
LVRM: On the Design of Efficient Link Based
Virtual Resource Management Algorithm for

Cloud Platforms
Prasan Kumar Sahoo , Senior Member, IEEE,

Chinmaya Kumar Dehury , and Bharadwaj Veeravalli , Senior Member, IEEE

Abstract—Virtualization technology boosts up traditional computing concept to cloud computing by introducing Virtual Machines (VMs)

over the Physical Machines (PMs), which enables the cloud service providers to share the limited computing and network resources

among multiple users. Virtual resource mapping can be defined as the process of embedding multiple VMs and their network resource

demand onto multiple inter-connected PMs. The existing mechanisms of resource mapping need to be efficient enough to minimize the

number of PMs without compromising the deadline of the tasks assigned to the VMs, which is NP-hard. To deal with this problem, a

Link based Virtual Resource Management (LVRM) algorithm is designed to map the VMs onto PMs based on the available and

required resources of the PMs and VMs, respectively. The designed algorithm exploits the fact that the demanded network bandwidth

among VMs should be given higher priority while allocating the physical resources to the inter-connected virtual machines as

insufficient network bandwidth may detain the task execution. The proposed algorithm is evaluated by a discrete event simulator and is

compared with similar virtual network embedded algorithms. Simulation results show that LVRM can outperform over other network

embedded algorithms.

Index Terms—Resource mapping, VM placement, graph theory

Ç

1 INTRODUCTION

THE new paradigm of traditional computing convention
of stand-alone personal computer has been extended to

cloud computing over past few years. This facilitates the
tenants to avail the computing infrastructure as per require-
ment and enables the pay-as-you-go feature of the cloud
computing model. In other words, the available pools of
computing resources in a data center are given to the ten-
ants as public utility services [1]. For this, different service
models are introduced to suit the tenants’ requirement such
as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) by using Virtualiza-
tion technology.

Unlike conventional stand-alone personal computers,
where single operating system can run atop single physical

machine (PM), with virtualization features users can run
multiple instances of different operating systems (OS)
inside a virtual machine (VM) at single point of time in
cloud computing [2]. Therefore, the incoming user pro-
grams always can run in a VM. Users, also known as cloud
consumers, may request for different sets of resources,
which typically include CPU, memory, storage, and net-
work bandwidth [3].

On the other hand, from the service provider’s point of
view, a data center consists of hundreds or thousands inter-
connected physical resources such as servers and switches.
For efficient utilization of resources, virtualization is the
emerging technology that helps the service provider for
dynamic provisioning, configuration, and reconfiguration
of physical resources [4]. On the other hand, this virtualiza-
tion technique also allows the users to change their
demands over time by reconfiguring the VMs.

The complexity of the physical resources management
and their utilization increases exponentially with the
increase in number of interconnected physical servers and
number of end-users as the end-users submit their resource
demand in terms of multiple interconnected VMs. When the
number of end-users increases, multiple VMs are needed to
be created on single or multiple PMs to fulfill the user’s
demand. The responsibility of CSP is also to establish the
physical path between corresponding PMs in order to enable
the VMs to communicate. The problem of allocating the vir-
tual resource to the available physical computing resource
and the networking resource is referred to virtual resource
allocation problem, which is ourmain focus in this paper.

� P.K. Sahoo is with the Department of Computer Science and Information
Engineering, Chang Gung University, Guishan 333, Taiwan and with the
Department of Cardiology, Chang Gung Memorial Hospital, Linkou
33305, Taiwan. E-mail: pksahoo@mail.cgu.edu.tw.

� C.K. Dehury is with the Department of Computer Science and Information
Engineering, Chang Gung University, Guishan 333, Taiwan.
E-mail: D0321009@stmail.cgu.edu.tw.

� B. Veeravalli is with the Department of Electrical and Computer Engineer-
ing, National University of Singapore, Singapore 119077.
E-mail: elebv@nus.edu.sg.

Manuscript received 23 Apr. 2017; revised 26 Sept. 2017; accepted 13 Nov.
2017. Date of publication 7 Dec. 2017; date of current version 9 Mar. 2018.
(Corresponding author: Chinmaya Kumar Dehury.)
Recommended for acceptance by X. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2780844

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018 887

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
mailto:
mailto:
mailto:

In general, the major challenge in the process of alloca-
tion of physical resources to the VMs is to minimize the
number of PMs for all VMs. In data intensive distributed
applications the traffic flow among the VMs is very high, as
huge amount of data are transferred among multiple serv-
ers. For such network driven applications network resour-
ces are given higher priority over the server resources as
insufficient network bandwidth may delay the data transfer
and therefore the dependent tasks cannot be executed.
Moreover, minimizing the number of PMs can lower down
the power consumption. On the contrary, this may create
problems, such as higher job execution time and SLAs viola-
tion due to lack of sufficient resources for VMs.

The incoming jobs from the users normally consist of
smaller number of independent or dependent tasks. The
dependent or interconnected tasks are represented in the
form of graphs and are called as task trees or task graphs.
The produced task graph, also known as the task depen-
dency graph, is further analyzed by employing the basic
principles to determine the required number of VMs and
the communication characteristics among them. After deri-
vation of the VMs, they are configured in such a way that
the assignment of tasks onto VMs will not suffer from any
delay caused by insufficient virtual resources.

Considering the IaaS model provided by the cloud ser-
vice provider, available shared interconnected physical
servers, and their network topology, we will be focusing on
the problem of virtual resource allocation, where a set of
interconnected VMs are mapped onto a set of intercon-
nected PMs. Specifically, we are studying an efficient place-
ment of requested virtual resources onto physical resources
by minimizing the number of PMs.

1.1 Motivation

The main assets of the cloud computing are the huge
amount of physical resources such as memory, storage, and
computing capacity. Further, the major challenges for cloud
service provider are to manage those huge resources and
allocate them to cloud consumers. While allocating the
physical resources, the service provider needs to consider

different factors such as geographical distance of the PMs,
capacity of the PMs etc. Inefficient allocation leads to wast-
age of resources, more power consumption, less revenue,
and low QoS. Based on different research reports discussed
in Section 2, computing resources such as CPU, memory,
and storage are given higher priority as compared to the
network resources in most of the allocation strategies. It is
also observed that the resource allocation strategies vary
from the applications points of view. For example, as shown
in Fig. 1, let us assume that a user sends the request for cre-
ating three virtual machines as VM1, VM2, and VM3 with
their resource requirement of 10, 20, and 15 units, respec-
tively. Let, 8 units of network bandwidth be required for the
information exchange between VM1 and VM2 and 10 units
of network bandwidth be required between the VM1 and
VM3. Let, 4 PMs be available with the cloud service pro-
vider, PM1 through PM4 with limited computing resources
and network bandwidth among the PMs.

