
2814 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

Sequence-Based Channel Hopping Algorithms
for Dynamic Spectrum Sharing in

Cognitive Radio Networks
Prasan Kumar Sahoo, Member, IEEE, and Debasish Sahoo

Abstract— Cognitive radio network (CRN) is a promising
solution to spectrum scarcity that uses the dynamic spectrum
access mechanism to increase the efficiency of the underutilized
licensed spectrum. In a CRN, a pair of users exchanges their
information at a common unused licensed channel to rendezvous.
The rendezvous in all available channels and within the bounded
time cycle is a challenging issue in CRNs. In this paper, the
primary idea is to construct the channel hopping sequences
by using primitive roots of the prime number. For guaranteed
rendezvous in CRNs, we design three channel hopping protocols
for the symmetric and asymmetric environment in synchronous
and asynchronous scenarios of the CRN. Extensive simulation
is performed to analyze the throughput, maximum time to
rendezvous (MTTR), and average time to rendezvous (ATTR).
Simulation results show that our protocols can outperform over
the existing protocols and can give significant improvements in
terms of MTTR, ATTR, and throughput.

Index Terms— Cognitive radio networks, spectrum sharing,
channel hopping, rendezvous.

I. INTRODUCTION

COGNITIVE radio networks (CRNs) employ new commu-
nication paradigms in more intelligent and flexible ways,

which are different from those of the conventional wireless
networks. In conventional wireless networks, a portion of the
licensed spectrum is under utilized, whereas the unlicensed
spectrum sharing is increased significantly by various wireless
devices. Cognitive Radio (CR) technology uses the dynamic
spectrum access (DSA) [1] mechanism that improves the
efficiency of the under utilized licensed spectrum. The licensed
spectrum is used by the primary users (PUs) and DSA allows
the unlicensed secondary users (SUs) to share the vacant
portion of the licensed spectrum. In CRN, a pair of SUs needs
to sense the unused licensed spectrum and proceeds for the
rendezvous process to achieve a successful communication.

Manuscript received May 7, 2016; revised August 13, 2016; accepted
September 22, 2016. Date of publication October 4, 2016; date of current
version November 3, 2016. This work was supported by the Ministry of
Science and Technology, Taiwan, under Grant 104-2221-E-182-004 and
Grant 105-2221-E-182-050.

P. K. Sahoo is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan 33302, Taiwan, and also with
the Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan 333,
Taiwan (e-mail: pksahoo@mail.cgu.edu.tw).

D. Sahoo is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan 33302, Taiwan (e-mail:
d0221012@stmail.cgu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2016.2615258

The typical licensed spectrum is divided into channels, which
are used for the rendezvous process. During the rendezvous
process, the pair of SUs meets at a common channel to
exchange the control information such as available channel
status, link quality etc. However, rendezvous process is a chal-
lenging issue as SUs do not know each other in advance and
they do not have idea about the common available channels.

Several approaches are found on the basis of common
control channel and channel hopping mechanisms in order to
mitigate the problems of the rendezvous process. Common
Control Channel (CCC) [2], [3] is a centralized approach
in which a single or multiple channels are being used for
exchanging the control information and other remaining chan-
nels are used for the data communication purpose. However,
maintaining single common control channel is a weaker solu-
tion in comparison to that of the multiple common control
channels as the starvation problem may occur on a particular
channel due to the continuous presence of the PU on that
single channel. Though multiple common control channels
can be used to mitigate the starvation problem, it increases
the network overhead to know the availability of the control
channels and to pass the control information to each SUs
in the network. Again multiple common control channels
reduce the availability of the data channels. However, the
Channel Hopping (CH) approach overcomes many problems
of CCC such as long time blocking by PUs and control
channel saturation problem. But, it has also many limitations
and challenges. The primary challenge in the CH approach is
how to increase the degree of rendezvous by minimizing the
Maximum Time To Rendezvous (MTTR) between the SUs.
Rendezvous is defined as the number of distinct overlapping
of channels in different hopping slots between two channel
hopping sequences within a channel hopping period. Let,
{c0, c1, · · · , cM−1} be set of total M number of licensed
channels and t number of hopping slots are available in the
CRN within a channel hopping period. For a CH sequence
S = {(0, s[0]), (1, s[1]), · · · , (i, s[i]), · · · , (t − 1, s[t − 1])},
s[i] ∈ {c0, c1, · · · , cM−1} is the channel assigned to the
i -th slot, where i ∈ [0, t − 1] is the index of a
hopping slot. If (i, j) ∈ Ss ∩ Sr between two CH
sequences Ss and Sr , (i, j) is called a rendezvous, where
i is the rendezvous slot and j is the rendezvous channel.
If R is the set of rendezvous channels between CH
sequences Ss and Sr , then |R| is the number of rendezvous
channels and minimum value of |R| among all CH sequences

0733-8716 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2815

is the degree of rendezvous. CH protocols in CRN can be
classified into symmetric or asymmetric models based on the
availability of channels for the SUs when they coexist with
the PUs. In symmetric CH approach, each SU can have same
set of available channels located in the same geographical
area, whereas in asymmetric CH approach, each SU can have
different sets of available channels with at least one common
channel among them. If Ci and C j are the sets of available
channels for the SUs i and j , respectively, then Ci = C j

in symmetric models and Ci �= C j with at least one common
available channel in asymmetric models for each 1 ≤ i, j ≤ L,
when L ≥ 2 number of SUs coexist in the CRN.

A number of CH algorithms such as Generated Orthogonal
Sequence (GOS) [4], [5], Modular Clock (MC) [5], Modi-
fied Modular Clock (MMC) [5], Deterministic Rendezvous
Sequence (DRSEQ) [6], First Rendezvous CH (FRCH) [7],
Cycle Adjustable CH (CACH) [8], Jump-Stay (JS) [9], Effi-
cient Alternate Hop-and-Wait (E-AHW) [10], Asynchronous
CH (ACH) [11], Asynchronous Rendezvous CH (ARCH) [12],
Symmetric Asynchronous Rendezvous CH (SARCH) [12],
Load based Quorum CH system (L-QCH) [13], and Moving
Traversing Pointers (MTP) [14] schemes are proposed in the
past. CH methods are specifically considered as a distributed
approach for the rendezvous process. It is a promising solution
for the issue of rendezvous process, which does not need any
dedicated common control channel. Rendezvous process in
such distributed approach is referred to as blind rendezvous
process. In blind rendezvous process, CH is done without
any prior knowledge of the CRNs except the number of total
channels. In common rendezvous process, each SU hops on the
basis of the predefined channel hopping patterns according to
each time slot. Once a pair of SUs hops on a common available
channel at a specific time instance, they can rendezvous to
exchange the control information. Here, common available
channels are referred to as rendezvous channels. CH patterns
are mainly of two different types: Sequence based [4], [6], [7]
and Randomized based [9], [10] CH patterns. Though random-
ized CH patterns are popular in the literature, there are some
limitations. In the randomized CH pattern, overlapping of two
CH patterns is not regular and these approaches need more
time in comparison to our proposed rendezvous algorithms
for guaranteed rendezvous. On the other hand, sequence based
CH patterns are regular, but rendezvous is not guaranteed for
all possible sequences and in all rendezvous channels. Hence,
we propose here a deterministic sequence based channel hop-
ping approach in order to solve the issues of the rendezvous
process.

A. Motivation and Contributions

Normally, CH protocols in CRN can be categorized as
Symmetric Synchronous [12], [13], Symmetric Asynchro-
nous [4], [5], [7], [9], [12], Asymmetric Synchronous and
Asymmetric Asynchronous [10], [11], [14]. We are motivated
to design the novel deterministic sequence based channel
hopping algorithms for the symmetric synchronous, symmetric
asynchronous, and asymmetric asynchronous CRN in which
every pair of SUs can have the guaranteed rendezvous within
a finite period of time. In our approach, any pair of SUs can

rendezvous in each and every available channels within a finite
duration of time so that no channel is left. All rendezvous
channels must be used fairly, i.e., all rendezvous channels
have equal probability to be used as common control channel.
Accordingly, our goal is to design a set of CH algorithms
for different scenarios in CRN depending on the number of
available channels and presence of the PUs. We generate the
CH sequences using the concept of primitive root of the prime
number P and major contributions of our work can be listed
as follows:

• We provide efficient sequence based CH mechanisms
those utilize the primitive root as the generator of the
sequences.

• A Symmetric Synchronous (SSync) CH protocol
is designed to increase the degree of rendezvous.
Optimality of SSync is considered in terms of Average
Time To Rendezvous (ATTR) and Maximum Time To
Rendezvous (MTTR). The value of MTTR and ATTR for
our proposed SSync protocol is N

k and the expected time
to rendezvous on all N number of available channels is
also N

k . The Expected Inter Rendezvous Interval (EIRI)
on all N available channels is (N

k − 1).
• A Symmetric Asynchronous (SAsync) CH protocol is

designed, where SUs are located in the same geographical
region follow the symmetric model in an asynchronous
CR environment. The optimality of SAsync protocol in
terms of ATTR is N

2 and MTTR is N
k . Besides, SAsync

protocol is significantly better than SSync in terms of
ETTR and EIRI, which is analyzed theoretically.

• An Asymmetric Asynchronous (AAsync) CH protocol is
designed, which is applicable in more general environ-
ment of CRN, where there is no global clock synchro-
nization and pair of SUs cannot have same set of available
channels. Our AAsync protocol achieves MTTR as
M2 and ATTR as M×P

2 , where M is the number of total
channels and degree of rendezvous is equal to at least the
number of rendezvous channels.

The rest of the paper is organized as follows. Related works
are discussed in Section II. System models of our proposed
protocols are mentioned in Section III. CH sequences based on
the primitive roots are generated in Section IV. The Channel
Hopping rendezvous algorithms for Symmetric Synchronous
and Asynchronous models are designed in Section V and
Section VI, respectively. The Channel Hopping rendezvous
algorithm for Asymmetric Asynchronous model is presented
in Section VII. Simulation results are presented in Section VIII
and concluding remarks are made in Section IX.

