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Abstract: The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support
collision-free wireless channel access mechanisms for industrial, commercial and healthcare
applications. However, unnecessary wastage of energy and bandwidth consumption occur due
to inefficient backoff management and collisions. In this paper, a new channel access mechanism is
designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption
and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is
designed for the data transmission. A new superframe structure is proposed to mitigate the problems
due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission
opportunity for failure devices is proposed to reduce the collisions and retransmission delay with
high reliability. Performance evaluation and validation of our scheme indicate that the packet
drop rate, throughput, reliability, energy consumption and average delay of the nodes can be
improved significantly.
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1. Introduction

The main objective of deployment of sensors in Wireless Sensor Networks (WSNs) is to monitor
the environmental conditions such as pressure, temperature, sound, etc. The physical layer and
medium access control of IEEE 802.15.4-enabled [1] WSN is suitable for the low-power wireless
networks. The Internet of Things (IoT), where ZigBee devices play a major role, is getting popular in
smart homes and smart city applications. The existing IEEE 802.15.4 MAC scheme has been modified
to meet the critical requirements of IoT applications and both the slotted and unslotted medium access
control schemes for the short-range communication devices with low duty cycle have been defined in
the newly-modified IEEE 802.15.4e [2] standard. The superframe structure follows the slotted MAC of
the IEEE 802.15.4e and is suitable for different applications in the Internet of Things (IoT).

ZigBee technology is suitable for home and industrial automation, remote control applications
and provides connectivity to different sensor devices, which can provide long battery life. On the other
hand, WiFi technology gives connectivity to the IoT devices more conveniently. In different applications
of IoT, such as smart home, healthcare, smart industry, smart city and smart community, both WiFi and
ZigBee devices are used and operated in the 2.4-GHz ISM band, which may cause interference.
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The conventional MAC protocols are useless in managing the disparate transmit-power levels,
asynchronous time slots and incompatible PHY layers of such heterogeneous networks and needs to
be improved to cope with the existing technological demands.

The star topology is preferable for IoT applications, where the coverage vicinity is small and
low latency is needed. The coordinator in the star topology controls the communication by sending
packets and beacons for the synchronization among devices. All devices are allowed to communicate
with the PAN coordinator only after successfully association with the coordinator. However, the
communications are affected due to collisions or interference with respect to the packet arrival rate of
the devices. Mostly, the network collision occurs due to simultaneous channel assessment or the hidden
terminal problem. Besides, interference occurs due to the presence of both WiFi and ZigBee devices
when their channels overlap. The novelty of the CSMA/CA mechanism is to avoid the collision during
the ongoing transmission of another device in the network, which is not hidden. However, ZigBee’s
Rx/Tx switching duration is 192 µs, and the DIFS (Distributed Inter-Frame Space) of WiFi is only
50 µs. Hence, in between ZigBee’s Rx/Tx switching duration, a WiFi transmitter can easily preempt
the channel access. The coexistence of these wireless devices in a network increases the interferences,
collisions, delay and energy consumptions. Moreover, ZigBee packet losses and retransmissions lead
to lower reliability and faster draining of the ZigBee battery. Therefore, these issues are significant in
the smart home network, where both WiFi and ZigBee devices coexist.

Sensor devices in WSNs follow the IEEE 802.15.4e MAC scheme during the Contention Access
Period (CAP), performing slotted CSMA/CA to access the channel to reduce the collisions. The sensor
devices have buffer constraints, and the data packet is dropped when the buffer is full. Hence, the
devices having more data in the buffer should get priority to access the channel so that the packet
drop rate can be minimized. However, the IEEE 802.15.4e CSMA/CA mechanism provides equal
priority to all devices and does not consider the buffer limitation of the devices, which might lead
to buffer overflow. The collision rate in WSNs increases with respect to the number of contending
devices due to the limited backoff window size. During the Contention-Free Period (CFP), sensors
transmit data directly to the coordinator. However, the transmission failures may occur due to path
fading and interferences in WSNs during CFP, and sensor devices buffer the data to transmit in the
next superframe. Under such a circumstance, retransmission delays and the packet drop rate increase
due to the buffer constraints of the devices. Hence, it is crucial to investigate the current problems and
to find solutions to reduce their impact on the overall network performance.

The main contributions of our paper are summarized as follows.

• A new frame structure is designed for data transmission, which can identify and avoid the hidden
terminal problem.

• A new superframe structure is designed for the transmission failure due to interference between
WiFi and ZigBee devices.

• A modified channel access mechanism is proposed to reduce the packet drop rates, energy
consumptions and to enhance the throughput.

• A Markov chain model is designed to analyze the performance of our proposed MAC.
• Performance analysis of our proposed methods is made to study the reliability, latency, throughput

and energy consumption.

The rest of the paper is organized as follows. The overview of IEEE 802.15.4e general superframe
structure and channel access mechanism are briefly reviewed in Section 2. We review the related works
in Section 3. The network model and our proposed methods are presented in Section 4. We develop
the analytical models in Section 5. Performance analysis of different network parameters based on our
models is studied in Section 6. Simulation results are discussed in Section 7, and concluding remarks
are made in Section 8.
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2. Overview of the IEEE 802.15.4e Protocol

The IEEE 802.15.4e standard defines the Physical layer (PHY) and MAC sublayer specifications
for the devices having a low data rate, low power and short-range communication, which is quite good
enough for the wireless ZigBee networks. The IEEE 802.15.4e-enabled devices operate in the license-free
868∼868.6-MHz, 902∼928-MHz and 2400∼2483.5-MHz bands with a data rate of 250 kb/s to satisfy
a set of applications. Two types of devices, a Full-Function Device (FFD) and a Reduced-Function
Device (RFD), are present in the IEEE 802.15.4e-based network. Both star and peer-to-peer networks
are supported by the IEEE 802.15.4e standard, and both topologies work in either a beacon-enabled
mode or non-beacon-enabled mode. In a star topology, communication is normally made with the
PAN coordinator only, whereas any device can communicate with any other one in its communication
range in the peer-to-peer network.

The IEEE 802.15.4e standard defines the slotted medium access control scheme for the short-range
communication devices with low data rates. There are many MAC schemes defined by IEEE 802.15.4e,
such as Time Slotted Channel Hopping (TSCH), Low Latency Deterministic Networks (LLDN),
Deterministic and Synchronous Multi channel Extension (DSME), Radio Frequency Identification
blink (RFID) and Asynchronous Multi-Channel Adaptation (AMCA). However, the standard specifies
the optional use of the general superframe structure under beacon-enabled mode for low duty cycle
devices in the network as described in the following subsection.