The available resources in those four PMs can be allocated
to three requested virtual machines in different ways such as
solution 1 and solution 2 as depicted in Fig. 1. The requested
computing resources are given maximum priority and are
mapped followed by the mapping of virtual links in solution
1 and therefore the available resources in PM1, PM4; and PM3

are allocated to the virtual machines VM1, VM2; and VM3,
respectively. However, the demanded network bandwidth
among VMs are given higher priority and are mapped fol-
lowed by the mapping of the requested computing resource
in solution 2 and as a result, virtual machine VM1, VM2; and
VM3 are created in physical machines PM4, PM3; and PM2,
respectively. By comparing both solutions, the major problem
in Solution 1 is that due to the insufficient network bandwidth
between PM1 and PM3 may affect the performance of the jobs
running in virtual machines VM1 and VM3 though the
demanded computing resources are prioritized and fulfilled
by the physical machines. In such scenario, the main problem
occurs when the traffic flow within the application is very
high. Generally, the VMs require huge amount of data from
different data servers in data intensive applications. Transfer-
ring massive data among servers require very high network
bandwidth. Further, some distributed applications that
require huge number of computing nodes also require very
high network bandwidth.

For better understanding, let us consider an example of
gaming application that runs in the cloud environment. Let
each VM be responsible for hosting the single user. In this
scenario, multiple VMs hosting multiple users interact with
each other with higher network bandwidth demand. While
placing the VMs onto multiple physical servers, it is highly
essential to ensure that the network bandwidth demand of
each VM is fulfilled. The network demand of VMs can be
fulfilled by mapping the virtual links in two different ways.
First, the virtual link is mapped to the single substrate link
and second, the virtual link is mapped to a set of substrate
links forming a substrate path, where multiple nodes are
involved. In the latter solution, the network latency between
two VMs at both ends of the path is high as multiple nodes
are involved in a substrate path. Higher network latency
affects the execution time even when the requirement on
computing resources is fulfilled [5]. In case of an application
that demands both network and computing resources, the

Fig. 1. An example of different mapping solutions.

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

execution time will be adversely affected even if one of the
resource demands is not met. In contrast, inefficient map-
ping of the virtual links will affect the execution time even if
enough computation resources are provided. This motivates
us to think a novel methodology to allocate the physical
resources to the virtual machines in such a way that the allo-
cation result is efficient for the both cloud provider and con-
sumer in terms of better utilization of physical resources
and QoS, respectively.

1.2 Goals

Based on our aforementioned motivation, the main goals of
our work can be summarized as follows.

� Design an efficient link based virtual resource man-
agement algorithm to maximize the resource utiliza-
tion by considering different network and physical
resource related parameters.

� Minimize the number of physical machines involved
that leads to the minimization of the servers’ power
consumption and complete processing of the jobs on
or before the deadline.

� Minimize the total hopping cost, which indicates that
for each virtual edge the corresponding mapped
PMs have direct link.

Rest of the paper is organized as follows. Brief summary
of some related works on virtual resource mapping and
motivations behind our proposed work are presented in
Section 2. Graph representation of tasks and description
about the required VMs and available PMs are presented in
Section 3. The virtual resource mapping problem is formu-
lated in Section 4. Our proposed link based virtual resource
management algorithm is described in Section 5. Perfor-
mance evaluation of the proposed algorithm is done in
Section 6 and concluding remarks are made in Section 7.

2 RELATED WORKS

In the last few years, substantial attention is given towards the
development of several VM placement algorithms consider-
ing the cloud service providers’ objectives and different
parameters such as available bandwidth, network latency,
geographical distribution, cost of energy consumption,
requested, and available computing resources [4], [6]. The
objectives of the cloud service providers include to provide
quality of service, generating more revenue from limited
physical resources, satisfying the service level agreements etc.
Few researchers have considered the VM placement problem
as a Virtual Network Embedding (VNE) problem and have
formulated the VNE problem asMixed Integer Programming
(MIP) problem [4], [7]. Authors in [4] have considered the
hard and soft QoSwhile allocating the requested computation
resources. Their objectives are tominimize the total amount of
different types of allocated physical resources and to mini-
mize the overall number of hops for a virtual link.

Authors in [8], [9], address the VNE problem as multi-
objective linear programming problem in virtualized cloud
data centers with the goal to maximize the revenue and mini-
mize the embedding cost. However, mapping of node fol-
lowed by the virtual links may also lead to the physical
resource fragmentation and may not be able to minimize
the embedding cost. Considering the Fat-Tree data center

topology, authors in [10] propose multiple virtual network
(VN) placement algorithms, which can guarantee the demand
of the incoming tasks. However, it is not clear how the virtual
network consisting of virtualmachines and virtual switches is
derived. Furthermore, mapping of VMs before the virtual
linksmay suffer from the fact that the required network band-
width may not be guaranteed by the proposed mechanisms.
Similarly, in the proposedVNE algorithm in [11], it is not clear
as to which resource type should be mapped first and there-
fore itmay yield inefficient result.

Considering inter-VM communication, authors in [12]
have proposed the VM placement techniques in modular
data center environment. Though multiple VMs are mapped
onto single PM to reduce the communication cost, the pro-
posed model may turn into time-consuming mapping algo-
rithm due to dynamic workload of the VMs. Authors in [13],
[14] propose a novel mechanism to embed the requested vir-
tual network onto the physical network. The virtual network
requests are selected periodically through an auction mecha-
nism. Such model may not be able to maintain the fairness
among the users. The model in [13] does not monitor the
round trip time of physical links as a result of which higher
round trip time may lead to low data transfer rate among the
corresponding tasks.

With the goal to maximize the acceptance ratio, authors in
[5] have considered the federated cloud environment for
mapping multiple VM clusters. The geographical distance
among the cloud providers increases the data transfer time
among the mapped VMs and therefore the execution time
increases. Authors in [15] have extended the VNE problem by
assigning priority class to each virtual link in a request. How-
ever, it cannot minimize the total amount of required network
resource as it does not map multiple VMs from one request
onto single physical machine. Authors in [16] propose a new
path algebraic strategy to map both virtual nodes and virtual
links at the same time with the goal to optimize the revenue
and acceptance ratio. However, the proposed mechanism
consumes more time due to the link mapping strategy. The
time slot based resource allocation mechanism presented in
[7] may not produce efficientmapping solution, where a large
number of VMs aremapped to a single PM.

Different VM scheduling algorithms that are proposed in
[17], [18] minimizes the server energy cost by minimizing the
number of active physical servers and network elements.
However, the algorithm in [17] avoids the opportunity to
embed multiple virtual machines those belong to single
virtual network requests onto a single physical machine.
Authors in [18] address VM assignment problem with the
objective to minimize the power consumption without con-
sidering the power consumption of physical edge. Similarly,
the resource allocation model proposed in [19] avoids the
effect of inter-VM communication, which increases the data
transfer delay.