II. RELATED WORK

In this section, the latest works on dynamic spectrum access
strategies [15], [16] in multichannel CRN are analyzed for
the coexistence of licensed PUs and unlicensed SUs. Depend-
ing on the multichannel communication process including
the control message exchange, the existing communication
rendezvous mechanisms in multichannel CR networks can
be classified into two categories as centralized and decen-
tralized CRN. The centralized system needs a centralized
controller such as a server or base station, which manages

2816 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

other users of the network in the rendezvous process. The
management of nodes in CRN is easy as channel information
is known in advance in a centralized system. Base station
and single server approaches are centralized systems used
for the cognitive wireless random access network such as
TV Band [17]. In the centralized system, common control
channel establishment is essential in the rendezvous process,
which can be established in single or multiple channels and
other remaining channels are considered as data channels.
Centralized system faces control channel congestion problem,
which leads to under utilization of the channels. Besides, mul-
tiple common control channels (CCC) also do not eliminate
the control channel congestion problem.

Distributed CRN can include the case of single or multiple
CCC or without having any CCC. This system is popular as
no dedicated common control channel is required and any
channel can be used as a control or data channel. Though
distributed CRN can mitigate the problems of centralized
approach, designing such system is a challenging issue as
no information of rendezvous process is known in prior,
which is called blind rendezvous. For common control channel
establishment in distributed system, a quorum based approach
L-QCH [13] is considered. In L-QCH, all SUs use Quorum-
based CH (QCH) approach to establish multiple common
control channels for the rendezvous process in synchronous
environment. Quorum-based Channel Hopping (QCH) system
use the intersection property of quorum systems to generate
the CH sequences those enable the rendezvous on multiple
channels between any two CH sequences. Chao et al. [18] pro-
pose a synchronous distributed CRN channel hopping protocol
called Quorum and Latin square Channel Hopping (QLCH).
In order to guarantee the rendezvous, it utilizes the property
of quorum systems and latin squares. In our survey of the
related literature, synchronous and asynchronous protocols are
considered for the distributed system to compare with our
proposed rendezvous algorithms. The recent study includes a
distributed cyclic approach based CH mechanism [12], where
two different users consider a sequence of channels and hop in
opposite order of rotation so that they can meet at a common
channel.

Chang et al. [12] propose RCCH (Rendezvous Couple
Channel Hopping) for synchronous environment and two
asynchronous algorithms such as ARCH (Asynchronous
Rendezvous Channel Hopping) and SARCH (Symmetric
Asynchronous Rendezvous Channel Hopping) to increase the
degree of rendezvous. Though RCCH scheme can increase
the channel utilization ratio, degree of rendezvous is only
N and value of MTTR is N

2 , which is very large, where
N is the number of available channels. Although, rendezvous
is possible between the sender and the receiver in ARCH,
both need distinct time-parity and probability of rendezvous
is only 1

N . In DRSEQ, Yang et al. [6] consider an asynchro-
nous CH in which each SU follows a CH sequence formed
by its inverted sequence separated by an empty time slot.
Liu et al. [19] analyze the performance metrics for chan-
nel access delay of CRNs by considering an asynchronous
protocol GOS [4], where channel access delay is considered
with help of channel availability condition and asynchronous

CH rendezvous schemes. Voice over IP (VoIP) communication
based two tier CRN model is proposed in [20], where PUs and
SUs transmit data with different probabilities to improve the
spectrum utilization. However, the work does not speak how
rendezvous can occur between the SUs in absence of the PUs
and there is no theoretical analysis to justify the improvement
in spectrum utilization.

Another symmetric asynchronous algorithm FRCH [7] is
proposed, where channel hopping sequence is similar to that
of DRSEQ. The CH sequence is formed by concatenating a
sequence with its inverted sequence and is followed by the
initial channel number. FRCH uses asynchronous environment,
where number of available channels may be same or different
for each user. However, it suffers from under utilization of
available channels, where a user can only rendezvous with
another one at some particular available channels during
the channel hopping. Ghorbel et al. [21] propose a two
phase heuristics algorithm to allocate the spectrum and power
resources among the users. Though authors propose a joint
dynamic multi channel spectrum access with adaptive power
allocation, the work does not analyze the percentage of channel
utilization for variable traffic rates of the PUs and SUs. The
randomized channel hopping approach utilizes the distributed
CRN systems in both synchronous and asynchronous envi-
ronment, where a pair of SUs switches from one channel
to another using a randomized sequence till they meet at a
rendezvous channel. In JS [9], SUs use a randomized channel
hopping sequence that consists of a jump and a stay pattern.
SUs jump on the available channels in the jump-pattern and
stay on a particular channel in the stay-pattern. A jump-pattern
consists of 2P time slots, whereas stay-pattern considers P
number of time slots, where P is a smallest prime number
larger than the number of available channels. The hopping
patterns in JS [9] for a pair of SUs are different and do
not follow any cyclic pattern, for which each channel cannot
be visited uniformly during the CH period. Moreover, the
JS pattern is not worthwhile for the symmetric synchronous
environment as it uses random seeds to generate different
stay-patterns for different users corresponding to each cycle.
Besides, the MTTR in JS is at most 3P . Later Lin et al. [22]
extend the previous work by considering different cycle length
for jump-pattern.

Chang et al. [23] propose two channel hopping algorithms
T-CH and D-CH. In T-CH, though degree of rendezvous is
increased, there is higher chance of collision in multiuser
scenario as the sender and the receive use the same CH
sequence. In D-CH, degree of rendezvous is very small
with large value of MTTR, if both SUs have different IDs.
Monemi et al. [24] analyze the feasible interference region for
the PUs caused by the SUs in a CRN and do not discuss about
the spectrum access problems and thereby do not analyze
the percentage of spectrum usage and degree of rendezvous.
Zhang et al. [25] propose a heuristic greedy algorithm for
rendezvous channel assignment to form predefined sequences.
Based on the predefined sequences, they consider two different
sets of channel hopping sequences for synchronous and asyn-
chronous environments. Each user selects the sequences ran-
domly to achieve the rendezvous diversity. In order to increase

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2817

the rendezvous diversity, recently some works [26], [27] are
proposed in which CRN devices are equipped with multiple
radios. In [26], they utilize more than one radios to reduce the
ATTR for rendezvous channels. Chen et al. [27] propose an
infrastructure based CRN with centralized base station (BS)
and cognitive users, where only BS is equipped with multiple
radios in order to deliver the broadcast content to its users.
Since, multi-radio based CRN requires more resources, we
are of the view that designing CH sequences with single
radio based CRN to have same or more number of degree of
rendezvous is economical. Based on the survey of the latest
literature on CH protocols, we propose here the sequence
based CH algorithms for the synchronous, asynchronous, sym-
metric and asymmetric environment of the CRN as discussed
below.

III. PROBLEM FORMULATION

A. Preliminaries

Consider a Cognitive Radio Network (CRN) that consists
of L ≥ 2 number of secondary users (SUs) equipped with
half duplex radios for spectrum sensing, sending or receiving
the control message or data and coexist with the primary
users (PUs) over a common geographical region. The PUs use
the licensed spectrum that is divided into total M number of
orthogonal channels C = {c1, c2, · · · , cM }, where ci denotes
the i -th channel. A channel is said to be available to an SU,
if it can communicate on the channel without causing any
interference to the PUs. Using appropriate sensing model,
user SUi , for i ∈ [1, L] can be able to find the available
channels Ci ⊆ C before the rendezvous process and after
some period of time that consists of several cycles of channel
hopping. We consider a symmetric model in which all users
share the same number of available channels located in the
same geographical region. Accordingly, for any two users SUi

and SU j , Ci = C j ⊂ C with 1 ≤ i, j ≤ L, where N is
the number of available channels in the CRN. Besides, we
consider an asymmetric model in which SUs can have different
sets of available channels such that at least one common
channel exists between one pair of SUs in the network. The
set of such common channel is Gij = Ci ∩ C j and number of
common channels G = |Gij |.

It is assumed that the CRN is time slotted with each slot
is of equal duration. In each time slot, each user hops on a
channel based on its transmitting or receiving mode and scans
a channel based on the respective sequences to attempt the
rendezvous with its potential neighbors. We consider channel
hopping (CH) algorithms for both symmetric and asymmetric
models with or without time synchronization. Any cognitive
radio device is assumed to be capable of hopping between
different channels according to a channel hopping sequence
and its local clock. A packet can be exchanged between two
users if they hop onto the same channel in the same time
slot and it is assumed that one time slot is long enough
to exchange multiple packets in order to have successful
rendezvous. If multiple nodes happen to rendezvous in the
same time slot on the same channel, they can follow a channel
contention procedure. If a user wants to send the control

Fig. 1. Powers of integers, modulo 13. Primitive roots modulo 13
are 2, 6, 7, and 11.

information to its neighbors, it finds a common rendezvous
channel during the channel hopping process.

B. Primitive Root

Let P be a prime number. A primitive root (or generator)
g ∈ [1, P) is an integer such that when x goes from 1 through
P−1, gx mod P goes through all the integers 1, 2, · · · , (P−1)
in some order. Powers of integers modulo prime number P
is given in Fig. 1, where P = 13. The shaded gray color
represents the distinct ordered elements of integers modulo 13.
For each g ∈ {2, 6, 7, 11}, it is clearly observed that gx mod 13
for each x ∈ [1, 12] computes all the distinct elements those
belong to the interval [1, 12] in certain order. Hence, 2, 6, 7,
and 11 are primitive roots modulo 13. In another case, for
each g ∈ {1, 3, 4, 5, 8, 9, 10, 12}, it is found that only few
(less than 12) elements those belong to the interval [1, 12] are
repeated in a cyclic manner.