2.1. General Superframe Structure

In a beacon-enabled network, the PAN coordinator periodically broadcasts the beacon that
contains the information about the superframe structure. The length of a superframe is known as
Beacon Interval (BI) and is defined by the parameter Beacon Order (BO).

BI = a base super f rame duration× 2BOsymbols, 0 ≤ BO ≤ 14

The BI is divided into active and inactive parts as shown in Figure 1. The active part duration is
called the Superframe Duration (SD) and is defined by the parameter Superframe Order (SO).

SD = a base super f rame duration× 2SOsymbols, 0 ≤ SO ≤ BO ≤ 14

Beacon Beacon 

Active part 

Inactive part CAP CFP 

Beacon interval 

Figure 1. Superframe structure of IEEE 802.15.4e-enabled devices.

In Figure 1, the beacon duration, Contention Access Period (CAP) and CFP are present in the
active part of the superframe. The superframe contains 16 superframe slots of equal duration out
of which the first slot is reserved for a PAN coordinator to broadcast the beacon frame. It is used
for the synchronization with the PAN coordinator and re-synchronization of the devices that go
to power saving or sleep mode. In the CAP period, the devices access the channel by using the
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slotted CSMA/CA, whereas in CFP, the devices assess the channel by the reservation-based channel
access mechanism.

2.2. Channel Access Mechanism

The devices in the network follow CSMA/CA mechanism to access the channel that is the key
component in IEEE 802.15.4e MAC to communicate with the PAN coordinator. A device having data
initializes the variables BE and NB, where BE is the backoff exponent and NB represents the number
of times the CSMA/CA mechanism is required to be postponed before attempting the transmission.
Before every transmission, the value of NB is initialized to zero. The MAC layer waits for a random
backoff period in the range of [0, 2BE−1] units as the backoff period before accessing the channel. After
the backoff duration expires, the tagged device goes for two times clear channel assessment (CCA) to
know the channel condition and allows transmitting data provided the channel is found idle during
both CCAs. After transmitting the data, the tagged device waits for the acknowledgment, which is
interpreted as the successful packet transmission. However, if the channel is found busy during any
CCA, the tagged device increases the value of BE and NB by one for each channel access failure and
goes for the random backoff before performing the next CCA. The maximum values of BE and NB are
BEmax and maxMacBackoff(NBmax), respectively. The values of BE and NB are incremented for each
channel access failure, and the packet is dropped by the device if the value of NB exceeds the value of
NBmax. The flow chart of the IEEE 802.15.4e CSMA/CA mechanism is depicted in Figure 2.

START 

NB=0, BE=mac MinBE, Count=2  

Delay for random (0, 2BE -1) unit backoff period 

Perform CCA on backoff 

boundary 

Channel idle ? 

CW = 2, NB = NB+1,  BE= Min(BE+1, BEmax)  

NB > maxMacBackoff ? 

Failure 

Count = Count-1  

 Count =0 ? 

M

2BE

Success 

Yes 

No
Yes Yes 

CCA

Figure 2. Channel access mechanism of IEEE 802.15.4e.

3. Related Work

The IEEE 802.15.4 CSMA/CA mechanism is a deterministic approach that avoids collision by
using the binary exponential backoff scheme without considering the status of the communication
channel. Hence, the authors in [3] have designed one collision-aware backoff algorithm, where
the nodes in the network can dynamically choose their backoff interval based on the status of the
communication channel. However, the proposed algorithm cannot avoid collisions due to hidden
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terminal problems. To reduce the collisions, the author in [4] divide the transmission durations
into a number of sub-periods based on the network environment, and one device uses only one
sub-period. Though it can reduce the effects of the hidden terminal problems, it cannot provide
priority to the devices with higher buffer status to access the channel first. A Time-Division Multiple
Access (TDMA)-based scheme is designed in [5] for real-time data transmission to ensure collision-free
transmission. The proposed time-division approach can work under ideal channel conditions, which
is unrealistic. Considering the hidden terminal problem, the authors in [6] have proposed one
hybrid model by combining CSMA/CA with TDMA. Though the hybrid model considers the hidden
terminal problem, it requires global information of the network devices. The authors in [7] analyze
the throughput of IEEE 802.15.4 MAC considering the presence of the hidden terminal problem in
the network. To reduce the hidden terminal problem, the authors in [8] design one algorithm that
identifies the hidden nodes by analyzing the received signal powers. However, these works focus on
only ZigBee devices in the network without considering any external interferences.

Packet loss occurs due to interference when both WiFi and ZigBee channels overlap. The simple
way to avoid the interferences among the devices in a network is to use different channels. However,
the available channels are limited, for which the authors in [9] have designed a new MAC scheme with
an increasing number of CCAs to alleviate the collisions in WiFi transmissions. However, the proposed
mechanisms cannot avoid collisions due to the hidden terminal problem, and also, a significant
amount of energy for CCAs is consumed in these methods. To detect the interference, the authors
in [10] propose a new protocol that helps a device to switch adaptively into a safe channel. However,
performance analysis in terms of latency and power consumption is not made in such adaptive channel
switching. Under external interference, the theoretical analysis of throughput for WSNs has been
studied in [11]. The authors in [12] have analyzed the interferences due to signal arrival direction
and losses under the smart building scenario, though the reliability of the data communications is
not considered. The authors in [13] propose one cooperative carrier signaling technique to avoid the
interference between ZigBee and WiFi devices. However, the main drawback is that one dedicated
ZigBee device should be present in the network to send the busy signal, which can increase the network
cost. To analyze the performance of the coexistence of WiFi and ZigBee devices, the authors in [14]
have designed the Markov model for normalized saturation throughput to ensure the quality of service
and fairness. In the proposed method, both transmission failure devices and ready to transmit devices
have equal priority to access the channel.