Considering cloud gaming application, the model in [6]
gives more priority to the network latency of the servers
resulting imbalance workload among physical servers. Sim-
ilarly, considering multi-tenant IaaS clouds, the resource
sharing mechanism presented in [20] provides a set of VMs
to a group of buyer based on the priority. This does not con-
sider available network bandwidth as an important parame-
ter to execute the dependent tasks. Authors in [21] propose

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 889

bandwidth sharing and pricing policies that can provide
incentives to users and revenue to the CSP by assigning dif-
ferent pricing values to the congested and non-congested
links. Authors in [22] propose heuristic virtual resource
mapping algorithm to evaluate and detect VM threats and
vulnerability. However, the proposed mechanisms do not
exploit the opportunity to allocate or map multiple VMs
onto single PM in order to produce efficient result in terms
of server utilization and acceptance rate.

A number of approaches related to virtual resource man-
agement have been proposed considering multiple factors
such as power consumption, revenue optimization, and
application specific resource allocation. Though the studies
in the current literature achieve their respective goals, to the
best of our knowledge none of the studies propose a
resource management mechanism, which can minimize the
required amount of physical resources and minimize the
total hopping cost by taking the advantages of mapping
multiple VMs onto single PM.

3 GRAPHICAL REPRESENTATION

In this section, we adopt the graph theory to represent the
physical resources as logical graphs. We have considered the
scenario where jobs arrive from the cloud consumer and are
analyzed by a third party analyzer to produce the correspond-
ing task graphs and eventually the corresponding VM-
graphs. While generating the VM-graph, the number of VMs
should be minimized. It is assumed that the VMs are hetero-
geneous and the available physical servers are configured
with non-uniform amount of resources, i.e., heterogeneous
servers. It is also assumed that the common oversubscription
of the cloud resource is not allowed as this may lead to
dynamic PM overload, which requires a dedicated mecha-
nism to handle. The available physical servers and communi-
cation between them are represented as PM-graphs. The
detailed description of the task graph, corresponding VM-
graph, and the available PM-graph are given below.

3.1 Task Graph

It is assumed that the incoming jobs consist of a large num-
ber of small size tasks. Based on the communication depen-
dencies among those tasks and their resource requirements,
the incoming jobs are analyzed to produce the task graph.
Complex scientific and multimedia applications are repre-
sented by directed acyclic graph, where a vertex or node
represents a single task and an edge between two vertices
represent the communication between them [23]. An edge
from vertex i to vertex j represents the dependency of ver-
tex j on vertex i. In other words, the task represented by the
vertex j can start only after the execution of the task repre-
sented by the vertex i [24]. Hence, a task graph is also called
the directed acyclic graph (DAG) and henceforth the term
DAG is used instead of task graph. It is to be noted that the
tasks are of block types, which indicate that a task should
receive all inputs in order to start its execution. The stream
type tasks are beyond the scope of this paper.

3.2 VM-Graph

Virtual Machine graph (VM-graph) is derived from the task
graph or DAG. The VM-graph indicates the number of virtual

machines that are required to finish the job before the dead-
line. The number of virtual machines needed is decided by
the degree of parallelism in DAG. Along with this, VM-graph
also reveals the communication between tasks/vertices in
DAG. A vertex in VM-graph represents a VM and an edge
between two vertices represents the data flow between two
virtual machines. The derived VM-graph acts as a bridge
between the actually submitted jobs and physical servers.

3.3 Derivation of VM-Graph from Task Graph

The task graph is associatedwithmultiple parameters such as
the computation and network resource requirements. Each
taskmay also comewith specific hard or soft deadline. Hence,
we propose here how to derive the VM-graph from the Task-
graph. In order to illustrate the derivation, an example of the
task graph consisting of eleven tasks is presented in Fig. 2a.
The task graph is presented in the form of directed acyclic
graph. As discussed in Section 3.1, the tasks are assumed to be
block types, which infers that a task can start its execution
only after receiving all the required inputs from other tasks.
In other words, the child tasks cannot start their execution
before completion of the execution of the parent tasks. For
simplicity, it is assumed thatVMs are configuredwith enough
amount of resources to fulfill the demand of the tasks and can
execute exactly one task at a time. Therefore, eleven VMs are
required to execute eleven tasks given in Fig. 2.

Furthermore, the number of VMs can be minimized by
taking the degree of parallelism of the tasks into consider-
ation. Considering the block type tasks and degree of the
parallelism, the number of VMs can be calculated as the
maximum number of tasks running concurrently at any par-
ticular instant of time. As shown in Fig. 2a, maximum four
tasks, i.e., tasks t5; t6; t7; and t8 run concurrently at any par-
ticular instant of time. Accordingly, four VMs are required
to execute all eleven tasks as shown in Fig. 2b.

In order to derive the VM graph from the Task graph,
tasks in each level of the DAG are assigned to the VMs ran-
domly. For example, tasks t1 at level 1 can be assigned to
VM1. Tasks t2; t3; t4 at level 2 can be assigned to VM1; VM2;
and VM3, respectively. Tasks t5; t6; t7; and t8 at level 3 can be
assigned to VM1; VM2; VM3; and VM4, respectively. Simi-
larly, tasks t9 and t10 at level 4 can be assigned to VM1 and
VM3, respectively and the task t11 at level 5 can be assigned
to VM1. Furthermore, for each directed edge in the task
graph, there must exist a directed edge between the corre-
sponding VMs of the VM-graph. For example, for the

Fig. 2. An example of (a) task graph and (b) required VMs and their
communication.

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

directed edge from task t4 to t8, there exists a corresponding
directed edge from VM3 to VM4 as shown in Fig. 2b. For the
directed edge from task t1 to t3, a directed edge from VM1 to
VM2 is drawn in the VM graph. A corresponding directed
edge is also drawn from VM2 to VM1 as there exists a
directed edge from task t6 to t9. In the similar fashion, rest
of the directed edges of the task graph can be transformed
to the corresponding directed edges of VM pairs in the VM
graph. In this example, we assume that one VM can execute
only one task at any instant of time.

3.4 PM-Graph

Physical Machine graph (PM-graph) is the representation of
all physical machines and their communications, where a
vertex represents any physical machine and an edge repre-
sents the communication between any two PMs. In addition
to this, other different characteristics are associated with the
edges and the nodes in PM-graph such as weight of an edge
and nodes. The calculation of weight of nodes and edges is
described in Section 4. Both VM-graph and PM-graphs are
input to the proposed algorithm and the output is a set of
PMs to host the VM(s).