In our CH system, we consider two distinct primitive roots
for generating two different sequences corresponding to each
and every SUs. For generating two sequences, we need at least
two primitive roots of prime number P and to have two distinct
primitive roots, prime number P must be at least 5. The
significance of choosing primitive root of a prime number P is
that for any pair of sequences formed by these primitive roots,
degree of overlapping (k) between any pair of sequences is at
least 2 and the value of k is always an even number depending
on the number of available channels N in symmetric models,
where N = P−1 or number of total channels M in asymmetric
model, where M = P − 1 and P ≥ 5. It is to be noted that
N or M is a whole number >1 and either of this value can
be taken to generate the sequences.

Proposition 1: If gi is a primitive root of prime number P
of order N and gi ∈ Z

∗
P for i = [1, �], then (gi)

x mod P
for x ∈ [1, N] are all distinct, where N = �(P) and Z

∗
P =

{1, 2, · · · , P − 1} is a cyclic group of order (P − 1).1

Proposition 2: If gi is primitive root of order N and
gi ∈ Z

∗
P for i = [1, �], then the set of all primitive roots

R has � number of elements of order N, where N = �(P)
and � = �(N).2

It is to be noted that Galois field also can be used
to construct the CH sequences instead of primitive root.
However, the Galois field as used in CACH [8] for symmetric
synchronous environment can construct the CH sequence by

1For a prime number P , Euler’s quotient function �(P) = P − 1.
2For any N = P

r1
1 P

r2
2 · · · Prm

m , where Pi denotes a prime number. Euler’s
quotient function �(N) = N · (1 − 1

P1
) · (1 − 1

P2
) · · · (1 − 1

Pm
).

2818 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

which Maximum Conditional Time To Rendezvous (MCTTR)
is (N + 1)M in CACH, where N and M are the number
of available and total channels in the CRN, respectively and
N < M . To the best of our knowledge, CACH considers
all channels and logically replaces the unavailable channels
with available one. We use primitive roots to construct the
CH sequence. In our symmetric synchronous model MCTTR
is N2/k, where k is at least 2.

C. Generation of Sequences

Let R be the set of � number of primitive roots of a prime
number P ≥ 5, where R = {g1, g2, · · · , g�}. Corresponding
to each primitive root gi ∈ R , we can find a sequence 〈gi 〉N

by evaluating gx
i mod P sequentially with all x ∈ [1, P). The

sequences formed with help of these primitive roots can have
a unique property such that pair of ordered sequences have N
number of elements and can have the common overlapping at
k number of positions, where N = P − 1 and k ≥ 2. Due to
this property, we consider the primitive root as the generator
of sequences. In the following subsection, we introduce the
generation of two different types of sequences namely Default
and Elementary based on these primitive roots of a prime
number P . The Default sequence is used for generating the
receiver’s channel hopping sequence and Elementary sequence
can be used for generating the sender’s channel hopping
sequence, which is discussed in Section IV.

1) Default Sequence: Default sequence Sd is generated with
help of the generator g� ∈ R corresponding to a prime
number P . We can find a default sequence from the ordered
elements formed by evaluating (g�)

x mod P for each x
from 1, 2, · · · , (P − 1). Thus, the formed default sequence
is represented as Sd = 〈g�〉N , which consists of N number of
ordered elements, where N = P − 1.

For example, if P = 13 and N = 12, set of primitive roots
of P is R = {g1, g2, g3, g4} = {2, 6, 7, 11}. Default sequence
〈g�〉N can be generated by g�, where g� = g4 = 11. In order to
find the default sequence, we evaluate (g4)

x mod P for each
x from 1, 2, · · · , 12. Thus, default sequence Sd = 〈g4〉N =
〈11〉12 = 〈11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1〉.

2) Elementary Sequences: If we choose a primitive root
gi ∈ R \ {g�}; i ∈ [1, � − 1] corresponding to a prime
number P , we can find an elementary sequence Si

e formed by
evaluating gx

i mod P for each x from 1, 2, · · · , (P −1). Thus,
the elementary sequence formed is represented as Si

e = 〈gi 〉N ,
which consists of N number of ordered elements, where
N = P − 1 and i ∈ [1, � − 1].

For example, if P = 13 and N = 12, set of primitive roots
of P is R = {g1, g2, g3, g4} = {2, 6, 7, 11}. The elementary
sequences can be generated like default sequence by consider-
ing the primitive roots gi ∈ R \{g�} = {g1, g2, g3} = {2, 6, 7}.
Elementary sequences 〈gi 〉N are 〈2〉12, 〈6〉12, and 〈7〉12.
Here, S1

e = 〈2〉12 = 〈2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1〉, S2
e =

〈6〉12 = 〈6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1〉, S3
e = 〈7〉12 =

〈7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1〉.
D. Degree of Overlapping

Degree of overlapping (k) of default sequence with ele-
mentary sequences is defined as the number of common

Fig. 2. Sequences generated with help of primitive roots and degree of
overlapping of Elementary sequences with Default sequence.

Fig. 3. Rotation of a sequence S = 〈3, 2, 6, 4, 5, 1〉. Rotation function is
Rot L(S, x), where, x ∈ {1, 2, · · · , 5}.

elements present in these pair of sequences at a particular
ordered position. Channel hopping sequence can be derived
from the default sequence and elementary sequences. We use
degree of overlapping as a key feature for generating receiver’s
CH sequence and sender’s CH sequence from the respec-
tive Default sequence and Elementary sequences. Degree of
overlapping between default sequence Sd with elementary
sequence Si

e is denoted as ki = D(Sd , Si
e); ∀i ∈ [1, � − 1].

Set of degree of overlapping ki of default sequence with
elementary sequences can be denoted as K . As shown in
Fig. 2, degrees of overlapping of default sequence S = 〈11〉12
with elementary sequences S1 = 〈2〉12, S2 = 〈6〉12, and
S3 = 〈7〉12 are k1 = 6, k2 = 2, and k3 = 4, respectively.
Here, K = {2, 4, 6}.

E. Rotation of Sequence: RotL(S, x)

Rot L(S, x) is a function, which is defined as the rotation
of a sequence S through x places to the left, where x ∈
{1, 2, · · · , |S|−1}. As shown in Fig. 3, we consider a sequence
S = 〈3, 2, 6, 4, 5, 1〉 and x ∈ {1, 2, · · · , 5}. In order to
get the left shifts for different values of x , the rotation of
S is performed by concatenating the sequence S‖S. Thus,
Rot L(S, 1) = 〈2, 6, 4, 5, 1, 3〉 as the sequence S has to shift
left by one place. Similarly, Rot L(S, 5) = 〈1, 3, 2, 6, 4, 5〉 as
the sequence S has to shift left by five places.

F. Basic Information for Generating CH Sequence

Upon getting the degree of overlapping between the default
sequence with each elementary sequences, the maximum
degree of overlapping between the default and elementary
sequences is calculated. This information of maximum degree
of overlapping is used to find the sender and receiver’s CH
sequence, which is known as the basic information for the
CH sequence generation. It is to be noted that the degree of
overlapping of default sequence with elementary sequences is
first calculated as shown in Fig. 2 before getting the basic
information for CH sequence generation. Then, the maximum
degree of overlapping (k) is calculated among all degrees of
overlapping as shown in Fig. 2 and the corresponding default
sequence (Sd) and elementary sequences (Se) are used for gen-
erating the receiver’s and sender’s CH sequences, respectively.
Thus, the key information required for generating such CH
sequences are (Sd , Se, k), where Sd is the default sequence,

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2819

elementary sequence (Se) = {Si
e|ki = k, i ∈ [1, � − 1]} and

k = {Max(ki)|ki ∈ K , i ∈ [1, � − 1]}.
Let {1, 2, · · · , 12} be the set of channels available for

the SUs in the CRN, where N = 12 and prime number
P = 13 > N . In this case, the set of primitive roots R =
{g1, g2, g3, g4} = {2, 6, 7, 11} and the sequences correspond-
ing to each primitive roots are 〈2〉12, 〈6〉12, 〈7〉12, and 〈11〉12.
As shown in Fig. 2, the degree of overlapping of elementary
sequence 〈2〉12 with default sequence 〈11〉12 is maximum.
Hence, the elementary sequence Se = 〈2〉12 corresponding
to the maximum degree of overlapping is selected as the
elementary sequence for generating the CH sequence along
with the default sequence Sd = 〈11〉12. Since, the maximum
degree of overlapping k = Max(ki) = 6, ki ∈ K = {2, 4, 6},
corresponding Sd and Se are 〈11〉12 and 〈2〉12, respectively, the
basic information for CH sequence generation for each SU is
considered as a triple (Sd , Se, k) = (〈11〉12, 〈2〉12, 6).

IV. CH SEQUENCE GENERATION

An SU can generate the channel hopping sequences by
using the basic information of CH sequence generation and
based on its role as a sender or receiver. The sender’s
Symmetric Synchronous Channel Hopping (SSCH) sequence
can be generated by using the elementary sequence Se and
maximum degree of overlapping k as given in Algorithm 1.
The default sequence Sd and maximum degree of overlapping
k are used to generate the receiver’s Symmetric Channel
Hopping (SCH) sequence irrespective of the synchronous
or asynchronous environment of the receiver as given in
Algorithm 2. Again, receiver’s Asymmetric Channel Hop-
ping (ACH) sequence can be generated by using Algorithm 3
irrespective of the synchronous or asynchronous environment
of the receiver. Besides, sender’s Symmetric or Asymmetric
Channel Hopping sequence for the asynchronous environment
can be generated by using the basic information (Se, k) of
CH as presented in Algorithm 5 and Algorithm 6, respec-
tively. Generation of sender and receiver’s CH sequence
for symmetric and asymmetric environment in synchronous
or asynchronous scenario is described in the following
subsections.