The battery power is a major constraint for ZigBee devices, and the major power consumption
by the ZigBee device is due to data retransmission when there is a collision or channel error. Hence,
the authors in [15] have designed one Additional Carrier Sensing (ACS) algorithm to reduce energy
consumptions by avoiding further channel access through the information during the second CCA.
However, the wastage of energy is possible when the second CCA is found busy due to data
transmission. A new MAC protocol is designed in [16] to avoid the channel being busy due to
acknowledgment packet transmission without any additional CCA. However, it cannot avoid collisions
due to the hidden terminal problem. Since, one acknowledgment packet is about 22 symbols and
one backoff slot is about 20 symbols, the authors in [17] propose one segmentized CCA to increase
the possibilities of transmission by neglecting the channel busy condition for the shake of the ACK
packet. However, it cannot avoid the end of the data packet instead of the ACK one. Apart from this,
the authors in [18] design an analytical model to predict the energy consumption and throughput for
the saturated and unsaturated traffics. However, these works have not considered the buffer status
of the devices to improve the energy efficiency. The authors in [19] have introduced the Markov
model to calculate the impact of energy consumption based on the probability of delivering a packet.
A detailed analysis of the energy consumption of the Body Area Networks (BAN) with respect to
packet inter-arrival time is discussed in [20]. However, the authors have not considered the external
WiFi interferences with the ZigBee devices.
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The authors in [21] have designed one generalized technique to investigate the performance for
the slotted CSMA/CA scheme in the IEEE 802.15.4 standard. The majority of the present analytical
models consider ideal channel conditions, though wireless channels are prone to burst errors. Hence,
the authors in [22] have designed one three-dimensional Markov model to evaluate the performance
of the IEEE 802.15.4 MAC scheme considering the burst channel errors. However, they have not
considered the collisions due to the hidden terminal problem in the network. The authors have
designed the time critical services in [23] and the priority-based adaptive MAC schemes for the WSNs
in [24]. However, none of these schemes focus on how to enhance the reliability of the network.
To analyze the reliability, the authors in [25] design one analytical model to study the performance of
MAC with the assumption that only ZigBee devices are present in the network. However, they have
not considered the external network interferences.

In this paper, we not only propose a new superframe structure to avoid the hidden terminal
problem in the network to enhance the reliability, but also design one channel access mechanism based
on the current buffer condition of the device to reduce the packet drop rates. In addition, one analytical
model is proposed to evaluate the performance in terms of throughput, delay, energy consumption
and reliability considering the presence of both WiFi and ZigBee devices in a system.

4. Proposed Methods

In order to reduce the collisions and packet drop rates in a star topology-based wireless network,
a new superframe structure and channel access mechanism are developed. Details of the network
model and proposed schemes are discussed as follows.

4.1. Network Model

Consider a star topology-based WSN for different IoT applications such as smart healthcare, smart
city and smart home, where all devices are connected to the network coordinator and follow the IEEE
802.15.4e superframe structure. It is assumed that the transmission range of the devices are equal to
their sensing range. The CSMA/CA mechanism of IEEE 802.15.4e MAC is the key component, which
allows the devices to access the channel uniformly. In our proposed model, all of the devices follow the
CSMA/CA mechanism during the CAP period to transmit the data/guarrented time slot(GTS)request
frames to the coordinator. Since power consumption is one of the major issues in WSNs, all devices go
for the power saving mode after data transmission. A device that accesses the channel during the CAP
period can defer transmission to a next superframe if the remaining slots are not enough.

4.2. Proposed Data Transmission Frame Structure

In this section, the structure of a new data frame is proposed, which can detect the hidden devices
attached to the coordinator in a star topology. The main concept of the hidden terminal problem is that
the carrier sensing range of a node is not large enough to detect the ongoing transmission. As per our
assumption, the carrier sensing range of one device is equal to its transmission range, and a device
cannot detect the ongoing transmissions by other devices due to the presence of obstacles. However,
in a star topology, all devices are present within the communication range of the PAN coordinator.
Hence, collision can occur only at the PAN coordinator for which the PAN coordinator does not
transmit the acknowledgment to the devices.

In WSN, when a packet is partially received, the information in the header can often be recovered
and is used to identify the transmitter of that corrupted packet through the capture effects [26]. Even if
the strength of two signals is the same, the radios of the sensor devices can detect and decode the
undamaged signals through this capture effect. This can be only possible if the header of the colliding
packet is not overlapped. Suppose two devices A and B are hidden from each other and device B
transmits its data when the transmission of device A is going on. Hence, collision occurs at the PAN
coordinator as their transmissions overlap fully or partially as shown in Figure 3. According to the
IEEE 802.15.4e standard, the data transmission frame contains the MAC header (MHR), MAC payload
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and MAC footer (FHR). As shown in Figure 3a, partial overlapping occurs when device B transmits
data after the MHR part of device A. The data frames overlap fully, when both devices A and B
transmit simultaneously as shown in Figure 3b. The PAN coordinator can recover the sender’s address
correctly from the partial frame; those are not overlapping with the subsequent frames after collision
occurs due to such hidden devices.

MHR MAC payload MFR 

MHR MAC payload MFR B 

A 

Time 

(a)

MHR MAC payload MFR 

MHR MAC payload MFR B 

A 

Time 

(b)

Figure 3. Overlapping of the data transmission frame due to the hidden terminal problem. (a) Partial
overlapping of the data transmission frame; (b) full overlapping of the data transmission frame.

For example, as shown in Figure 4a, the address of device A is recovered correctly [26] after
the collision with hidden device B. Then, the PAN coordinator allocates one GTS slot to the device A
in order to avoid subsequent hidden device collisions. However, in order to identify the other device
associated with the collision (here, device B), we propose to add a replica of the sender device address
in the rear part of the data frame as shown in Figure 5. This enables the PAN coordinator to correctly
recover the address of the second device associated with the collision (here, device B), as shown in
Figure 4b. In the sparse network, the probability that the second device has a collision with another
third device is less. However, if multiple collisions occur due to hidden nodes, then the first and last
device associated with the collision are correctly identified, and both devices are allotted GTS slots
for data transmission. This proposed method reduces the subsequent collisions in the network by
restricting the collided devices to go for further contention.

Collided portion 

backoff 

B 

A CCA1 CCA2 

t1 

DATA 2 ID 

backoff CCA1 CCA2 DATA 2 ID 

t0 

(a)

Figure 4. Cont.
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backoff 

B 

A CCA1 CCA2 

t1 

DATA 2 ID 

backoff CCA1 CCA2 DATA 2 ID 

t0 

ID 

ID 

Collided portion 

(b)

Figure 4. Address recovery during collisions due to hidden nodes. (a) Address of device Ais recovered
correctly; (b) the address of both devices A and B is recovered correctly.

Octets: 1/2 0/1 2 2 2 0/1/5/6/10/14 variable 2 2 

Frame 

control 

Sequence 

number 

PAN 

ID 

Source 

ID 

Destination 

ID 

Auxiliary  

Security 

Header 

Data 

payload 

Source 

ID 
FCS 

MHR MAC payload MFR 

Figure 5. The proposed data frame structure.