4 PROBLEM FORMULATION

As mentioned in Section 3, the available physical machines
are represented as undirected weighted graph GP ¼
NP ;EP
� �

, where NP represents the set of available physical
machines and EP represents the set of physical communica-
tion links. Likewise, GV ¼ NV ;EV

� �
be the directed

weighted graph representing the requested virtual
machines or the VM-graph. NV represents the set of virtual
machines and EV represents the set of virtual communica-
tion links among virtual machines. aP

x ðUÞ be the available
resources of type x associated with physical machine U ,
U 2 NP . aV

x ðuÞ be the amount of resources of type x
demanded by the virtual machine u, u 2 NV . The resource
types typically include memory, CPU, and storage capacity.
BWremainðUV Þ and BWmaxðUV Þ be the remaining bandwidth
and maximum available bandwidth on a physical link ðUV Þ,
respectively. Similarly, in VM-graph, BWreqðuvÞ is the

amount of required bandwidth for a virtual link ðuvÞ. List of
notations with their description are presented in Table 1.

4.1 Weight of Physical Links

For better placement of virtual links over physical links, we
have emphasized the calculation of weight of the physical
links. To calculate the weight of a physical link, remaining
and maximum bandwidth of that link, average load over a
period of time, RTT, geographical distance of physical
machines, energy consumption and number of hops are
taken into consideration. Though, the current RTT value
depends on the current load, we have also considered the
average load of the physical link over a period of time.
Weight of a physical link increases when the load, current
RTT value, and energy consumption decreases. We believe
that for better performance and to meet the deadline of
users’ multi-task jobs, higher preference should be given to
the network resources over computing resources. In execut-
ing multi-task jobs, where multiple virtual machines are
involved, network resource has direct impact on computing
performance as any delay due to data transfer in between
two virtual machines results in increasing the computation
delay. Hence, prioritizing the network resources over com-
puting resources is recommended.

In the proposed resource allocationmechanism,maximum
bandwidth and remaining bandwidth are used to calculate
the load on the physical link. The value of load of a physical
link ranges from 0 to 1 and can be calculated as follows:

LT ðUV Þ ¼ 1�BWremainðUV Þ
BWmaxðUV Þ ; (1)

where, LT ðUV Þ is the load on the physical link UV at current
time T . It is assumed that maximum bandwidth BWmax and
remaining bandwidth BWremain available on each physical
link is provided by the cloud service provider (CSP). Simi-
larly, from load LT ðUV Þ, mean load LT ðUV Þ on a link is cal-
culated by taking the average of load from beginning to the
current time T in a specified time interval. The time interval
is defined as the time duration between any two consecutive
time instances for calculating the load of a physical link. For
example, let the load of a physical link ðUV Þ at time t ¼ 0 be
0.75, at time t ¼ 1 be 0.25 and at current time t ¼ T ¼ 2 be
0.65. The average load can be calculated as LT ðUV Þ ¼
0:75þ0:25þ0:65

2þ1 ¼ 0:55. In general, considering the loads that are
calculated at T þ 1 number of time instances, the average
load can be calculated as

LT ðUV Þ ¼
XT
t¼0

LtðUV Þ
T þ 1

: (2)

To find a better choice of physical link for a virtual link,
the round trip time or the latency plays an important role.
Round Trip Time (RTT) represents the time taken to travel a
data packet from one physical machine to another. Hence,
the physical link with lesser RTT can be considered as the
most suitable physical link in the process of mapping. Dif-
ferent factors such as geographical distance, number of net-
work elements affect the RTT of the physical link. Let bðUV Þ
be the current RTT in between the physical machine U and
V . The current RTT and load of the physical link are used to

TABLE 1
List of Notations

Notation Description

GP ðNP ;EP Þ Graph of Physical Machines; PM-graph
GV ðNV ;EV Þ Graph of Virtual Machines; VM-graph
EðUV Þ Physical link UV 2 EP

E0ðuvÞ Virtual link uv 2 EV

WtðUV Þ Weight of physical link UV at time t
LtðUV Þ Load on physical link EðUV Þ at time t
BWremainðUV Þ Remaining network bandwidth on link EðUV Þ
BWreqðuvÞ Required network bandwidth by link E0ðuvÞ
stðUV Þ Trust value of link EðUV Þ at time t
bðUV Þ Current round trip time over PM U and V
vtðUV Þ Energy consumption by link EðUV Þ
PUV

uv Path from PM U to V for virtual edge E0ðuvÞ
HCðPUV

uv Þ Hopping cost of the path PUV
uv

aP
x ðUÞ Resource of type x available at PM U

aV
x ðuÞ Resource of type x demanded by VM u

x Resource type, such as memory, CPU
capacity, Storage capacity etc

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 891

calculate the Trust Value ðsÞ of the physical link at time t,
which can be represented as

stðUV Þ ¼ LtðUV Þ
bðUV Þ �

1

D
; 0 < D < 1; (3)

where, D is a tuning parameter to reflect the effect of minor
change in current latency on trust value of the corresponding
physical edge. With lower value of D, slight change in LtðUV Þ
and bðUV Þwill have greater impact on the trust value stðUV Þ.
Such greater impact on the trust value stðUV Þ of a physical
link cannot be realized by removing the constant D from
Equation (3), which may affect further in calculating the
weight of a physical link. Hence, the aforementioned calcu-
lated trust value and energy consumption are combined and
are calculated as the weight of the physical link (WtðUV Þ),
which can be represented as follows:

WtðUV Þ ¼ stðUV Þ
vtðUV Þ ; (4)

where, vtðUV Þ indicates the energy consumption by the
physical link UV at time t. Equations (2), (3), and (4) are for-
mulated to establish the relationship among multiple
parameters such as current RTT, load on the physical links
and energy consumed by the link. Physical link with large
trust value and short geographical distance is more prefera-
ble for a virtual link. This is helpful when multiple physical
links are eligible to host a virtual link based on bandwidth.
Physical link with maximum weight is selected to host the
virtual link. Fig. 3 illustrates the relationship among afore-
mentioned parameters. Here, the load can be defined as the
percentage of the network resource allocated to different
users. The average load ranges between 10 to 90 percent,
whereas the current RTT ranges between 0.1 to 1 ms. For
demonstration purpose, the value of power consumption is
kept between 0.1 to 2.5 watt as given in [25]. In Fig. 3a, it can
be observed that the physical links with higher average
workload and less RTT have maximum weight. Similarly,
the physical links with maximum average workload and
least power consumption have maximum weight value
with constant RTT, as shown in Fig. 3b. Hence, weight of
the physical link is inversely proportional to the RTT and
energy consumption as shown in Fig. 3c. The value of D is
kept constant at 0.5 for calculating the above weights. Since,

weight of a physical link is inversely proportional to the
RTT and energy consumption and is directly proportional
to the bandwidth, we give priority to the links with higher
weights. As a result, embedding the virtual links onto the
physical links with smaller RTT value and higher band-
width ensures better performance as compared to the physi-
cal link with larger RTT value and lower bandwidth.

4.2 Objective Function

In the proposed resource mapping mechanism, it is
assumed that multiple virtual machines from a single VM
request can be hosted by the single physical machine. To
achieve this, a logical edge is introduced, where the physical
machines at both the ends are same. For example, the edge
from the physical machine U to U is considered to be a logi-
cal edge. The weight of the logical edge is more than any of
the physical edge. For this, we assign 1 to the weight and
BWremain of a logical edge. All physical machines that are
part of any logical edge are also included in the PM-graph.