It is to be noted that two SUs may have data to send to
each other and therefore choose the same elementary sequence.
In order to mitigate this problem, each SU goes for the
handshaking procedure in the first slot of the control channel
before choosing the default or elementary sequence. In this
slot, each SU goes for a random backoff and senses the
channel to find the presence of other SUs in that channel.
If an SU does not sense others in its vicinity, it transmits
a Ready To Send (RTS) message with information about its
destination node and data size followed by another period of
silence. Then, it waits for a response from the destination
node. If the destination node has also data to send to the
same sender, it changes its role to a receiver, uses the default
sequence Sd to generate its CH sequence and sends the Clear
To Send (CTS) message to that sender SU. It is assumed that
switching of role between the two SUs is negotiable based
on the priority of the data. Upon receiving the CTS message,

Algorithm 1 Sender’s Symmetric Synchronous CH (SSCH)
Sequence
Require: Sender SU j , j ∈ [1, L], number of available

channels N , prime number P , elementary sequence Se =
〈cs

1, cs
2, · · · cs

N 〉 and maximum degree of overlapping k;
Ensure: CH Sequence S j

s of sender SU j ;
1: S j

s = ∅;
2: Choose random integer β ∈ [0, N

k);
3: S j = Rot L(Se, β × k);
4: cycle = 0;
5: while in transmit mode do
6: cycle = cycle + 1;
7: i = [(cycle − 1) mod N

k] + 1;
8: S = Rot L(S j , (i − 1) × k);
9: S j

s = S j
s ‖S;

10: end while
11: return S j

s ;

the sender first establishes a link with its destination node
and uses the elementary sequence Se to generate its CH
sequence for sending data in the next hopping slots and
channels.

A. Sender’s Symmetric Synchronous CH (SSCH) Sequence

Let us assume that a secondary user SU j has data to
send for which it switches to the transmitting mode and
uses the sender’s CH sequence. It needs to hop in such a
way that it can rendezvous at a slot in a common channel
with the receiver. In symmetric synchronous environment, it
is assumed that the cognitive devices are already synchro-
nized and each SU is operated on N number of available
channels, where N = P − 1. Sender SU j , j ∈ [1, L]
uses the elementary sequence Se based on the maximum
degree of overlapping k and generates the sequence S as
mentioned in Algorithm 1 from line 2 through line 3. In each
cycle-i , sequence S j is generated from the sequence S as
mentioned in line 8 of Algorithm 1. To find the Symmetric
Synchronous CH (SSCH) sequence S j

s of sender SU j , the
sequence S j can be concatenated at least N

k times for N
k

number of cycles as presented in line 8 through line 9 of
Algorithm 1. This can meet the property of rendezvous, which
suggests that sender’s CH sequence can be able to rendezvous
with all N number of available channels after N

k number of
cycles. For example, for j = 1, let SU1 be the sender that
executes the SSCH algorithm. It has to use the elementary
sequence Se = 〈2〉12 = 〈2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1〉
and maximum degree of overlapping k = 6 as its inputs
based on the conditions given in Section III-F. Assuming
β = 0 ∈ [0, 2), sender SU1 forms the sequence S1 = Se

during the execution of Algorithm 1. For cycle-1, i = 1 and
S = Rot L(S1, 0), i.e., S = S1. Sender sequence S1

s = S1
s ‖S =

〈2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1〉. Again in cycle-2, i = 2 and
S = Rot L(S1, 6), i.e. S = 〈11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12〉.
Sender sequence becomes S1

s = S1
s ‖S = 〈2, 4, 8, 3, 6,

12, 11, 9, 5, 10, 7, 1, 11, 9, 5, 10, 7, 1, 2, 4, 8, 3, 6, 12〉, which
continues for other cycles too.

2820 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

Algorithm 2 Receiver’s Symmetric CH (SCH) Sequence
Require: Default sequence Sd = 〈cr

1, cr
2, · · · cr

N 〉 and maxi-
mum degree of overlapping k;

Ensure: Receiver’s CH Sequence Sr ;
1: Sr = ∅;
2: S = Sd ;
3: Choose random integer α ∈ [0, N

k);
4: S = Rot L(S, α × k);
5: cycle = 0;
6: while in the receive mode do
7: cycle = cycle + 1;
8: Sr = 〈Sr ‖S〉;
9: end while

10: return Sr ;

B. Receiver’s Symmetric/Asymmetric CH Sequence

The receivers generate the CH sequences for symmetric or
asymmetric environment irrespective of the synchronous or
asynchronous scenario by using the default sequence Sd and
maximum degree of overlapping k. A secondary user SU j has
to stay in the receiving mode until and unless it has data to
transmit. For symmetric model, receiver’s CH sequence Sr can
be generated by using Algorithm 2. As given in Algorithm 2,
the default sequence Sd and maximum degree of overlapping
k is used to generate a sequence S, which is mentioned from
line 2 through line 4. The receiver’s CH sequence Sr can be
formed by concatenating the resultant sequence S repeatedly
after each cycle of N time slots when it is in the receiving
mode.

In the asymmetric model, set of available channels Cr =
{c1, c2, · · · , cN } ⊂ C , where N < M . In Algorithm 3, default
sequence Sd and maximum degree of overlapping k are used
to generate a sequence S, which is mentioned from line 2
through line 6. When an SU is in receiving mode, if a channel
cr

i ∈ S and cr
i /∈ Cr , then cr

i is replaced by c using line 11.
Then, the sequence S is modified to another sequence T emp
as mentioned in Algorithm 3 from line 9 through line 16.
Consequently, receiver’s Asymmetric CH (ACH) sequence Sr

can be formed by concatenating the sequence T emp derived
from S and by remapping the unavailable channels with
available one repeatedly in each cycle with N number of time
slots, when it is in the receiving mode.

C. Channel Remapping

Channel remapping is necessary for the general case taking
the number of available channels (N) and number of total
channels (M) such that N < M and M = P − 1, where P is
a smallest prime number larger than N . In this scenario, the
sender or receiver’s CH sequence consists of M number of
channels in each cycle, where (M − N) number of channels
are not available. These (M − N) number of channels are
replaced by the channels with respect to the cycle-i as ((i −1)
mod N + 1). For example, let set of available channels be
Cr = {c1, c2, · · · , c8} = {2, 3, 4, 5, 7, 8, 9, 10} ⊂ C . Here,
the number of available channels N = 8 and the smallest
prime number P > N is P = 11. As per the CH sequence,

Algorithm 3 Receiver’s Asymmetric CH (ACH) Sequence
Require: Default sequence Sd = 〈cr

1, cr
2, · · · cr

M 〉, maximum
degree of overlapping k, available channels set Cr =
{c1, c2, · · · , cN }, N < M;

Ensure: Receiver’s CH Sequence Sr ;
1: Sr = ∅;
2: S = Sd ;
3: T emp = ∅;
4: cycle = 0;
5: Choose random integer α ∈ [0, M

k);
6: S = Rot L(S, α × k);
7: while in receive mode do
8: cycle = cycle + 1;
9: for i = 1 to M do

10: if cr
i ∈ S and cr

i /∈ Cr then
11: c = Cr [(cycle − 1) mod N + 1]; //by Sec. IV-C
12: T emp[i] = c;
13: else
14: T emp[i] = cr

i ;
15: end if
16: end for
17: Sr = 〈Sr ‖T emp〉;
18: end while
19: return Sr ;

each cycle must consist of M = 10 number of channels,
where channel numbers 1 and 6 are not available. Hence, in
cycle-10 both channels 1 and 6 are replaced by the channel
index c2 = 3.

In the following sections, we design the sequence based
channel hopping rendezvous algorithms for the symmetric and
asymmetric environment in synchronous and asynchronous
scenario. For any pair of SUs, Symmetric Synchronous Chan-
nel Hopping (SSync) rendezvous algorithm and Symmetric
Asynchronous Channel Hopping (SAsync) rendezvous algo-
rithm are designed. Besides, the Asymmetric Asynchronous
Channel Hopping (AAsync) rendezvous algorithm is proposed
for the more general scenario.

V. SSYNC RENDEZVOUS ALGORITHM

Synchronous channel hopping rendezvous process is con-
sidered when the local clocks of the sender and receiver
are synchronized with each other. Besides, each SU has the
knowledge about the number of available channels N as
they follow the symmetric model. A user having no data
to transmit maintains its role as a receiver as long as it
has no data and uses the channel hopping sequence Sr as
generated by Algorithm 2. When a sender SU j wants to
rendezvous with other users, it generates the sender’s channel
hopping sequence S j

s as stated in Algorithm 1. During pairwise

rendezvous process, sender scans the channels c j
i ∈ S j

s at
the beginning of each time slot in order to rendezvous with
receiver’s sequence Sr . The rendezvous process continues until
successful rendezvous is achieved as given in Algorithm 4.
In each cycle of N time slots, the number of possible ren-
dezvous is k and the Maximum Time To Rendezvous (MTTR)

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2821

Algorithm 4 SSync Rendezvous Algorithm (For Sender)

Require: CH Sequence S j
s of sender SU j ;

Ensure: Rendezvous channel index c;
1: i = 1;
2: while (no successful rendezvous) do
3: Scan on channel c j

i ∈ S j
s to rendezvous;

4: if (rendezvous success) then
5: c = c j

i ;
6: return c;
7: end if
8: i = i + 1;
9: end while

is N
k . The rendezvous process can be possible in at most N

number of channels in N
k number of cycles.