4.3. Proposed Superframe Structure

In the previous section, how to identify the hidden devices due to collision is discussed. It is to
be noted that the hidden devices are identified only when the collided frames overlap partially and
the PAN coordinator recovers the sender’s address correctly from those partially overlapped frames.
However, it may happen that the collided frames overlap fully when two nodes can have the same
backoff window, and therefore, the PAN coordinator cannot recover the sender address from those
fully-overlapped frames. To overcome this problem due to simultaneous transmission, we propose
here a newly-modified superframe structure.

As discussed in Section 2, the superframe structure contains the beacon, CAP, CFP and the inactive
part. In order to reduce the delay for retransmission and to increase the reliability, we interchange the
CFP and CAP parts and modify the inactive part of the superframe as shown in Figure 6. It is proposed
to use this inactive part of the superframe for failure devices to improve the reliability. We partition
the inactive part into a number of retransmission opportunities, and each of these retransmission
intervals is again subdivided into the notice, reserved and unreserved period. Hence, our proposed
superframe structure contains the beacon, CFP, CAP, notice, reserved and unreserved periods, which
are defined as follows.

• Beacon period: In this period, the PAN coordinator first broadcasts the beacon in
the network, and all associated devices synchronize with the PAN coordinator upon receiving
the beacon successfully.

• CFP period: In this period, devices allocated with GTS slots by the PAN coordinator can transmit
their data without any contention.

• CAP period: In this period, devices associated with the PAN coordinator compete with other
devices, and the winner device can transmit its data. However, collisions may occur during
this interval.

• Notice period: In this period, the PAN coordinator sends the acknowledgment to the devices
whose data packets are successfully received. Furthermore, it informs those devices whose
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addresses are correctly identified during the collisions due to hidden nodes and assigns the GTS
slots in the next coming reserved period.

• Reserved period: During this period, the coordinator provides a retransmission opportunity to the
GTS failure devices. Besides, the devices those are correctly identified during the CAP due to the
hidden terminal problem are assigned new GTS slots to transmit their data without contention.

• Unreserved period: In this period, the contended devices who have not received
the acknowledgment or have not been identified by the PAN coordinator can compete among
themselves to transmit their data.

Beacon Beacon 

Active part 

CAP CFP RT RT RT RT 

  Notice Reserved Unreserved 

Beacon interval 

Figure 6. Proposed superframe structure.

It is to be noted that both ZigBee and WiFi devices operate in the 2.4-GHz ISM band. The ZigBee
devices use narrow band channels as compared to the WiFi’s broadband spread spectrum channels.
There are 3 WiFi and 16 ZigBee channels each of 22 MHz and 2 MHz, respectively. The guard band
between any two ZigBee channel is 3 MHz. Hence, as shown in Figure 7, each WiFi device’s channel
overlaps with four consecutive ZigBee channels. The devices operating in those overlapping channels
experience interference from the WiFi devices.

ZigBee  Channels: 11~26  

WiFi  CH #1  WiFi  CH # 6   

11 12 13 14 15 16 17 18 19 20 21 22 

3 MHz 

22 MHz 2 z

23 24 25 26 CH :  

WiFi  CH # 11   

2 MHz 

22 MHz 22 MHz 

Figure 7. Channel overlapping between WiFi and ZigBee devices.

The Signal-to-Noise-plus-Interference Ratio (SNIR) is a quantity used to give theoretical upper
bounds on channel capacity in wireless communication. The SINR can be determined as in [27]:

SINR = 10log10(
Pr

Pn + Pi
) (1)
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where Pr, Pn, Pi are the actual power received from the desired signal, noise power and the interferer
power. The level of interferences depends on the interferer’s power, which is directly proportional
to the distance from the interferer devices. Hence, the close proximity of ZigBee and WiFi devices
in the overlapping channels from each other increases the interference levels. In order to avoid
the interference, we suggest if channel CHi (for example, ZigBee channel Number 11) is used
during the CAP period, then the channel CHi+4 (i.e., ZigBee Channel 15) should be used during
the retransmission period. The key features of our proposed superframe structure are that the
reserved and unreserved periods are used only for the transmission failure devices to access the
channel. Hence, the probability of collision and interference due to WiFi is reduced. The network
coordinator is aware of the collision or interference during the CAP period. Hence, it remains
active during the retransmission period. Otherwise, it goes for power saving mode. Therefore,
the use of our proposed superframe structure reduces the energy consumption, delay and increases
the reliability significantly.

4.4. New Channel Access Mechanism

Devices in WSNs follow the IEEE 802.15.4e standard channel access mechanism. In the existing
CSMA/CA, all devices have equal probabilities for accessing the channel irrespective of their buffer
status. However, it is more appropriate to allow the devices with higher buffer status to access
the channel first so that the packet drop rate of the devices can be reduced. Besides, the CSMA/CA
mechanism allows a limited contention window for which the probability of choosing the same
number of random backoff periods is high. Hence, to solve this contention problem and to give priority
to the devices having higher buffer status to access the channel, a new channel access mechanism
is proposed. The buffer status of the devices is used to update the contention window. Initially,
all devices have the same lower bound of the contention CWmin = 0 window based on the IEEE
802.15.4e standard. However, nodes can have different upper bounds based on their buffer status as
calculated in the following equation.

CWi = CWMAX ∗
Bi,Max − Bi,now

Bi,Max
(2)

where CWi, Bi,Max, Bi,now and CWMAX are the contention window, maximum buffer size, current buffer
size of i-th device and the upper bound of the contention window as in the IEEE 802.15.4e standard,
respectively. The IEEE 802.15.4 CSMA/CA mechanism proposes two times CCA to avoid the collision
due to acknowledgment. However, in the modified superframe structure as discussed in Section 4.3,
a separate time interval named the notice period is used for the purpose of acknowledgment. Hence,
in our proposed channel access mechanism, we use only one CCA, which helps to decrease the energy
consumption of the devices in the network. As given in Algorithm 1, let the i-th device attempt to
transmit data during the CAP of the superframe. Accordingly, it initializes the variables NB, CWi
and Rtrns. NB is the number of times the CSMA/CA mechanism requires the delay before attempting
the current transmission, which is initialized to “0” in each new transmission. CWi is the contention
window length of the i-th device. Rtrns is the number of retransmission attempts. The MAC layer waits
for a backoff period, i.e., a random backoff period (Rbck) = random(0, CWi) units. After the backoff
period is over, a device performs its CCA provided the remaining time (Rtime) in the allotted period
is sufficient to complete the transmission. Let the duration required to perform the CCA and data
transmission be Tcca and Tpkt, respectively.