Let, hpv and k be the binary and decision variables, respec-
tively and are expressed as follows:

hpv ¼
1 if VM v is assigned to PM p

0 Otherwise

�
(5)

kðUÞ ¼
1 if PM U is hosting at least one VM from

set NV

0 Otherwise:

8><
>:

(6)

PUV
uv indicates the path from PM U to PM V for virtual edge
ðuvÞ. All data communication between VM u and v must
follow this path. PUV

uv is used to calculate the hopping cost
HCðPUV

uv Þ for a virtual edge. Hopping cost is defined as the
number of network elements present in a physical path
including the sink physical machine. The minimum value
ofHC for the virtual edges is 1, when both end VMs of a vir-
tual edge are mapped onto different PMs. However, when
both end VMs of a virtual edge are mapped onto single PM,
the hopping cost is calculated as 0. Our goal is to minimize
the number of active physical servers and total hopping
cost. With the notations defined above, the virtual resource
mapping problem can be formulated as follows:

Fig. 3. Effect of load, round trip time (RTT), and energy consumption on weight of physical link.

892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Objective

min
X
8p2NP

kðpÞ þ
X

8ðuvÞ2EV ;8ðUV Þ2EP

HCðPUV
uv Þ:

Constraints

h
pj
vi 2 f0; 1g; 8vi 2 NV ; 8pj 2 NP (7)

XjNP j

j¼1
h
pj
vi ¼ 1; 1 � i � jNV j (8)

pj 2 Np;@vi 2 NV ;a
pj
x � avi

x ; 8x (9)

X
8v2NV

av
x �

X
8p2NP

ap
x; 8x (10)

X
8ðuvÞ2EV

BWreqðuvÞ �
X

8ðUV Þ2EP

BWremainðUV Þ (11)

max
8v2NV

av
x � max

8p2NP
ap
x; 8x (12)

max
8ðuvÞ2EV

BWreqðuvÞ � max
8ðUV Þ2EP

BWremainðUV Þ (13)

NP 6¼ ;; EP 6¼ ;; NV 6¼ ;; EV 6¼ ;: (14)

1) The objective function is two fold:
a) To minimize the number of physical machines

involved. kðpÞ represents the binary value indicat-
ing if the physical machine p, p 2 NP is hosting
any VM v from the set NV . The first term in the
objective function indicates the number of physi-
cal machines required to allocate the physical
resources to the virtual machines.

b) To minimize total hopping cost. Total hopping cost
is the sum of hopping cost for each virtual edge.
Multiple virtual machines can be assigned to sin-
gle physical machine. In such situation, the hop-
ping cost for the corresponding virtual edge, if
exists, is calculated as 0.

2) Constraint (8) ensures that a virtual machine can be
assigned to utmost one physical machine.

3) Constraint (9) ensures that there does not exist
any VM whose resource requirement is less than
the resource available at a particular PM. Such
PM should be considered as not eligible to host
any VM.

4) Constraints (10) and (11) ensure that the total
amount of resources and network bandwidth
demanded by the virtual request does not exceed the
total amount of available physical resource and net-
work bandwidth, respectively.

5) Constraints (12) and (13) ensure that the maximum
amount of resources demanded by any virtual
machine does not exceed currently available maxi-
mum physical resource at any single physical
machine. The constraint also holds in case of net-
work bandwidth.

5 THE VIRTUAL RESOURCE MANAGEMENT

ALGORITHM

Following the previous section, where we have formulated
the problem of mapping VM-graph onto available PM-
graph with the goal to minimize the number of PMs and
network elements involved, we propose here the Link based
Virtual Resource Management (LVRM) algorithm to map
the VMs onto PMs in an efficient way. Further, the proposed
resource allocation method is independent of any cloud
pricing model. Hence, we do not focus on the optimization
of pricing and monetary cost of the user. However, we
believe that it may help the CSP to reduce the total mone-
tary cost of the physical resource for the user by minimizing
the required amount of physical resources.

The proposed algorithm takes VM-graph GV and PM-
graph GP as inputs and gives the mapping function

H ¼ fu! U : 8u 2 NV ; 9U 2 NPg (15)

PATH ¼ fPUV
uv : ðuvÞ 2 EV ; U 2 NP ; V 2 NPg; (16)

as output. For all VM u inGV , the setH represents the PM U
in GP . The set PATH represents the set of all paths after
mapping the virtual edges onto the physical edges. Path
PUV

uv is the path from PM U to PM V for virtual edge ðuvÞ.
During the mapping process, the values of different param-
eters related to PM-graph are updated after mapping each
virtual edge. In this way, multiple virtual machines can be
mapped onto the single physical machine.

Before the actual mapping starts, the proposed algorithm
will copy GP to G0P N 0P ; E0P

� �
by eliminating those PMs

that cannot satisfy the resource Constraint (9) for the VMs
in GV . Furthermore, the respective adjacent edges are also
eliminated from G0P . This filtration process fastens the exe-
cution of mapping algorithm. Hence, the filtered PM-graph
G0P will be considered in the mapping process. As dis-
cussed earlier, we are giving maximum priority to the net-
work bandwidth in the proposed solution and therefore the
mapping process will start from the placement of virtual
edge with maximum bandwidth demand.

The mapping process will start with sorting the virtual
edges in EV in descending order based on their bandwidth
demandBWreqðuvÞ. Considering the virtual edge with maxi-
mum bandwidth demand, a set of candidate edges will be
selected in such a way that all the candidate edges satisfy
the Constraint (12). Based on the weight, the set of candidate
edges will be sorted in descending order. The candidate
edge with max weight will be given highest priority. Fol-
lowing this, the edge with highest priority is selected for the
feasibility test. Feasibility test ensures that both the associ-
ated physical machines can host the VMs associated with
the current virtual link. Hence, the PMs associated with the
current physical link can fulfill the demand of the VMs. In
case of failure of the current candidate edge in feasibility
test, the candidate edge with next highest priority will be
taken into account. This process will be continued until the
virtual edge is mapped to one of the physical edges from
the set of candidate edges. It is to be noted that we formu-
late the resource mapping problem as an optimization prob-
lem with an objective to minimize the hopping cost, which
can be achieved by reducing the number of PMs and select-
ing the PMs with minimum number of intermediate

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 893

network devices. To meet this objective, suitable physical
links must be selected for each virtual edge, which is
achieved by taking weight of the physical links into consid-
eration. Detail procedure of this link based virtual resource
management is given in Algorithm 1.

