime

160 C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161

Fig. 19. Average processing time of Apps running in VMs/Containers.

B

G

H

J

J

K

K

L

L

L

L

L

M

S

S

S

Y

Z
data has been considered. To provide quality of service and uti-

lize the available resources, the virtualization environment, which

is the backbone of cloud environment , is divided into two parts.

Firstly, container based virtualization for providing SaaS and sec-

ondly hypervisor based virtualization for providing PaaS and IaaS.

In our work, the Docker Container based virtualization is imple-

mented to provide SaaS. However, physical resource distribution

algorithms should be designed to distribute the resources among

App handlers in form of virtual machines and containers, which

needs to be investigated and is considered as our future work. Be-

sides, the future work of SMFIC framework includes the mecha-

nism for App handlers to interact with the data station regula-

tors and data stations efficiently with an objective to minimize the

communication cost.

Acknowledgment

This work is supported by Ministry of Science and Technology

(MOST), Taiwan under the grant number 104-2221-E-182-004 .

References

Epc symposium„ 2003. inaugural epc executive symposium, URL: http://xml.

coverpages.org/EPCSymposium200309.html .
Docker - build, ship, and run any app, anywhere„ 2016. URL: https://www.docker.

com/ .
Internet of things (iot) - cisco, 2016. URL: http://www.cisco.com/web/solutions/

trends/iot/overview.html .

Itu-t recommendation database„ 2016. URL http://handle.itu.int/11.1002/1000/11559 .
Atzori, L. , Iera, A. , Morabito, G. , 2010. The internet of things: a survey. Comput.

Netw. 54 (15), 2787–2805 .
Bai, T. , Rabara, S.A. , 2015. Design and development of integrated, secured and in-

telligent architecture for internet of things and cloud computing. In: 3rd In-
ternational Conference on Future Internet of Things and Cloud (FiCloud). IEEE,

pp. 817–822 .
itam, S. , Mellouk, A. , Zeadally, S. , 2015. Vanet-cloud: a generic cloud computing
model for vehicular ad hoc networks. IEEE Wireless Commun. 22 (1), 96–102 .

urav, U. , Shaikh, R. , 2010. Virtualization: a key feature of cloud computing. In: Pro-
ceedings of the International Conference and Workshop on Emerging Trends in

Technology. ACM, pp. 227–229 .
e, W. , Yan, G. , Da Xu, L. , 2014. Developing vehicular data cloud services in the iot

environment. IEEE Trans. Ind. Inform. 10 (2), 1587–1595 .
iang, L. , Da Xu, L. , Cai, H. , Jiang, Z. , Bu, F. , Xu, B. , 2014. An iot-oriented data stor-

age framework in cloud computing platform. IEEE Trans. Ind. Inform. 10 (2),

1443–1451 .
oy, A.M. , 2015. Performance comparison between linux containers and virtual ma-

chines. In: 2015 International Conference on Advances in Computer Engineering
and Applications (ICACEA). IEEE, pp. 342–346 .

elly, S.D.T. , Suryadevara, N.K. , Mukhopadhyay, S.C. , 2013. Towards the implementa-
tion of iot for environmental condition monitoring in homes. IEEE Sensors J. 13

(10), 3846–3853 .

hodadadi, F. , Calheiros, R.N. , Buyya, R. , 2015. A data-centric framework for develop-
ment and deployment of internet of things applications in clouds. In: 2015 IEEE

Tenth International Conference on Intelligent Sensors, Sensor Networks and In-
formation Processing (ISSNIP). IEEE, pp. 1–6 .

Lee, E. , Lee, E.-K. , Gerla, M. , Oh, S.Y. , 2014. Vehicular cloud networking: architecture
and design principles. IEEE Commun. Mag. 52 (2), 148–155 .

eukel, J. , Kirn, S. , Schlegel, T. , 2011. Supply chain as a service: a cloud perspective

on supply chain systems. IEEE Syst. J. 5 (1), 16–27 .
i, F. , Vögler, M. , Claeßens, M. , Dustdar, S. , 2013. Efficient and scalable iot service

delivery on cloud. In: 2013 IEEE Sixth International Conference on Cloud Com-
puting. IEEE, pp. 740–747 .

i, W. , Kanso, A. , Gherbi, A. , 2015. Leveraging linux containers to achieve high avail-
ability for cloud services. In: 2015 IEEE International Conference on Cloud Engi-

neering (IC2E). IEEE, pp. 76–83 .

iu, X. , Li, Q. , Lai, I.K.-W. , 2013. A trust model for the adoption of cloud-based sup-
ply chain management systems: A conceptual framework. In: 2013 International

Conference on Engineering, Management Science and Innovation (ICEMSI). IEEE,
pp. 1–4 .

uo, S. , Ren, B. , 2016. The monitoring and managing application of cloud computing
based on internet of things. Comput. Methods Prog. Biomed. 130, 154–161 .

allissery, S. , Manohara Pai, M. , Ajam, N. , Pai, R.M. , Mouzna, J. , 2015. Transport and

traffic rule violation monitoring service in its: a secured vanet cloud application.
In: 2015 12th Annual IEEE Consumer Communications and Networking Confer-

ence (CCNC). IEEE, pp. 213–218 .
Qian, M. , Hardjawana, W. , Shi, J. , Vucetic, B. , 2015. Baseband processing units vir-

tualization for cloud radio access networks. IEEE Wireless Commun. Lett. 4 (2),
189–192 .