Let, SU1 and SU2 be the sender and receiver, respec-
tively who operates on N = 12 number of channels for
the rendezvous process, where P = 13. SU2 executes
SCH Algorithm 2 in order to form the receiver’s symmetric
CH sequence Sr and SU1 executes symmetric synchronous
CH (SSCH) Algorithm 1 in order to generate the sender’s CH
sequence S1

s . Being a receiver, SU2 uses the default sequence
Sd = 〈11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1〉 and maximum degree
of overlapping k = 6 according to the Algorithm 2. Assuming
α = 0, receiver SU2 forms the sequence S(= Sd) and forms
receiver’s symmetric CH (SCH) sequence Sr = 〈S‖S‖ · · · 〉 by
concatenating sequence S repeatedly in each time cycle during
execution of Algorithm 2. SU1 uses the elementary sequence
Se = 〈2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1〉 and maximum degree
of overlapping k = 6 according to the Algorithm 1. Assuming
β = 0, sender SU1 forms the sequence S1 = Se during the
execution of Algorithm 1. In the transmission mode, sequence
S is generated from S1 for each cycle and sender’s CH
sequence is generated as S1

s = 〈S‖S‖ · · · 〉 by concatenating
the sequence S repeatedly in each time cycle. If SU1 and SU2
follow the symmetric model and their clocks are synchronized
with each other, SU1 uses the SSync algorithm to have the first
rendezvous channel as given in Algorithm 4. Subsequently, if
we consider the case of rendezvous on all channels, we need
to run the algorithm until successful rendezvous occurs in all
channels. As shown in Fig. 4, sender SU1 follows the sequence
S1 in the first cycle during the first 12 time slots within which
maximum 6 numbers of rendezvous are possible in those
6 available channels. Since, maximum number of rendezvous
in first cycle is 6, we consider the cyclic left rotation of the
sequence S1 six times. Therefore, it hops sequentially in the
second cycle using the sequence generated from the cyclic left
rotation Rot L(S1, k) in sequence S1 with k = 6, as a result
of which it is found that six rendezvous are possible with
the remaining six available channels. In this way, sender can
be able to rendezvous on all the N(= 12) available channels
within 24 time slots in N/k(= 2) cycles, which satisfies the
property of the guaranteed rendezvous in all the available
channels.

Lemma 1: In Symmetric Synchronous CH (SSync), any two
secondary users can achieve rendezvous in time TSS in each

Fig. 4. Example of SSync Rendezvous Algorithm.

cycle, whose lower and upper bound are N
k and N2

k time slots,
respectively, where N is the number of available channels and
k is the number of overlapping of sequences in each cycle.

Proof: In SSync, each cycle consists of N number of time
slots. At least k number of rendezvous are possible on distinct
channels in each cycle as there exists k number of overlapping
between a pair of channel sequences (sender/receiver). Hence,
the first rendezvous of channel sequence can occur in the initial
cycle within N

k time slots, which is the lower bound. In order
to meet all N number of channels, it needs N

k cycles. Hence,

the rendezvous occurs in N2

k time slots for all N channels,
which is the upper bound.

Theorem 1: In Symmetric Synchronous CH (SSync), the
lower bound of Maximum Time To Rendezvous (MTTR) is N

k ,
where N is the number of available channels for the SUs and
k is the number of overlapping of sequences in each cycle.

Proof: As proved in Lemma 1, the first rendezvous of
channel sequence can occur in the initial cycle within N

k time
slots, when each cycle in SSync consists of N number of
time slots with k number of overlapping between a pair of
sender/receiver’s channel sequences. Hence, the lower bound
of MTTR is N

k , which is the lower bound of TSS .
Lemma 2: The Average Time To Rendezvous (ATTR) in

Symmetric Synchronous CH (SSync) is N
k , where N is the

number of available channels for the SUs and k is the number
of overlapping of sequences in each cycle.

Proof: ATTR is the average time taken for the
first rendezvous and the proof is similar to the proof of
Lemma 1.

Lemma 3: The Expected Time To Rendezvous (ETTR) in
Symmetric Synchronous CH (SSync) is ET T RSSync = N

k ,
where N is the number of available channels for the SUs and
k is the number of overlapping of sequences in each cycle.

Proof: The period of rendezvous is defined as the least
time period in which an algorithm is able to determine
N number of overlapping on N different channels with every
possible delay of d time slots. It is to be noted that MTTR
in SSync is N

k and there is no delay in SSync, i.e., d = 0.
As rendezvous can occur periodically in at least N/k time
slots with d = 0, ET T RSSync = N

k .
Lemma 4: The Expected Inter Rendezvous Interval (EIRI)

in Symmetric Synchronous CH (SSync) is E I RISSsync = N
k −1,

where N is the number of available channels for the SUs and
k is the number of overlapping sequences in each cycle.

Proof: The Expected Inter Rendezvous Interval (EIRI(d))
for a pair of SUs can be calculated as E I RI (d) = I RI (d)

RT −I RI (d)
for all possible cases of delay d with different patterns of
rendezvous. In SSync channel hopping, d = 0 and the

2822 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

Algorithm 5 SAsync Rendezvous Algorithm (For Sender)
Require: Sender SU j , j ∈ [1, L], number of available chan-

nels N , elementary sequence Se = 〈cs
1, cs

2, · · · cs
N 〉 and

maximum degree of overlapping k;
Ensure: Rendezvous channel index c;
1: S = Se;
2: Choose random integer β ∈ [0, k);
3: S = Rot L(S, β × k);
4: S j = S; //S j = 〈c j

1 , c j
2 , · · · c j

N 〉
5: cycle = 0;
6: t = 1;
7: while (no successful rendezvous) do
8: cycle = cycle + 1;
9: for r = 1 to k do

10: for i = 1 to N
k do

11: Scan on channel c j
i ∈ S j to rendezvous;

12: if (rendezvous success) then
13: c = c j

i ;
14: return c;
15: end if
16: t = t + 1;
17: end for
18: S j = Rot L(S j , N

k + 1);
19: end for
20: S j = Rot L(S, cycle);
21: end while

rendezvous period is RT = N2

k . Hence, in SSync,

E I RISSsync = I RI (0)
RT −I RI (0) = N−k

k = N
k − 1.

VI. SASYNC RENDEZVOUS ALGORITHM

In Symmetric Asynchronous Channel Hopping (SASync)
algorithm, it is assumed that two users join the CRN at
different instant of time and both sender and receiver know
about the number of available channels N in the CRN. There-
fore, they execute the SASync rendezvous algorithm in which
sender’s asynchronous channel hopping rendezvous algorithm
is employed. In asynchronous environment, time slots of SUs
are not aligned to each other. As defined in IEEE 802.22,
the frame transmission duration is T (=10ms) and each time
slot must have a duration of 2T [9] to ensure the successful
exchange of information in asynchronous environment. If SU2
starts later than SU1 by (2τT + δ) time slots, we consider the
delay d as τ time slots when clock drift δ < T , otherwise
d = (τ +1) time slots. Henceforth, for simplicity we consider
that the time slots are aligned to each other with a delay factor
of d time slots corresponding to the CH period. Thus, we
consider two different types of cycles based on the fixed and
variable delay factor of d units. Small cycles induced due
to the delay factor is known as the penalty cycle, whose
length is N

k time slots and a large rendezvous cycle consists
of rendezvous channels whose length is N time slots.

During penalty cycle, sender SU j selects the channel
indexed from sequence S j by leaving mod

(
i, N

k + 1
)
, i ∈

[1, N] channels in a cycle of N time slots. In ideal case,
rendezvous can occur in the first N time slots, where it

Fig. 5. SAsync Rendezvous with a fixed delay of d = 3 units.

consists of mod(d, k) number of penalty cycles followed
by a rendezvous cycle. Rendezvous cycle continues that
consists of at most k number of rendezvous channels. In our
algorithm, it returns the channel number when rendezvous is
successful and the process is terminated. But, in general the
rendezvous process continues with respect to its sequence S j

and rendezvous can occur in all N number of channels in the
next N

k number of cycles. In an ideal case, all channels can be
used by the SUs and therefore MTTR for SAsync algorithm
could be N . Hence, rendezvous can be guaranteed within the
(mod(d, k) N

k + N2

k) time slots for all N number of channels.
If the rendezvous does not occur in the first N time

slots, it implies that no successful rendezvous is possible at
least in one rendezvous channel, which passes k number of
penalty cycles. After each N time slots, the primary sequence
S j is reconstructed from the sequence S using line 20 in
Algorithm 5. Here, N time slots constitute the non-rendezvous
cycle of k number of penalty cycles. In this scenario, penalty
cycles continues until successful rendezvous occurs. Once the
rendezvous is successful in a penalty cycle, it converts to the
rendezvous cycle of N time slots. Each rendezvous cycle can
have at most k number of rendezvous channels. In this sce-
nario, Maximum Conditional Time To Rendezvous (MCTTR)
for SAsync algorithm is N2 time slots.

If SU1 and SU2 follow the symmetric model without having
their clock synchronized with each other, then SU1 uses
SAsync mechanism to have the first successful rendezvous
channel as given in Algorithm 5. Suppose, SU1 starts the
rendezvous process with a delay of d time slots after the start
of receiver SU2’s clock. If SU1 hops to rendezvous with SU2’s
SCH sequence, it fails in the first mod(d, k) penalty cycle.
For example, as shown in Fig. 5, d = 3 and k = 6. Hence, the
number of penalty cycles in which rendezvous attempt fails is
three (mod(d, k) = 3) and after three penalty cycles (6 time
slots), the first rendezvous occurs in the next rendezvous
cycle. Subsequently, if we consider the case of rendezvous
on all channels, we need to consider the rendezvous cycles
till all channels get successful rendezvous. As shown in
Fig. 5, initially sender SU1 follows three penalty cycles
using sequence S1. After these penalty cycles, rendezvous
cycle starts and it consists of maximum k(= 6) number of
rendezvous channels. Since, maximum number of rendezvous
in the first cycle is six, we consider the cyclic left rotation
of the sequence S1 by six times. Hence, it hops sequentially
using the sequence achieved from the Rot L(S1, k) with k = 6

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2823

Fig. 6. SAsync Rendezvous with variable delay of d units.

in the next cycle. As a result, it is found that 6 rendezvous
are possible with the remaining 6 available channels. Thus,
rendezvous attempt fails within the first 6 time slots and all
channels are scanned successfully for the rendezvous in the
next 24 time slots. Hence, sender is able to rendezvous with
all N number of channels during 30 time slots, which satisfies
the guaranteed rendezvous property. In Fig. 6, SU2 hops using
the default hopping sequence and SU1 can hop using its own
hopping sequence based on its own local clock with a delay
factor of d time slots.