Two cases may arise during the CCA, which could be either channel idle or busy. The tagged
device starts transmission if the channel is found idle. Otherwise, it goes for the random(0, Tpkt) sleep
period before the next attempt. The value of NB is incremented for each channel access failure up
to maxMacBackoff (NBmax). The packet is discarded, if the value of NB crosses the value NBmax

considering the channel access failure. Successful channel access does not guarantee the transmission
success. The transmission failure may occur due to collisions or interference from the WiFi channels.
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Upon successfully receiving the data packets or decoding the addresses of the collided devices,
the PAN coordinator sends the information during the notice period. It is to be noted that the upper
bound of retransmission attempts due to collision or channel error is MaxFrameRetries(MAXRtrns).
Each transmission failure increases the value of (Rtrns) by one. The packet is also discarded when
the value of Rtrns exceeds (MAXRtrns). Otherwise, the retransmission attempts by the collided devices
follow the same channel access mechanism as discussed earlier until they attain the maximum number
of channel access failures or retransmission failures.

Algorithm 1 The modified CSMA/CA mechanism

Require: NB = 0, Rtrns = 0, Tcca = 8 symbols, packet duration Tpkt;
Ensure: Transmission success/failure.

1: Listen to the channel;
2: if (Beacon not received) then
3: Wait for beacon;
4: else
5: CWi = CWMAX ∗

Bi,Max−Bi,now
Bi,Max

;
6: Rbck = random(0, CWi);
7: if (Rtime ≤ Rbck + Tcca + Tpkt) then
8: NB = NB + 1;
9: if (NB > NBmax) then

10: Stop due to channel access failure;
11: else
12: go to step 1;
13: end if
14: else
15: Access channel after Rbck duration;
16: if (channel busy) then
17: Switch to power saving mode for random(0, Tpkt) duration;
18: NB = NB + 1;
19: if (NB > NBmax) then
20: Stop due to channel access failure;
21: else
22: go to step 5;
23: end if
24: else
25: Start transmission and wait for ACK;
26: if (ACK is not received) then
27: Rtrns = Rtrns + 1;
28: if Rtrns ≤ MAXRtrns then
29: Wait for next retransmission period and go to step 5;
30: else
31: Stop due to transmission failure;
32: end if
33: end if
34: end if
35: end if
36: end if

Our proposed channel access mechanism uses only one CCA and gives priority to the devices
based on buffer status for which energy consumption and packet drop rate decreases significantly
in the network. Again, only the collided devices can contend during the subsequent retransmission
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periods in different channels, which reduces the contention collision and interferences for which
the reliability is increased significantly.

5. Analytical Models for the Proposed MAC

In this section, we design the Markov chain model as shown in Figure 8 to analyze the channel
access scheme during the contention period for the associated devices in the network. Based on
the notations given in Table 1, the analytical model is designed taking the unsaturated traffic condition.

Table 1. Notation table.

Notation Value

N Number of devices attached to PAN coordinator;
p1 Packet generation probability;
σ Unit backoff slot duration;
p2 Probability to defer transmission;
φ Probability of channel access for first time;
α Probability of channel busy during CCA;

Pb(ζ) Probability of bit error rate;
Ps Probability of transmission attempt successful;

Tcca Time duration for CCA;
Tpkt Average data packet transmission duration;

T
1-Ps

1/CWi

I

R

1/CWi

1/CWi

p1

1-p1

1 1 1

1 1 1

1 1 1

1-α

1-α

1-α

α

α

α

Ps

p2

p2

1-p2

p2

1-p2

1-p2
SNBmax,-1 SNBmax, 0

SNBmax, 1 SNBmax, 2
SNBmax, CWi -1

S1, CWi -1

S0, CWi -1S0, -1 S0, 0 S0, 1 S0, 2

S1, 2S1, 1S1, 0
S1,-1

Figure 8. Markov chain model for the proposed channel access mechanism.

Let N be the number of devices associated with a PAN coordinator in a smart home for data
communications. Let s(t) and c(t) represent the backoff stage for NB and backoff counter for CW at
time t, respectively for the stochastic processes as shown in Figure 8. Let,

Sj,k = lim
t→∞

P{s(t) = j, c(t) = k}

where k is the index of the backoff counter and k ∈ {−1, ..., CWi − 1}, while CWi is the contention
window for i-th device, j is the index of backoff stage and j ∈ {0, ..., NBmax}, while NBmax is the
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maximum number of allowable backoff stages. The state Sj,−1 represents the start of the channel access
at the j-th backoff stage, where j ∈ {0, ..., NBmax}. In our model, the states I, R, T stand for the idle
state, ready state and transmit state, respectively. Let, p1 be the probability that the device has a packet
to transmit. After generating the packet, a device goes to the ready state R, chooses a random backoff
and goes to the state S0,k, where k ∈ {0, 1, ..., CWi − 1}. The state Sj,k represents the backoff state.

Let α be the channel busy probability during the CCA and p2 be the transmission deferred
probability due to the current remaining time in the CAP period being insufficient to carry out the data
transmission. Whenever a device finds the channel idle during CCA, it enters into the transmission
state and tries to transmit packets. Let Ps be the probability of successful packet transmission.

We can derive the transition probabilities as follows based on the proposed Markov chain model
as given in Figure 8. A device after having a packet to transmit goes to the ready state, and
the corresponding transition probability from the initial state to the ready state is:

P{R|I} = p1. (3)

The device initially goes for the random backoff before accessing the channel and moves from
the ready state to the first time backoff state S0,k. The corresponding transition probability is deduced
as follows.

P{S0,k|R} =
1

CWi
f or 0 ≤ k ≤ CWi − 1. (4)

After reaching a backoff state, the backoff counter is decremented with probability one. The
corresponding transition probability is deduced as:

P{Sj,k|Sj,k+1} = 1 f or 0 ≤ j ≤ NBmax and 0 ≤ k ≤ CWi − 1. (5)

The tagged device reaches the channel sensing state provided the current remaining time in
the CAP period is sufficient to carry out the data transmission. The corresponding transition probability
can be derived as follows.

P{Sj,−1|Sj,0} = 1− p2 f or 0 ≤ j ≤ NBmax. (6)

However, the tagged device will go for the random backoff again, if the current remaining time
in the CAP period is insufficient to carry out the data transmission. The corresponding transition
probability can be derived as follows.