Schaffers, H. , Komninos, N. , Pallot, M. , Trousse, B. , Nilsson, M. , Oliveira, A. , 2011.

Smart cities and the future internet: Towards cooperation frameworks for open
innovation.. Future Internet Assembly 6656 (31), 431–446 .

uarez, J. , Quevedo, J. , Vidal, I. , Corujo, D. , Garcia-Reinoso, J. , Aguiar, R.L. , 2016. A
secure iot management architecture based on information-centric networking.

J. Netw. Comput. Appl. 63, 190–204 .
uciu, G. , Suciu, V. , Halunga, S. , Fratu, O. , 2015. Big data, internet of things and

cloud convergence for e-health applications. In: New Contributions in Informa-
tion Systems and Technologies. Springer, pp. 151–160 .

un, E. , Zhang, X. , Li, Z. , 2012. The internet of things (iot) and cloud computing (cc)

based tailings dam monitoring and pre-alarm system in mines. Safety Sci. 50
(4), 811–815 .

Vlacheas, P. , Giaffreda, R. , Stavroulaki, V. , Kelaidonis, D. , Foteinos, V. , Poulios, G. , De-
mestichas, P. , Somov, A. , Biswas, A.R. , Moessner, K. , 2013. Enabling smart cities

through a cognitive management framework for the internet of things. IEEE
Commun. Mag. 51 (6), 102–111 .

Wang, L. , Ranjan, R. , 2015. Processing distributed internet of things data in clouds.

IEEE Cloud Comput. 2 (1), 76–80 .
inglei, B. , Lei, W. , 2011. Leveraging cloud computing to enhance supply chain man-

agement in automobile industry. In: 2011 International Conference on Business
Computing and Global Informatization (BCGIN). IEEE, pp. 150–153 .

Yu, J., Kim, M., Bang, H.-C., Bae, S.-H., Kim, S.-J., 2015. Iot as a applications: cloud-
based building management systems for the internet of things. Multim. Tools

Appl. 1–14. doi: 10.1007/s11042-015-2785-0 .

anella, A. , Bui, N. , Castellani, A. , Vangelista, L. , Zorzi, M. , 2014. Internet of things
for smart cities. IEEE Internet Things J. 1 (1), 22–32 .

http://dx.doi.org/10.13039/501100004663
http://xml.coverpages.org/EPCSymposium200309.html
https://www.docker.com/
http://www.cisco.com/web/solutions/trends/iot/overview.html
http://handle.itu.int/11.1002/1000/11559
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0024
http://dx.doi.org/10.1007/s11042-015-2785-0
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30088-7/sbref0026

C.K. Dehury, P.K. Sahoo / The Journal of Systems and Software 119 (2016) 149–161 161

C June 2009 and MCA degree from Biju Pattnaik University, India, in June 2013. Currently
h ion Engineering, Chang Gung University, Taiwan. His research interests are in scheduling,

r

P University, India in 1994, and Master of Technology degree in Computer Science from

t first PhD degree in Mathematics from Utkal University, India and second PhD degree

i y, Taiwan in 2002 and 2009, respectively. He is currently an Associate Professor in the
C tional Affair Center of Chang Gung University, Taiwan. He was also Associate Professor in

t rked in the Software Research Center of National Central University, Taiwan. His current
r cheduling and resource management problems in Cloud. He has served as the Program

C Chair of ICCT 2010.
hinmaya Kumar Dehury received BCA degree from Sambalpur University, India, in
e is perusing the PhD degree in the department of Computer Science and Informat

esource management and fault tolerance problems of Cloud Computing.

rasan Kumar Sahoo received the Master of Science in Mathematics from Utkal
he Indian Institute of Technology (IIT), Kharagpur, India in 20 0 0. He received the

n Computer Science and Information Engineering from National Central Universit
omputer Science and Information Engineering department and Director of Interna

he department of Information Management, Vanung University, Taiwan and has wo
esearch interests include analysis and prediction of IoT and Healthcare Big Data, s

ommittee Member of several IEEE, ACM and international conferences and Program

	Design and implementation of a novel service management framework for IoT devices in cloud
	1 Introduction
	2 Related works
	2.1 Motivation

	3 Proposed cloud framework
	3.1 App layer
	3.1.1 IoT sub-layer
	3.1.2 Non-IoT sub-layer

	3.2 App handler layer
	3.2.1 Request preprocessor
	3.2.2 App handler
	3.2.3 Shared data station

	3.3 App manager
	3.4 Physical layer

	4 Theoretical analysis
	5 Implementation of cloud platform
	6 Performance evaluation
	6.1 Simulation setup
	6.2 Simulation results
	6.3 Comparisons

	7 Conclusions and future works
	 Acknowledgment
	 References