Lemma 5: In Symmetric Asynchronous CH (SAsync), any
two users can achieve rendezvous within time TS A in a cycle,
whose lower and upper bound are N

k × (mod(d, k) + 1) and
N
k × (mod(d, k) + N) time slots, respectively, where N is the

number of available channels, k is the number of overlapping
of sequences in each cycle and d time slots is the delay of
starting time between two users.

Proof: In SAsync, sender SU2 starts after SU1 with a
delay of d time slots. In the first phase of the algorithm,
SU2 searches for the rendezvous cycle, which consists of
k number of rendezvous channels. Rendezvous attempts fail
during the mod(d, k) penalty cycles, which need at least
N
k ×(mod(d, k)) time slots and do not contain any rendezvous

channels. Rendezvous attempt can be succeeded in the next
N
k time slots for the the first time rendezvous. Therefore, the

rendezvous can have a lower bound of N
k × (mod(d, k) + 1)

time slots. In the second phase, SU2 runs the algorithm for
the rendezvous cycles of N time slots in order to meet all
distinct N channels, which needs N

k number of cycles for the
successful rendezvous. Hence, the upper bound for successful
rendezvous is N

k × (mod(d, k) + N) time slots for all N
channels.

Theorem 2: In SAsync channel hopping, Maximum Time To
Rendezvous (MTTR) is N, where N is the number of available
channels.

Proof: As proved in Lemma 5, the rendezvous can have
a lower bound of N

k × (mod(d, k) + 1) time slots in the ideal
case of SAsync channel hopping. Rendezvous can occur in
the first N time slots, where it consists of mod(d, k) number
of penalty cycles followed by a rendezvous cycle. Hence,
MTTR in SAsync is N .

Lemma 6: The Average Time To Rendezvous (ATTR) in
Symmetric Asynchronous CH (SAsync) is N

2 , where N is the
number of available channels for the SUs and k is the number
of overlapping of sequences in each cycle.

Proof: The proof is similar to Lemma 5 and is not given
here to save space.

Lemma 7: The Expected Time To Rendezvous (ETTR) in
Symmetric Asynchronous CH (SAsync) is ET T RS Async =
∑k−1

d=0
1
k × RT

T T R(d) , where RT is the period of rendezvous and

T T R(d) is the time to rendezvous with delay d.
Proof: In SAsync channel hopping, time to rendezvous

with delay d (TTR(d)) can be calculated for each d ∈
{0, 1, · · · , k − 1} with a generalized formula T T R(d) =
k
N × RT − mod(d, k), where k is the number of overlapping
of sequences. Besides, the period of rendezvous in SAsync
RT = (N − N

k) + N2

k . Hence, ETTR(d) for a pair of SUs can
be calculated as ET T R(d) = RT

T T R(d) . For all possible cases
of d with different patterns of rendezvous, ET T RS Async =∑k−1

d=0
1
k × RT

T T R(d) .
Lemma 8: The Expected Inter Rendezvous Interval (EIRI)

in Symmetric Asynchronous CH (SAsync) is E I RIS Async =∑k−1
d=0

1
k × I RI (d)

RT −I RI (d) , where N is the number of available
channels for the SUs and k is the number of overlapping of
sequences in each cycle.

Proof: The Inter Rendezvous Interval (IRI(d)) can be
determined for each d ∈ {0, 1, · · · , k −1} with the generalized
formula I RI (d) = N−k

N ×RT +mod(d, k), where k is the num-
ber of overlapping of sequences in SAsync channel hopping
with rendezvous period RT = (N − N

k) + N2

k . Hence, EIRI(d)
for a pair of SUs is calculated as E I RI (d) = I RI (d)

RT −I RI (d) . For
all possible cases of d with different patterns of rendezvous,
E I RIS Async = ∑k−1

d=0
1
k × I RI (d)

RT −I RI (d) .

VII. AASYNC RENDEZVOUS ALGORITHM

In the CRN, if the unlicensed users have different sets with
variable number of available channels such that there exists
at least one common channel between them and they join the
network at different instant of time, then they have to execute
the Asymmetric Asynchronous Channel Hopping (AAsync)
algorithm. Here, the sender has knowledge about the available
channels by sensing the presence of the PUs. It is assumed
that the sender knows about the number of total channels
(M) of the CRN and currently available channel set Cs

j =
{c1, c2, · · · , cN }. Using primitive root gi ∈ R \ {g�}, sender
can find the sequence Se, which is presented in the Section III
and S j = 〈c j

1 , c j
2 , · · · c j

M 〉. In the first cycle of the algorithm,
user considers the channel index c j

i ∈ S j in each time slot by
checking whether it belongs to Cs

j . If c j
i /∈ Cs

j , it is remapped
to the channel Cs

j [mod(cycle− 1, N)+ 1] as stated in line 13
of Algorithm 6 and the algorithm checks for the rendezvous
on C . If the rendezvous fails using sequence S j in M time
slots, the algorithm continues up to M cycles until successful
rendezvous occurs. Hence, Maximum Conditional Time To
Rendezvous (MCTTR) in AAsync rendezvous algorithm is M2

time slots.
Consider an example, where sender SU1 and receiver SU2

follow the asymmetric channel hopping model without their
clock synchronization. Let, C = {1, 2, 3, 4, 5, 6} be the set of
total channels in the CRN. Here, M = 6, P = 7 and set
of primitive roots R = {3, 5}. Hence, the sequences corre-
sponding to the sender and receiver are Se = 〈3, 2, 6, 4, 5, 1〉
and Sd = 〈5, 4, 6, 2, 3, 1〉, respectively. The maximum degree

2824 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

Algorithm 6 AAsync Rendezvous Algorithm (For Sender)
Require: Sender SU j , j ∈ [1, L], total number of chan-

nels M , elementary sequence Se = 〈cs
1, cs

2, · · · cs
M 〉 and

maximum degree of overlapping k, number of available
channels N , set of available channels for SU j is Cs

j =
{c1, c2, · · · , cN };

Ensure: Rendezvous channel index c;
1: S = Se;
2: Choose random integer β ∈ [0, k);
3: S = Rot L(S, β × k);
4: S j = S; //S j = 〈c j

1 , c j
2 , · · · c j

M 〉
5: cycle = 0;
6: t = 1;
7: while (no successful rendezvous) do
8: cycle = cycle + 1;
9: for i = 1 to M do

10: if c j
i ∈ Cs

j then

11: c = c j
i ;

12: else
13: c = Cs

j [mod(cycle − 1, N) + 1]; //by Sec. IV-C
14: end if
15: Scan on channel c to rendezvous;
16: if (rendezvous success) then
17: return c;
18: end if
19: t = t + 1;
20: end for
21: S j = Rot L(S j , 1);
22: end while

of overlapping between these sequences is k = 2. The
available channel sets of sender SU1 and receiver SU2 are
Cr = {2, 3, 4} and Cs

1 = {1, 2, 5}, respectively. Receiver SU2
follows the ACH sequence as given in Algorithm 3 to generate
the receiver’s channel hopping sequence Sr by using the
default sequence Sd and available channel set Cr = {2, 3, 4}.
Receiver SU2 hops using its channel hopping sequence Sr .
Sender SU1 follows the AAsync rendezvous Algorithm 6 to
find its sender’s hopping sequence and rendezvous channels.
In this example, there is one rendezvous channel, which is 2.
As shown in Fig. 7a, SUs hop in all channels without knowing
their available channels as a result of which they rendezvous
with each other at time slot 7 once in the entire CH period.
In the AAsync algorithm, the unavailable channels are
replaced with their respective available channels as shown in
Fig. 7b. In this case, the SUs can rendezvous on common
channel 2 in the time slots 5, 6, 7, 23, and 24.

Lemma 9: In Asymmetric Asynchronous CH (AAsync), any
two users can achieve rendezvous within time TAA, whose
upper bound is M2 time slots, where M is the number of
total channels.

Proof: If the number of commonly available channels
is one and the delay with the available common channel
overlapping is d ∈ [1, M − 1], which may occur at the
end of M cycles, the number of cycles is the maximum and
the number of time slots in this case is M in each cycle.

Fig. 7. C = {1, 2, 3, 4, 5, 6}, M = 6; Available channels of sender SU1
and receiver SU2 are {2, 3, 4} and {1, 2, 5}, respectively. (a) AAsync Ren-
dezvous without replacing the unavailable channels with available channels.
(b) AAsync Rendezvous by replacing unavailable channels with available
channels.

Hence, the rendezvous is guaranteed in M2 time slots, if
at least one common channel is available between any two
users.

Theorem 3: The Maximum Time To Rendezvous (MTTR) in
Asymmetric Asynchronous CH is M2, where M is the number
of total channels.

Proof: As proved in Lemma 9, rendezvous is guaranteed
in M2 time slots and therefore MTTR is M2.

Lemma 10: The Average Time To Rendezvous (ATTR) in
Asymmetric Asynchronous CH is M×P

2 , where M is the
number of total channels for the SUs and P is a prime number.

Proof: The proof is similar to Lemma 9 and is not given
here to save space.

A. ATTR With Respect to PUs

We analyze here the probability of an SU that can ren-
dezvous with a PU when it opportunistically tries to access the
spectrum in the CRN. Assuming that p is the probability of a
PU that appears on a channel for one time slot, probability that
the PU will occupy this particular channel during the period
is given by

PPU = 1 − (1 − p)RT (1)

where, RT refers to the time period required for hopping a
sequence. This time period in our algorithms is represented
as RT ∈ { N2

k , (N − N
k) + N2

k , M2}, where k is the numbers
of overlapping in the receiver/sender’s sequences. The average
number of channels occupied by a PU (na) within a hopping
sequence period will be

na = M · PPU = M
(
1 − (1 − p)RT

)
(2)

It is to be noted that ATTR increases due to presence of the
PU. Let, ATTR and ATTR′ be the average time to rendezvous
without or with the influence of PU, respectively. Clearly,
ATTR′ > ATTR, i.e. ATTR′

ATTR > 1. The impact of PU is directly
proportional to the fraction of ATTR′ with ATTR. Therefore,
the impact of PU (f) can be calculated as follows:

f = ATTR′

ATTR
(3)

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2825

Fig. 8. Symmetric Synchronous protocols. (a) Throughput vs different number of SUs (L) with fixed number of channels (N = 30). (b) Throughput vs
different number of channels (N) with L = 22. (c) ATTR vs different number of SUs (L) with fixed number of channels (N = 30).