P{Sj+1,k|Sj,0} =
p2

CWi
f or 0 ≤ j ≤ NBmax and 0 ≤ k ≤ CWi − 1. (7)

The tagged device starts data transmission after the CCA is successful. The transition probability
for this case can be derived as follows.

P{T|Sj,−1} = 1− α f or 0 ≤ j ≤ NBmax. (8)

However, the tagged device will go for random backoff again, if the current CCA is failed.
The corresponding transition probability can be derived as follows.

P{Sj+1,k|Sj,−1} =
α

CWi
f or 0 ≤ j ≤ NBmax and 0 ≤ k ≤ CWi − 1. (9)

Once the device reaches the maximum backoff attempts for transmission, the device returns
back to the idle state no matter whether the transmission attempt is successful or failed. Hence, the
corresponding transition probability can be deduced as follows.

P{I|SNBmax ,0} = (p2 + (1− p2)α) + (1− p2)(1− α)Ps. (10)



Sensors 2017, 17, 1320 14 of 28

Considering these transition probabilities, the probability of a device at state Sj,k can be derived
as follows, where Sj,k is the stationary distribution of the Markov chain.

After the channel access failure in the current backoff state, the tagged device enters into the next
backoff state, and the probability for the corresponding state is:

Sj,k =
CWi − k

CWi
[Sj−1,0{p2 + (1− p2)α)}]; f or 1 ≤ j ≤ NBmax and 0 ≤ k ≤ CWi − 1. (11)

Once the device finds the channel idle during the CCA without attaining the retry limits, it will
enter into the initial backoff state, and the corresponding state probability can be deduced as:

S0,k =
CWi − k

CWi
[{

NBmax

∑
j=0

Sj,0}(1− p2)(1− α){(1− PS) + PS p1}

+SNBmax ,0(p2 + (1− p2)αp1]; 0 ≤ k ≤ CWi − 1.

(12)

Normally, a device defers to data transmission if the remaining time in the contention period
is insufficient to complete the transmission, and we can derive the corresponding state probability
as follows.

Sj,−1 = (1− p2)Sj,0; f or 0 ≤ j ≤ NBmax. (13)

The tagged device starts transmission after the channel access is successful during the j-th backoff
state. Hence, the probability for the corresponding state can be deduced as follows.

T = (1− α)Sj,−1; f or 0 ≤ j ≤ NBmax. (14)

A device enters into the idle state after completion of the data transmission or has no new packet
to transmit, and the corresponding state probability is deduced as:

I =
1
p1

(PsT + (p2 + (1− p2)(1− α))SNBmax ,0). (15)

A device enters into the ready state whenever it has a new packet or needs to retransmit the failed
packet. Hence, the corresponding state probability can be derived as follows.

R = (1− Ps)T + p1 I. (16)

The sum of the probabilities of all states should be equal to one based on the rule of the probability
for which we can get the following equation.

I + R +
NBmax

∑
j=0

CWi−1

∑
i=0

Sj,i +
NBmax

∑
j=1

Sj,−1 + T = 1 (17)

We can deduce the probabilities of all states by solving these equations. The probability for
a device that attempts the CCA for the first time can be calculated as follows.

φ =
NBmax

∑
j=0

Sj,0(1− p2). (18)

6. Performance Analysis

The bit error rate probability Pb(ζ) for IEEE 802.15.4 can be calculated [1] as given in
the following equation.

Pb(ζ) =
8

15
1
16

16

∑
k=2

(−1)k
(

16
k

)
e20ζ( 1

k−1) (19)
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where ζ is the SINR. Let, p1 be the probability for a device having a packet for the transmission and
α be the probability that the channel is found busy during CCA due to data transmission by other
ZigBee devices or WiFi devices available in a smart home. Let, λw be the Poisson packet arrival rates
for WiFi devices. Therefore, the channel found busy during CCA duration (Tcca) by the ZigBee device
due to WiFi transmission is 1− e−Tccaλw . Similarly, a ZigBee device found busy due to transmission of
any other ZigBee device in the network is LD(1− (1− φ)N−1)(1− α)e−Tccaλw , where LD is the packet
length and N is the number of contending ZigBee devices. Therefore, the probability of finding the
channel busy during CCA is given as follows.

α = 1− (1− LD(1− (1− φ)N−1)(1− α))e−Tccaλw (20)

When the channel access is failed or the current remaining duration in the contention period
is insufficient for the transmission, the ZigBee device decides to go for the next backoff. Hence,
the probability of going for the next backoff is:

Pbacko f f = p2 + (1− p2)α. (21)

6.1. Reliability

A transmission is always successful when exactly one ZigBee device transmits without any
channel error or collision. The packet error depends on the bit error rate and the packet length.
Let, LData be the length of the data packet in bits, N be the number of ZigBee devices and Tpkt
be the ZigBee packet duration. A transmission will be successful if the ZigBee device receives
the acknowledgment packet corresponding to its transmitted packet. The coordinator sends
the acknowledgment packet, if exactly one ZigBee device transmits without any channel error and
no WiFi device starts transmission during the ongoing ZigBee transmission. Hence, the successful
transmission probability for a ZigBee device is:

Ps =
Nφ(1− φ)N−1

(1− (1− φ)N)
(1− Pb(ζ))

LData e−Tpktλw . (22)

The packet is dropped mainly due to retry limits or channel access failure. The channel access
failure occurs when the tagged ZigBee device does not find any channel ideal during maxMacBacko f f
number of backoffs. Considering the Markov chain model presented in Figure 8, the probability
of channel access failure can be derived as follows.

Pc f = {p2 + (1− p2)α}bm,0. (23)

In our proposed modified superframe, separate durations are allotted for collided devices, i.e.,
only failure devices contend during those periods. Let Psj be the probability of successful transmission
by a ZigBee device in the j-th allocated retransmission duration of the proposed modified superframe.
If the expected number of ZigBee devices that contend in the j-th retransmission period is Nj, then:

Psj =
Njφ(1− φ)Nj−1

(1− (1− φ)Nj)
(1− Pb(ζ))

LData e−Tpktλw . (24)

Let us assume that maxFrameRetries = r. Hence, the probability of transmission failure during
all r attempts is:

Pt f =
r

∏
j=1

(1− Psj) (25)

It is assumed that the generated data packets are first buffered by each device and then are
transmitted to the coordinator. However, the ZigBee device has buffer constraints. Let the data arrival
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rate of the ZigBee devices be λz, the service rate be µz and the buffer maximum be l number of packets.
Hence, the device can calculate its utilization rate, which is ρz = λz

µz
. Let Pb f be the probability that

the buffer of the ZigBee device is full, i.e., there are l number of packets in the buffer of the ZigBee
device. Hence, the newly-generated packet will be discarded due to full buffer being:

Pb f =
ρl

z

∑l
i=0 ρi

z
(26)

Furthermore, the reliability can be deduced as follows.