Algorithm 1. Link Based Virtual Resource Management
Algorithm

Data: VM-graph: GV ðNV ;EV Þ,
PM-graph: GP ðNP ;EP Þ

Result:H ¼ fu! U : 8u 2 NV ; 9U 2 NPg
PATH ¼ fPUV

uv : ðuvÞ 2 EV ; ðUV Þ 2 EPg
1 H ¼ ; ;
2 PATH ¼ ðuvÞ ! ; : ðuvÞ 2 EV ;
3 G0P ðN 0P ; E0P Þ GP� {all vertex U and their adjacent
edges: U cannot host at least one VM};

4 Q Sort on BWdemand Descend EV
� �

;
5 while q Extract MaxðQÞ 6¼ NULL do
6 v1 Vertex1ðqÞ ;
7 v2 Vertex2ðqÞ ;
8 PM1 PMðv1Þ ;
9 PM2 PMðv2Þ ;
10 if PM1 6¼ NULL & PM2 6¼ NULL then
11 /* Both the virtual machines are already assigned to

some PMs */
12 if EðPM1PM2Þ 2 E0P then
13 if BWremainðPM1PM2Þ � BWreqðv1v2Þ then
14 Add EðPM1PM2Þ to PATH;
15 end
16 else
17 path ¼ DIJKSTRA ShortestPathðPM1; PM2Þ;
18 Add path to PATH for virtual link q ;
19 end
20 Update G0P ;
21 update BWremain of q;
22 update weight of the physical link ;
23 update aP

x for PM1 and PM2 ;
24 Remove q from Q and Goto Line 5 ;
25 else
26 Find the set of candidate edges C from E0P such that

it satisfy Constraint (9) and must attached to either
PM1 or PM2 or both ;

27 Assign the priorities to the candidate edges based on
their weight ;

28 while p Extract MaxðCÞ 6¼ NULL do
29 Let P1 and P2 be two PMs connected to p ;
30 /*Check the feasibility test of p */
31 if p can host q then
32 UpdateH and Map p$ q ;
33 Add EðP1P2Þ to PATH;
34 Update G0P ;
35 update BWremain of q;
36 update weight of the physical link ;
37 update aP

x for P1 and P2;
38 Remove q from Q and Goto Line 5 ;
39 else
40 Remove p from C and Goto Line 5 ;
41 end
42 end
43 end
44 end

5.1 LVRM Algorithm

The proposed LVRM algorithm starts with filtering the
graph GP in Line 3 by removing the PMs those cannot sat-
isfy the Constraint (9) and the edges attached to those PMs.
This removal process helps in improving the running time
of the algorithm as the resultant preprocessed graph
G0P ðN 0P ; E0P Þ becomes smaller as compared to the original
graph GP ðNP ;EP Þ. Line 4 sorts the set of virtual edges EV

and assigns a new set of virtual edges Q. As HEAPSORT
algorithm can give better performance in terms of time and
space complexities, it is used to sort the set of virtual edges.
However, any sorting algorithm such as Merge sort and
Quick sort could be used too to sort the virtual edges. The
reason behind sorting the set of virtual edges is to map
the virtual edges with higher bandwidth demand before the
edges with lesser bandwidth demand. Hence, the virtual
edges are sorted based on their bandwidth demand.

The mapping process starts with extracting the edge from
set Q with higher bandwidth demand and continues until an
edge can have minimum bandwidth demand (Line 5-44). For
each virtual edge q 2 Q, first the attached VMs are checked if
they are hosted by any physical machines. If both VMs u and
v are hosted by PMs PM1 and PM2, respectively and if edge
E0P ðPM1PM2Þ 6¼ ;, the virtual edge E0ðuvÞ is assigned to the
physical edge E0P ðPM1PM2Þ based on the remaining band-
width ðBWremainÞ of E0P ðPM1PM2Þ (Line 13). The Dijkstra’s
shortest path algorithm is used whenE0P ðPM1PM2Þ ¼ ;. The
Dijkstra algorithm returns the shortest path between PM1 and
PM2, which is further added to PATH for the virtual edge q.
On the other hand, if the virtual node u or v is not yet hosted
by any of the physical machines, a set of candidate edges C is
selected from E0P (Line 26) based on the Constraint (9). If any
one of the VMs is already assigned to a PM, all candidate
edgesmust be connected to that PM. Based on theweight, pri-
orities are assigned to each candidate edge p 2 C (Line 27). As
discussed earlier, each candidate edge p must go through the
feasibility test. In the feasibility test, the server resource
requirement by virtual machines must be satisfied by the
physical machines present at both ends of the candidate edge.
If the candidate edge is a logical one, in other words, if
P1 ¼ P2, in Line 29, the feasibility test would be as follows:

aP
x ðP1Þ � aV

x ðV1Þ þ aV
x ðV2Þ: (17)

After the feasibility test is successful, H and PATH are
updated and the current virtual edge q is mapped to the cur-
rent candidate edge p. The preprocessed PM-graph G0P is
updated upon any updating in the resultant set H and
PATH (Lines 20-23 and Lines 34-37).

Lemma 1. For any VM-graph GV ðNV ;EV Þ and PM-graph
GP ðNP ;EP Þ, the number of physical machines required to allo-
cate the server resource is less than or equal to the number of
virtual machines in the VM-graph. Mathematically

1 � xðMÞ � jNV j; (18)

where, xðMÞ is the total number of physical machines allocated
in the solutionM for the set of virtual machines NV .

Proof. According to Constraint (8), one virtual machine can-
not be assigned to multiple physical machines. This
implies that the value of xðMÞ cannot exceed jNV j.

894 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Furthermore, as discussed in Section 4.1, one physical
machine can host multiple virtual machines. As given in
Algorithm 1, Line 29, there is no restriction that the physi-
cal machines at both end of the candidate edge p must be
different, the algorithm searches for a physical machine
that can host the virtual machines at both ends of a virtual
edge. This implies that the number of physical machines
can be reduced to one for two virtual machines. Hence,
the value of xðMÞ can be less than the number of virtual
machines in the VM-graph. tu

Theorem 1. The total amount of network bandwidth allocated
can be less than the total amount of required network band-
width. Mathematically

0 � Rn � rn; rn > 0; (19)

where, Rn and rn are the total amount of allocated and required
network bandwidth, respectively.

Proof. According to the Constraint (14), the VM-graph must
contain at least one virtual edge. Hence, the VM-graph
must contain at least two virtual machines. Furthermore,
it is proved in Lemma 1 that the minimum number of
required physical machines is one for each VM-graph.
This implies that one physical machine can be used to
serve a virtual request of two VMs and no network band-
width is required in order to exchange the data between
those two virtual machines. tu

Theorem 2. The time complexity of the proposed algorithm is
OðmE lognÞ, where n and m are the number of PMs and
VMs, respectively and E is the number of physical edges.