Hence, we get ATTR′ under the impact of PU’s appearance
on ATTR by

ATTR′ = M

M − na
ATTR (4)

The impact factor of PU on the performance of our algorithms
in terms of ATTR is given as

f = ATTR′

ATTR
= M

M − na
= 1

(1 − p)RT
(5)

where, value of RT ∈ { N2

k , (N − N
k) + N2

k , M2} depends on
our SSync, SAsync or AAsync algorithms.

B. Available Channel Ratio (ϕ)

Available channel ratio is defined as the ratio of average
number of available channels of an SU (N = M − na) to
the number of total channels (M), which is the inverse of the
impact factor of PU and is given as follows:

ϕ = M − na

M
= (1 − p)RT = 1

f
(6)

where, RT = M2. Value of ϕ decreases, when number of
available channels of an SU reduces and accordingly the
number of available channels in asymmetric environment can
be ϕM . In order to have at least one common available
channel between one pair of SU, ϕ should be within the range
0.5 < ϕ < 1. For example, if M = 20 and ϕ = 0.5, then each
SU can have 10 number of available channels and there is
a chance that some pairs of SUs do not have any common
available channel among them. Therefore, ϕ must be larger
than 0.5. In asymmetric environment, we consider ϕ = 0.8
in our simulation in order to have more common available
channels among the SUs for the performance evaluation of
our algorithms, which is discussed in the next section.

VIII. PERFORMANCE EVALUATION

A. Simulation Setup

We build our CR based simulation environment using
OMNeT++ simulator to evaluate the performance of our
proposed algorithms to compare with the state-of-art proto-
cols such as FRCH [7], JS [9], RCCH [12], ARCH [12],

Fig. 9. Symmetric Synchronous protocols. (a) Throughput vs different
number of SUs (L) and different number of channels (N). (b) ATTR vs
different number of SUs (L) and different number of channels (N).

Fig. 10. Symmetric Asynchronous protocols. (a) Throughput vs δ for fixed
number of channels (N = 30). (b) ATTR vs δ for fixed number of channels
(N = 30).

SARCH [12], L-QCH [13], MTP [14] and EJS [22]. Our
simulation platform is implemented with variable number of
SUs with variable number of available channels in presence of
fixed number of PUs, where SUs are deployed randomly over
the CRN. The duration of each time slot in the simulation is
considered to be 20ms and packet data rate to be 22.69Mbps
based on the existing standard [17]. The traffic generated at
each SU follows the Poisson process of arrival and each SU
maintains multiple queues for its one-hop neighbors. Sender
SU randomly selects the neighbor to which it has data in its
queue based on the availability of the receiver SU. Destination
SU is decided when the RTS sent by the source SU is cleared
by the CTS during the rendezvous process. Thereafter, the
transmission continues until all packets are transmitted during
the subsequent time slots, where they rendezvous.

2826 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

Fig. 11. Symmetric Asynchronous protocols. (a) Throughput vs different number of channels (N) vs δ. (b) Throughput vs different number of SUs (L) vs
different number of channels (N). (c) ATTR vs different number of SUs (L) vs different number of channels (N).

In our simulation, SSync algorithm is compared with
symmetric algorithms JS [9], RCCH [12] and L-QCH [13]
in synchronous environment. The simulation process for
each symmetric synchronous protocols is considered taking
same available channel sets for symmetric environment with
zero clock drift for synchronization. Besides, we consider
FRCH [7], ARCH [12] and EJS [22] to compare with our
SAsync algorithm in symmetric asynchronous environment.
The simulation process for each symmetric asynchronous
protocols includes the channel hopping system of symmetric
model, where each SU can transmit asynchronously with
variable clock drift. In order to evaluate the performance
of our AAsync algorithm, we consider FRCH [7], JS [9],
SARCH [12], MTP [14] and EJS [22] algorithms for asym-
metric asynchronous environment. The simulation process for
each asymmetric asynchronous protocol is implemented by
considering asymmetric model, where each SU can have
different available channel sets with at least one common
channel among them and uses variable clock drifts to satisfy
the asynchronous condition. We use throughput and ATTR
to compare our protocols with all stat-of-art protocols. In
our simulation, throughput is defined as the number of data
packets successfully transmitted per unit second, where size
of each packet is 2000 bytes. Thus, throughput is measured
as Number of packets transmitted×Size of each packet

Simulation time period in seconds .

B. Symmetric Synchronous Scenario

When an SU has data to send to another intended SU, it
switches to transmission mode and hops from one channel to
another using our SSync algorithm at the beginning of each
time slot. In symmetric synchronous scenario, we simulate
the existing protocols RCCH, L-QCH and JS in synchronous
environment. When the number of SUs increases, overall
throughput is also increases, which is clearly seen in the
Fig. 8a. Our SSync algorithm outperforms over L-QCH, JS in
all available channels in terms of throughput and specifically
throughput in our algorithm is significantly higher, where
maximum rendezvous channels are N ∈ {12, 16, 18, 28, 30},
which is depicted in Fig. 8b. The throughput in our protocol
is higher than the JS algorithm when number of channels
N ∈ {12, 16, 18, 28, 30}. Since, the maximum degree of over-
lapping of those respective channels is k ∈ {6, 8, 6, 14, 10},
throughput of our protocol fluctuates. The throughput of other

Fig. 12. Asymmetric Asynchronous protocols. (a) Throughput vs δ for
M = 10 and ϕ = 0.8. (b) ATTR vs δ for M = 10 and ϕ = 0.8.

protocols such as RCCH decreases when number of channels
increases. This happens because of the degree of overlapping
between sequences in each cycle is always k = 2. However,
in our SSync algorithm, there is room for better performance
when number of channels N ∈ {12, 16, 18, 28, 30} and degree
of overlapping is k �= 2. In RCCH, degree of overlapping is
always 2 in each cycle. Our protocol performance is closer
to that of RCCH in case of maximum rendezvous channels
N ∈ {4, 6, 10, 22} as the number of rendezvous in each
rendezvous cycle (N time slots), degree of overlapping is two.
However, as shown in Fig. 9a throughput in our protocol is
significantly higher due to higher degree of overlapping for
different sets of SUs in other available rendezvous channels.
The numbers of rendezvous in each rendezvous cycle (N time
slots), where N = 12, 16, 18, 28, 30 are 6, 8, 6, 14, 10, respec-
tively, which gives high throughput as seen in Fig. 8b for
L = 22. In Fig. 8c, we find that ATTR of our protocol is
less than other protocols for variable number of SUs with
fixed number of channels N = 30. It is observed that ATTR
increases as value of N increases in all existing algorithms
as compared to ours. However, in our SSync algorithm there
is room for significant reduction of ATTR for the number
of available channels (as seen for N = 12, 16, 18, 28, 30) as
shown in Fig. 9b. Besides, our algorithm also outperforms in
terms of throughput for the number of available channels (N),
where throughput is higher than other protocols.

C. Symmetric Asynchronous Scenario

In our SAsync algorithm, it is considered that each SU can
start at different instant of time with variable clock drift (δ)

SAHOO AND SAHOO: SEQUENCE-BASED CHANNEL HOPPING ALGORITHMS FOR DYNAMIC SPECTRUM SHARING IN CRNs 2827

Fig. 13. Asymmetric Asynchronous protocols for ϕ = 0.8. (a) Throughput vs M vs δ. (b) Throughput vs L vs M.(c) ATTR vs L vs M.

from the start of the time slot. In two users scenario, one SU
is considered as a sender and other one as a receiver with
possible amount of δ to compare with other algorithms. As
shown in Fig. 10a, though maximum throughput is achieved
as compared to other protocols, the achieved throughput does
not vary much with respect to the clock drift. The reason
is that each SU can transmit multiple data packets within a
single time slot after successful rendezvous in our simulation.
Accordingly, the numbers of transmitted data packets are less
due to rendezvous in the first time slot with variable clock drift.
However, maximum number of pending data packets are trans-
mitted to the desired receiver in the subsequent rendezvous
time slots as the pair of users are already synchronized. Thus,
the impact of first rendezvous time slot reduces the overall
throughput of the network with different clock drift though
maximum throughput is achieved.

SAsync performs significantly better than other protocols
in terms of throughput as well as ATTR, which are shown
in Fig. 10a and Fig. 10b, respectively for the fixed number of
channels N = 30. For different values of δ and varying number
of N , throughput is depicted in Fig. 11a in case of two users
scenario, where SAsync outperforms over other algorithms. In
multi-user scenario, when an SU has data to send, it switches
to the transmission mode to a channel using SAsync algorithm.
In this scenario, when a pair of SUs meet at a rendezvous
channel at any time slot, the sender adjusts its clock with
receiver’s clock and continues sending data until its all packets
are sent successfully to its intended receiver or the receiver
switches to the sending mode. Thus, the receiver is able to
receive in different time slots from different SUs, if it is idle.
In our simulation, our SAsync algorithm is compared with
existing ARCH, FRCH, JS, and EJS algorithms. As depicted
in Fig. 11b, throughput of our algorithm is found to be better
as compared to others. Besides, ATTR is found to be signifi-
cantly less than those of existing algorithms, which is shown
in Fig. 11c.