PR = (1− Pc f )(1− Pt f )(1− Pb f ) (27)

6.2. Throughput

Let S be the normalized throughput of a ZigBee device. The ratio of average time occupied
by the successful transmission information to the interval between two consecutive transmissions
is known as normalized throughput. The channel is sensed as busy, if there is at least one ZigBee
device sending packets. Let Ptrj be the probability that there is at least one transmission during the j-th
time transmission. Again, there are Nj ZigBee devices attached to the coordinator during j-th time
transmission, and φ is the probability that a ZigBee device attempts carrier sensing for the first time
for transmission. Hence,

Ptrj = (1− (1− φ)Nj)(1− α) (28)

Therefore, the normalized throughput of a ZigBee device during the j-th time transmission is:

Sj =
Ptrj Psj LD

(1− Ptrj)σ + Ptrj Psj Ts + Ptrj(1− Psj)Tc
(29)

where Ts is the average time for successful transmission and Tc is the average time that the channel is
occupied due to collision. Let LD be the time of the payload and σ be the duration for a unit backoff
slot. Since acknowledgment is transmitted separately in the notice period in our proposed superframe,
the durations of these Ts and Tc are equal and are calculated as:

Ts = Tc = Tcca + σ + Tpkt (30)

where Tcca, Tpkt and σ are the time duration for performing CCA, for transmitting the data and the
duration of one backoff slot, respectively. Hence, the average normalized throughput of a ZigBee
device is:

S =

r
∑

j=0
Sj

r

(31)

6.3. Delay

The network delay is defined as the total time taken for the information to travel from the source
device to the destination device. It is to be noted that in our proposed modified superframe
transmission, failure devices use separate retransmission period. Let Dj be the delay that the packet is
transmitted successfully at time j + 1. Then,

Dj = Ts + jTR +
j

∑
i=0

Db (32)

where Db is the delay that the ZigBee device found the channel idle during maxMacBacko f f number
of backoffs, Ts is the average time of successful transmission and TR is the allocated retransmission
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duration due to transmission failure. Let Bk be the event that the channel access is successfully
at the (k + 1)-th time provided the channel access is failed for k-th times. Let B be the event that
the channel access is successful within maxMacBacko f f . Hence, the expected delay for backoff during
one transmission attempt is:

Db =
m

∑
k=0

k
Pk

backo f f (1− Pbacko f f )

1− Pm+1
backo f f

(
CWi − 1

2
) (33)

A device has to wait until the next superframe starts, if the packet is generated outside of
the contention period. The packet arrival of ZigBee devices is assumed to follow the Poisson
distribution with average packet arrival rate λz. Then, the waiting time is:

Wtime =
∫ BI

0
(BI − x)λze−λzxdx. (34)

Propagation delay Pdelay is the amount of time it takes for one bit to travel through a one-hop
destination. Let Ej be the event that the packet is transmitted successfully at time j + 1 provided
the packet has been failed for j times. Let E be the event that the packet is transmitted successfully
within maxFrameRetries. Considering the maxFrameRetries = r, the conditional probability can be
derived as follows.

Pr(Ej/E) =
Psj+1

j
∏

k=1
(1− Psk )

1−
r

∏
k=1

(1− Psk )
. (35)

Hence, the delay can be derived as follows.

D =
r

∑
j=0

Pr(Ej/E)Dj + Wtime + Pdelay. (36)

6.4. Energy

In this section, we analyze the energy consumption of the ZigBee devices in smart home
applications. Here, the energy consumption is defined as the average energy consumption by a ZigBee
device to successfully transmit one slot amount of data. Let us consider Prx and Ptx to be the energy
consumption to receive and to transmit a packet, respectively. ZigBee devices are assumed to be
in the power saving state during the backoff procedure. Taking Tpkt, TA, Tcca as the time duration
of transmitting a packet, receiving an acknowledgment and CCA duration, respectively, the average
energy consumption per device can be analyzed as follows.

E =
αTccaPrx + (1− α){(1− Ps)Ec + PsEs}

(1− α)PsTpkt
(37)

where Es is the energy consumption of successful transmission and Ec is energy consumption due to
collision, which can be calculated as:

Es = TccaPrx + TpktPtx + TAPrx

Ec = TccaPrx + TpktPtx

}
(38)

7. Performance Evaluation

In this section, our proposed models are evaluated and validated by using the OMNeT++ [28]
simulator. We conduct the simulation to compare the performance of our proposed scheme with IEEE
802.15.4e. For the simulation, we consider the star topology and devices are located randomly in
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the area of 30 × 20 m2 with the PAN coordinator at the center. Again, we compare our work with
the IEEE 802.15.4e standard for channel access failure, throughput, reliability, average MAC delay,
energy consumption and packet drop rate over the Poisson arrival rate. We validate and compare
our proposed mechanisms with the IEEE 802.15.4e standard. According to the standard, simulation
parameters are set as shown in Table 2. Each simulation is performed for 50 rounds, and the results are
produced by taking the average of those 50 rounds.

Table 2. Simulation parameters.

Notation Value

Radio band 2.4 GHz
Data rate 250 kbps

Carrier sensing sensitivity −85 dBm
Communication channel number 11

Beacon interval 15.6× 25 ms
Superframe duration 15.6× 23 ms
Unit backoff duration 20 symbols

PHY overhead 6 bytes
MAC overhead 3 bytes

Transmission energy consumption 9.1 mA
Receiving energy consumption 5.9 mA

Turnaround energy consumption 7.5 mA

As shown in Figure 9, the number of devices are taken along the X axis, and the corresponding
channel access failure probability is obtained as shown along the Y axis. It is observed that the channel
access failure probability increases as the number of devices attached to a coordinator increases.
However, the channel access failure following our schemes during the retransmission is negligible.
In our simulation, it is considered that all devices can assess the channel during the contention
access period, i.e., in the transmission period of the superframe. However, the devices that fail to
assess the channel during this transmission period can access the channel during the newly-allocated
retransmission period. As shown in Figure 10, when our work is compared with the IEEE 802.15.4e
scheme, it is found that the channel access failure probability of our work is significantly less during
both the transmission and retransmission period. Again, as shown in Figure 9, it is observed that our
simulation result matches the analytical one.