Proof. The algorithm starts with filtering the original PM-
graph GP (Line 3) with the time complexity of OðnÞ. The
time taken to sort the virtual edges in Line 4 by
Heapsort algorithm is Oðelog eÞ, where e represents the
number of virtual edges. As the value of e is very less
for each virtual request, the running time of the sorting
algorithm possess very less impact. Mapping process
from line 5 to line 44 is iterated for m number of times.
For each virtual edge, OðnÞ running time is required to
find the candidate edges. Selection of one candidate
edge will take OðnÞ time, if all the physical edges are eli-
gible to host the current virtual edge. Following the
selection process, mapping of the virtual edge onto the
physical edge and the update of the PM-graph will take
constant time Oð1Þ. In the worst case scenario, for every
virtual edge the algorithm will invoke Dijkstra shortest
path algorithm whose running time is Oððnþ EÞlognÞ.
Hence, the running time of proposed LVRM algorithm
can be calculated as

OðmÞ � ½OðnÞ þ OðnÞ þ Oððnþ EÞlognÞ�
¼ OðmnÞ þ OðmÞ � ½Oðn lognÞ þ OðE lognÞ�
¼ Oðmn lognÞ þ OðmE lognÞ:

As the number of physical edges E is more than the
number of physical machines n, we can conclude that the
worst case time complexity of the proposed algorithm
would be OðmE lognÞ. tu

Theorem 3. The space complexity of the proposed algorithm is
Oð2 � p2 þ v2Þ, where p and v are the numbers of PMs and
VMs present in PM and VM graph, respectively.

Proof. As given in Line 3 of Algorithm 1, the original PM
graph GP is preprocessed by removing all vertices and
adjacent edges that cannot host at least one virtual
machine. The preprocessed graph is copied in another
graph variable G0P for further execution. In the worst case
scenario, the amount of memory space required to store
GP and G0P is same. Further, considering the list repre-
sentation of the graph that includes the node and edge
representation, the upper bound of the space complexity
for the graph GP is Oðp2Þ, where p is the number of PMs
present in the PM graph, p ¼ jNP j. The total amount of
space required is Oð2 � p2Þ as in the worst case, the PM
graph GP and G0P are same. Considering the VM graph,
the upper bound of the space complexity for the VM is
Oðv2Þ, where v is the number of VMs present in the VM
graph. Combining the space requirement of both PM
graph and VM graph, the space complexity for the pro-
posed algorithm can be deduced as Oð2 � p2 þ v2Þ. tu

5.2 Example of LVRM

For better understanding of the proposed LVRM algorithm,
we have taken an example as depicted in Fig. 4. Fig. 4b rep-
resents the VM-graph consisting of four VMs and PM-graph
consists of eight PMs as depicted in Fig. 4a. The integer
value in each PM represents the available units of the com-
puting resource. The fractional value in each edge of PM-
graph represents the weight and the whole number repre-
sents the available units of bandwidth on that communica-
tion link. In VM-graph, the numeric value on VMs and

Fig. 4. An example of LVRM algorithm.

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 895

edges represents the required unit of computing resource
and network bandwidth, respectively. In these figures, all
numeric values are taken randomly and both VM-graph
and PM-graph are input to the LVRM algorithm.

Filtered PM-graph G0P is obtained by removing those
PMs that cannot host any of the VMs in VM-graph as
depicted in Fig. 4c. The newly processed PM-graph G0P is
derived from GP by removing PM A and E as they cannot
host any of the VMs from the VM-graph. Since, the virtual
edge ðbcÞ has maximum demand, it is processed first. As
both VMs b and c are not yet assigned to any of the PMs, the
set of candidate edges from GP will be ðDGÞ, ðBCÞ; and
ðDF Þ with weight 0.8, 0.72, and 0.63, respectively. Though
three candidate edges are considered in this example, in
real implementation, all candidate edges can be taken into
consideration. Hence, edges ðBHÞ and ðHF Þ can also be
considered as the candidate edges. After calculating the set
of candidate edges, the priority value is assigned to each
edge based on its weight. Hence, edge ðDGÞ and ðBCÞ get
the highest priority and second highest priority, respec-
tively and so on. Each edge needs to go through the feasibil-
ity test starting from edge with highest priority to the edge
with lowest priority. For edge ðDGÞ, physical machine D
can host neither VM b nor c. Hence, the edge with next high-
est priority, i.e., edge ðBCÞmust be taken into consideration
to host the virtual edge ðbcÞ. For physical edge ðBCÞ, both
physical machines B and C can host the virtual machines b
and c, respectively. Hence, VM c can be assigned to PM C
and VM b can be assigned to PM B. In case of both PMs of
an edge are eligible to host both VMs of the virtual edge, the
VMs are assigned to PMs by following the BESTFIT policy.
Likewise, the mapping process can be carried out for other
virtual edges such as ac, ad, ab; and cd.

6 PERFORMANCE EVALUATION

In order to evaluate the performance of proposed LVRM
algorithm, a discrete event java-based simulator CVI-Sim
[4] is used. This allows us to generate the substrate network
as well as a huge number of virtual requests using different
probabilistic approaches such as the arrival of requests fol-
lows the Poisson distribution. This also allows us to distrib-
ute the resources to the virtual nodes and links. We
compare our algorithm against two popular traditional vir-
tual network embedding algorithms: G-SP [26] and G-MCF
[27]. G-SP is the greedy node mapping with shortest path
algorithm. The problem of virtual network embedding is
addressed by taking virtual network reconfiguration into
account. The virtual network is mapped by a basic virtual
network assignment algorithm followed by adaptive opti-
mization strategies. On the other hand, G-MCF is a greedy
node mapping multi-commodity flow problem. The
approach of solving the embedding problem is a two-stage
solution. First, virtual links are split over multiple substrate
paths. Second, path migration algorithm is executed for bet-
ter utilization of the substrate network.

6.1 Simulation Setup

The proposed LVRM algorithm is evaluated and is com-
pared with G-SP and G-MCF in our simulation. We have
considered one service provider equipped with 100

numbers of physical servers and randomly generated links.
The links are generated randomly with a probability value
0.5. This also indicates the connectivity probability of two
physical servers. The resources are assigned to the physical
servers by following random distribution. Available num-
ber of CPUs capacities are randomly assigned to each server
ranging from 10 through 20 CPUs. Likewise, the storage
and memory capacity of the servers are randomly distrib-
uted in between 1000 GB through 2000 GB and 20000 MB
through 50000 MB, respectively. Available bandwidth
between the physical servers is randomly distributed
between 1000 Bps and 10000 Bps. The unit of bandwidth
Bps in a link is referred to as Bytes per second.