D. Asymmetric Asynchronous Scenario

In asymmetric asynchronous scenario, it is considered that
SUs are within the proximity of each other with different sets
of available channels having at least one common channel
between them with respect to the presence of PUs. Under such
scenario, a new parameter ϕ is considered such that number
of available channels N j is ϕM . For each SU j , the set of

available channels Cs
j consists of ϕM number of different set

of available channels out of total M channels. Our AAsync
protocol is run with ϕ = 0.8 and is compared with SARCH,
FRCH, JS, EJS, MTP. In our comparison, SARCH, FRCH,
JS, EJS, and MTP are simulated in asymmetric asynchro-
nous environment with respect to different sets of available
channels. In two users scenario, taking one SU as sender
and another one as the receiver, we simulated our AAsync
algorithm with these protocols for possible value of δ. It is
observed that AAsync significantly performs better in terms
of throughput and ATTR as shown in Fig. 12a and Fig. 12b,
respectively for fixed number of channels M = 10. For
different values of δ and varying number of M , throughput
is evaluated for two users case as depicted in Fig. 13a.

Simulation result in Fig 13b shows that the number of
unavailable channels increases as the number of total channels
increases though the available channel ratio ϕ = 0.8. The
channel replacement strategy may not guarantee the ren-
dezvous in regular interval of time. As a result of which,
average TTR of all protocols increases with increase in value
of M as depicted in Fig. 13c. As shown in Fig. 13b and
Fig. 13c, our AAsync protocol outperforms over others in
terms of throughput and average TTR, respectively for all
values of M .

IX. CONCLUSION

In this paper, the dynamic spectrum sharing between the
licensed PUs and unlicensed SUs is studied taking three
channel hopping algorithms. All SUs are equipped with cog-
nitive radios to sense the spectrum holes and can use same
or different sets of available channels to send or receive
data. A two-user and multiuser scenario is considered in the
CRN for symmetric and asymmetric environment with/without
need of synchronization. Accordingly, SSync, SAsync, and
AAsync channel hopping algorithms are designed for sym-
metric synchronous, symmetric asynchronous and asymmetric
asynchronous environments, respectively. All algorithms are
analyzed to justify different performance metrics in terms
of MTTR, ATTR and degree of rendezvous. Extensive sim-
ulations are performed to evaluate our algorithms and to
compare them with some latest well known CRN algorithms.
It is investigated that our proposed algorithms can outperform
over others and to the best of our knowledge our proto-
cols are most efficient as compared to the works published
so far.

2828 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 11, NOVEMBER 2016

REFERENCES

[1] M. Song, C. Xin, Y. Zhao, and X. Cheng, “Dynamic spectrum access:
From cognitive radio to network radio,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 23–29, Feb. 2012.

[2] J. Jia, Q. Zhang, and X. S. Shen, “HC-MAC: A hardware-constrained
cognitive mac for efficient spectrum management,” IEEE J. Sel. Areas
Commun., vol. 26, no. 1, pp. 106–117, Jan. 2008.

[3] C. Cormio and K. R. Chowdhury, “Common control channel design
for cognitive radio wireless ad hoc networks using adaptive frequency
hopping,” Ad Hoc Netw., vol. 8, no. 4, pp. 430–438, 2010.

[4] L. A. DaSilva and I. Guerreiro, “Sequence-based rendezvous for
dynamic spectrum access,” in Proc. 3rd IEEE Symp. New Frontiers Dyn.
Spectr. Access Netw., (DySPAN), Oct. 2008, pp. 1–7.

[5] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for
cognitive radios,” IEEE Trans. Mobile Comput., vol. 10, no. 2,
pp. 216–227, Feb. 2011.

[6] D. Yang, J. Shin, and C. Kim, “Deterministic rendezvous scheme
in multichannel access networks,” Electron. Lett., vol. 46, no. 20,
pp. 1402–1404, Sep. 2010.

[7] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping
algorithm for cognitive radio networks,” IEEE Commun. Lett., vol. 17,
no. 7, pp. 1475–1478, Jul. 2013.

[8] T.-Y. Wu, W. Liao, and C.-S. Chang, “CACH: Cycle-adjustable channel
hopping for control channel establishment in cognitive radio networks,”
in Proc. IEEE INFOCOM, Apr. 2014, pp. 2706–2714.

[9] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-stay rendezvous
algorithm for cognitive radio networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 23, no. 10, pp. 1867–1881, Oct. 2012.

[10] I.-H. Chuang, H.-Y. Wu, and Y.-H. Kuo, “A fast blind rendezvous
method by alternate hop-and-wait channel hopping in cognitive
radio networks,” IEEE Trans. Mobile Comput., vol. 13, no. 10,
pp. 2171–2184, Oct. 2014.

[11] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous
protocols for decentralized cognitive radio networks,” IEEE Trans.
Mobile Comput., vol. 12, no. 7, pp. 1294–1307, Jul. 2013.

[12] G. Y. Chang, W. H. Teng, H. Y. Chen, and J. P. Sheu, “Novel channel-
hopping schemes for cognitive radio networks,” IEEE Trans. Mobile
Comput., vol. 13, no. 2, pp. 407–421, Feb. 2014.

[13] K. Bian, J.-M. Park, and R. Chen, “Control channel establishment in
cognitive radio networks using channel hopping,” IEEE J. Sel. Areas
Commun., vol. 29, no. 4, pp. 689–703, Apr. 2011.

[14] Z. Gu, H. Pu, Q. S. Hua, and F. C. M. Lau, “Improved rendezvous
algorithms for heterogeneous cognitive radio networks,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 154–162.

[15] I. A. M. Balapuwaduge, F. Y. Li, A. Rajanna, and M. Kaveh, “Channel
occupancy-based dynamic spectrum leasing in multichannel CRNs:
Strategies and performance evaluation,” IEEE Trans. Commun., vol. 64,
no. 3, pp. 1313–1328, Mar. 2016.

[16] C. Yang, W. Lou, Y. Fu, S. Xie, and R. Yu, “On throughput maximization
in multichannel cognitive radio networks via generalized access strat-
egy,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1384–1398, Apr. 2016.

[17] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems Wireless Regional Area
Networks (WRAN)—Specific Requirements Part 22: Cognitive Wireless
RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations: Policies and Procedures for Operation in the TV Bands, IEEE
Standard 802.22, Working Group on Wireless Regional Area Networks,
Jul. 2011.

[18] C.-M. Chao, H.-Y. Fu, and L.-R. Zhang, “A fast rendezvous-guarantee
channel hopping protocol for cognitive radio networks,” IEEE Trans.
Veh. Technol., vol. 64, no. 12, pp. 5804–5816, Dec. 2015.

[19] Q. Liu, X. Wang, B. Han, X. Wang, and X. Zhou, “Access delay
of cognitive radio networks based on asynchronous channel-hopping
rendezvous and CSMA/CA MAC,” IEEE Trans. Veh. Technol., vol. 64,
no. 3, pp. 1105–1119, Mar. 2015.

[20] T. Chakraborty, I. S. Misra, and T. Manna, “Design and implementation
of VoIP based two-tier cognitive radio network for improved spectrum
utilization,” IEEE Syst. J., vol. 10, no. 1, pp. 370–381, Mar. 2016.

[21] M. B. Ghorbel, B. Hamdaoui, M. Guizani, and B. Khalfi, “Distributed
learning-based cross-layer technique for energy-efficient multicarrier
dynamic spectrum access with adaptive power allocation,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 1665–1674, Mar. 2016.

[22] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced jump-stay
rendezvous algorithm for cognitive radio networks,” IEEE Commun.
Lett., vol. 17, no. 9, pp. 1742–1745, Sep. 2013.

[23] G. Y. Chang, J. F. Huang, and Y. S. Wang, “Matrix-based channel
hopping algorithms for cognitive radio networks,” IEEE Trans. Wireless
Commun., vol. 14, no. 5, pp. 2755–2768, May 2015.

[24] M. Monemi, M. Rasti, and E. Hossain, “On characterization of feasible
interference regions in cognitive radio networks,” IEEE Trans. Commun.,
vol. 64, no. 2, pp. 511–524, Feb. 2016.

[25] Y. Zhang, G. Yu, Q. Li, H. Wang, X. Zhu, and B. Wang, “Channel-
hopping-based communication rendezvous in cognitive radio networks,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 889–902, Jun. 2014.

[26] L. Yu, H. Liu, Y. W. Leung, X. Chu, and Z. Lin, “Multiple radios for fast
rendezvous in cognitive radio networks,” IEEE Trans. Mobile Comput.,
vol. 14, no. 9, pp. 1917–1931, Sep. 2015.

[27] L. Chen, K. Bian, X. Du, and X. Li, “Multichannel broadcast via channel
hopping in cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 64,
no. 7, pp. 3004–3017, Jul. 2015.

Prasan Kumar Sahoo (M’06) received the M.Sc.
degree in mathematics from Utkal University, India,
in 1994, the M.Tech. degree in computer science
from IIT Kharagpur, Kharagpur, India, in 2000, the
Ph.D. degree in mathematics from Utkal Univer-
sity, India, in 2002, and the Ph.D. degree in com-
puter engineering from National Central University,
Taiwan, in 2009. He was an Associate Professor
with the Department of Information Management,
Vanung University, Taiwan. He was with the Soft-
ware Research Center, National Central University,

Taiwan. He is currently an Associate Professor with the Department of
Computer Science and Information Engineering and the Director of the
International Cooperation Center, Chang Gung University, Taiwan. His current
research interests include big data analytics, cloud computing, and cyber-
physical systems with cognitive radio networks. He is also an Editorial
Board Member of the International Journal of Vehicle Information and
Communication Systems and has served as the Program Committee Member of
several IEEE and ACM conferences. He was the Program Chair of ICCT 2010.

Debasish Sahoo received the M.Sc. degree in math-
ematics and the M.Tech. degree in computer science
from Utkal University, India, in 1999 and 2007,
respectively. He is currently pursuing the Ph.D.
degree in computer science and information engi-
neering at Chang Gung University, Taiwan. He was
a Research Associate with the Department of Com-
puter Science and Engineering, IIT Patna, Patna,
India. His current research interests include cognitive
radio networks and cognitive Internet of Things.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