The throughput corresponding to different numbers of devices is depicted in Figure 11, and it
is observed that the throughput decreases as the number of devices attached to a PAN coordinator
increases irrespective of their packet arrival rate. When the packet arrival rate is one packet per second
and five devices are attached to the coordinator, the normalized throughput is 0.46. It is observed that
the throughput of our work is higher during both transmission and retransmission, which is reflected
in Figure 12, when we compare our work with the IEEE 802.15.4e standard.



Sensors 2017, 17, 1320 19 of 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40 45 50

C
h

a
n

n
e

l 
a

c
c
e

s
s
 f

a
il

u
re

 

Number of devices 

  1 packet/second  (Analytical transmission)

  1 packet/second  (Simulation transmission)

  1 packet/second  (Analytical retransmission)

  1 packet/second  (Simulation retransmission)

Figure 9. Validation of our proposed scheme for channel access failure for different numbers of devices.
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Figure 10. Comparison of channel access failure for different numbers of devices.
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Figure 11. Validation of the throughput of our proposed scheme for different numbers of devices.
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Figure 12. Comparison of the throughput of our proposed scheme with the IEEE 802.15.4e standard.

Figure 13 compares the reliability of data transmission with respect to different numbers of devices.
When we consider the packet arrival rate as one packet per second, it is observed that the reliability
decreases, along with the number of devices attached to a PAN coordinator increases. From Figure 14,
it is observed that the reliability of our work is higher than the IEEE 802.15.4e scheme, and the
simulation results of our scheme match with the analytical one.
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Figure 13. Validation of the reliability of our proposed scheme for different numbers of devices.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
e

li
a

b
il

ty
 

Packet arrival rate per second 

    Proposed  scheme (during transmission)

    Proposed  scheme ( during retransmission)

    802.15.4e Standard

Figure 14. Comparison of the reliability of our proposed scheme with the IEEE 802.15.4e standard.

As shown in Figure 15, the number of devices is taken along the X axis, and the corresponding
delay is obtained as shown along the Y axis. It is observed that the delay increases slowly as the
number of devices increases when we consider the packet rate as one packet per second. When the data
payload is 100 bytes and five devices are considered, the delay is nearly 0.056 s during the transmission
and 0.059 s during retransmission, if the packet arrival rate is one packet per second. From Figure 16,
it is also observed that the packet transmission delay in our work is significantly less as compared
to the IEEE 802.15.4e scheme for different arrival rates, and our simulation result coincides with the
analytical one.
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Figure 15. Validation of delay of our proposed scheme for different numbers of devices.
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Figure 16. Comparison of the delay of our proposed scheme with the IEEE 802.15.4e standard.

Figure 17 shows the packet drop rate with the variable number of devices. It is observed that
the packet drop rate increases as the of number of devices increases considering one packet per second.
When the data payload is 100 bytes and five devices are considered, the packet drop rate is nearly
0.22 during the transmission. However, the packet drop rate is negligible during the retransmission.
As shown in Figure 18, the packet drop rate of our work is significantly less as compared to the IEEE
802.15.4e scheme.
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Figure 17. Validation of the packet drop rate of our proposed scheme for different numbers of devices.
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Figure 18. Comparison of the packet drop of our proposed scheme with the IEEE 802.15.4e standard.

The energy consumption in joules/byte with different numbers of devices when one packet
per second arrives at a device is shown in Figure 19. The energy consumption increases as
the number device increases. When we consider only five devices and the data payload is 100 bytes,
the average energy consumption for successful packet transmission is nearly 2.38466× 10−5 Joule
during the transmission and 1.81308× 10−5 Joule during the retransmission. The energy consumption
of our work is significantly less than the IEEE 802.15.4e scheme and is shown in Figure 20. We achieve
this improved result through our proposed separate retransmission period and single CCA operation
rather than two times consecutive CCA operations as suggested in the IEEE 802.15.4e standard and by
allowing only collided devices to contend during the retransmission period.
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Figure 19. Validation of the energy consumption of our proposed scheme for different numbers
of devices.
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Figure 20. Comparison of the energy consumption of our proposed scheme with the IEEE
802.15.4e standard.

As shown in Figure 21, the number of devices is taken along the X axis, and the corresponding
energy consumption in joules is obtained as given along the Y axis. It is observed that the energy
consumption increases as the numbers of devices attached to a coordinator increase. However, the
energy consumption in our schemes is significantly less for different interference levels of WiFi as
compared to the IEEE 802.15.4e. Figure 22 shows the delay with a variable number of devices under
WiFi interferences. It is observed that the delay increases as the numbers of devices increase considering
one packet per second. However, the delay of our mechanism is significantly less as compared to the
IEEE 802.15.4e scheme.
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Figure 21. Comparison of the energy consumption of our proposed scheme with the IEEE 802.15.4e
standard under different WiFi interference levels.
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Figure 22. Comparison of the delay of our scheme with the IEEE 802.15.4e standard under different
WiFi interference levels.

Figure 23 compares the reliability of data transmission with respect to different numbers of devices
under WiFi interferences. It is observed that the reliability of our work is significantly higher than
the IEEE 802.15.4e scheme. The throughput corresponding to different numbers of devices is depicted
in Figure 24, and it is observed that the throughput decreases as the number of devices attached to
a PAN coordinator increases irrespective of the interference level. It is observed that the throughput of
our work is marginally higher than the IEEE 802.15.4e scheme.
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Figure 23. Comparison of the reliability of our proposed scheme with the IEEE 802.15.4e standard
under different WiFi interference levels.
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Figure 24. Comparison of the throughput of our proposed scheme with the IEEE 802.15.4e standard
under different WiFi interference levels.

8. Conclusions

In this paper, a newly-designed superframe structure is proposed for the IEEE 802.15.4e-enabled
sensor nodes, where dynamic allocation is made for the transmission failure devices to increase
the reliability and reduce the delay. A new data frame structure is proposed to identify the devices
due to collision in the hidden terminal problem. A new channel access mechanism is designed
based on the current buffer status of the devices, which reduces the packet drop rates and enhances
the throughput. Analytical models are developed to study the performance metrics of the network
such as reliability, throughput and delay. Our proposed method increases the reliability, throughput
and delay significantly of the collided packets. The results obtained from the analytical model
and simulation indicate that our mechanisms can improve the performance of the network even
if in hidden terminal problems. Hence, our performance analysis models and mechanisms can be
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implemented in wireless sensor networks for smart home applications, where latency and reliability
are the major requirements.
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