For generating the virtual requests, the number of virtual
machines ranges from 2 through 10 for each request. It is
assumed that the arrival of requests follows the Poisson dis-
tribution with the mean of 5 requests per 100 time units and
lifetime of each request follows an exponential distribution
with an average of 500 time units of lifetime. In some
results, unexpired lifetime of requests is considered. The
maximum number of virtual links for each request is 100.
The number of links is decided by the link probability 0.5.
This indicates the connectivity probability of two virtual
machines. The resource demand of each request is ran-
domly distributed. The number of CPUs demand and band-
width demand for each virtual machine and each virtual
link range from 0 through 4 CPUs and 100 Bps through
500 Bps, respectively. Similarly, required storage and mem-
ory for each virtual machine range from 500 GB through
1000 GB and 8000 MB through 10000 MB, respectively.
Taking above-mentioned performance matrix, the following
simulation results are derived.

6.2 Simulation Results

The proposed algorithm is evaluated by comparing its per-
formance with G-SP and G-MCF algorithms. With the
increasing number of incoming requests, the behavior of
proposed algorithm has been studied in terms of percentage
of requests accepted, which is termed as acceptance rate, and
average number of hop count per virtual edge as depicted
in Figs. 5 and 6, respectively. In Fig. 5, the lifetime of the
requests is considered to be non-expired, which leads to a
gradual decrease in the acceptance rate. In case of LVRM
algorithm, the acceptance rate of incoming requests remains
100 percent for more than 200 requests. When the number
of requests increases to 2,000, the acceptance rate decreases

Fig. 5. Acceptance rate in %.

896 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

to 38 percent, which is 30 and 18 percent in case of G-MCF
and G-SP algorithm, respectively. Fig. 6 represents the aver-
age hop count per virtual link. Though the acceptance rate
is 100 percent for the first 200 requests, the average hop
count falls in between 1.2 to 1.4. This indicates that more
than one physical node is involved in the communication
between two virtual machines.

The stress on node and link has been studied extensively
under no-expiration lifetime and exponentially distributed
lifetime of each request. Here, stress refers to as the load on
physical node and physical link. Figs. 7 and 8 show the aver-
age node stress under different arrival rate. With exponen-
tially distributed lifetime of the virtual machines, the average
node stress ranges between 50 through 75 percent. On the
other hand, the average node stress remains constant after cer-
tain number of requests are mapped to the physical network.
It can be observed that the node stress gradually increases up
to 93 percent and the stress on nodes become stable under no-
expiration lifetime of the requests. In practical environment,
most of the requests have certain lifetime and after the execu-
tion of job the resources are released and leased to other
requests as shown in Fig. 8. Here, we have considered that the
mean lifetime of the requests is 500 time units. Since
the requests have limited lifetime, the average node stress of
the virtual machines ranges between 55 through 80 percent.
Numbers of incoming requests are directly proportional to
the stress on nodes as shown in Fig. 8.

Similar to the node stress, we have also studied the link
stress under no-expiration lifetime and exponentially dis-
tributed lifetime of the incoming requests, as depicted in
Figs. 9 and 10, respectively. In both cases, the arrival rate

varies between 1 through 10 number of requests per unit
time. The arrival rate refers to as the number of requests
that CSP received per unit time. The stress of the links is
observed in every 10,000 time units and the average value is
plotted on the graph. Overall stress on the network repre-
sents the load on the network. More stress indicates more
load on the network. Our goal is to minimize the stress on
the network for certain number of requests by minimizing
the stress on both node and link. The result presented in
Fig. 10 shows that the stress on link is balanced and less as
compared to other G-SP and G-MCF algorithms. The stress
on the link fluctuates between 50 through 70 percent,
whereas it fluctuates between 60 through 70 percent in case
of G-MCF and G-SP algorithm. However, it is observed that
virtual link probability and lifetime of the requests cause
non-linear variation in average node stress as shown in

Fig. 6. Average number of hop counts.

Fig. 7. Average node stress with no expiration lifetime of requests.

Fig. 8. Average node stress with exponentially distributed lifetime of
requests.

Fig. 9. Average link stress with no expiration lifetime of requests.

Fig. 10. Average link stress with exponentially distributed lifetime of
requests.

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 897

Fig. 8 and in average link stress as shown in Fig. 10, when
arrival rate is 6.

We have also studied the effect of connectivity on accep-
tance rate and utilization of both nodes and links. The link
connectivity of the virtual requests represents the probability
that two virtual machines are connected. The increase in link
connectivity value will increase the number of virtual link in
a request. In our study, the connectivity value is increased to
1 from 0.1. The connectivity value has direct impact on the
acceptance rate as shown in Fig. 11. A request is considered
to be rejected, if the exact amount of total required comput-
ing and network bandwidth resource is not fulfilled by the
CSP. For each request, single attempt is made to map the VM
graph onto PM graph.We have considered the requests with
only 8, 9, and 10 virtual machines. For the fixed number of
virtual machines in a request, the results are observed in
every 10,000 time units. We have fixed the number of
requests and number of virtual machines to 2,000 and 8,
respectively. With this performance matrix, the connectivity
value is increased by 0.1 in each simulation. It is observed
that the acceptance rate decreases from 80 to 50 percent for
fixed number of request and virtual machines. When the
number of virtual machines increases, the initial acceptance
rate is dropped from 80 to 73 percent. The variable lifetime of
the requests at different time instances causes the non-linear
variation in the acceptance rate as observed in Fig. 11 when
the link connectivity probability is 0.5.

Figs. 12 and 13 show the effect of connectivity on utiliza-
tion of the physical servers and the physical links. With
more number of virtual links in a request, the utilization of
the physical links increases, whereas the utilization of nodes

decreases. In our simulation, node utilization involves utili-
zation of CPU, memory, and hard-disk. From Figs. 12 and
13, we can conclude that the connectivity probability also
has direct impact on the average hop count per virtual link.
Further, a variation in the link and node utilization is
observed during the simulation, which is due to the variable
lifetime of the requests.

The efficiency of the proposed algorithm in terms of
average number of physical machines and links allocated to
the requests is shown in Figs. 14 and 15, respectively. In
Fig. 14, the number of requests ranges between 100 through
1,000 and the average number of VMs per request ranges
between 2 through 8. It is observed that the average number
of PMs allocated to each request ranges between 0.5 through
2.5, whereas the link connectivity probability in virtual
requests is varied from 0.1 to 1 and the number of VMs in
each request is 8 as presented in Fig. 15. Under such
demand, it is observed that the average number of physical
links required to map the virtual links ranges between 3 to
25. Multiple VMs from the single request are mapped to
one PM, which helps minimize the average number of PMs
and physical links required for each request.

Fig. 11. Link connectivity probability versus acceptance rate.

Fig. 12. Link connectivity probability versus node utilization.

Fig. 13. Link connectivity probability versus link utilization.

Fig. 14. Avg. number of allocated PMs.

Fig. 15. Avg. number of allocated physical links.

898 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

In order to demonstrate how close is our proposed algo-
rithm to the optimal solution, we have compared our results
obtained from the LVRM algorithm with the optimal one.
The optimal result in terms of average number of hop
counts and required numbers of PMs is obtained by com-
paring all possible mapping solutions. The experimental
environment consists of 30 physical machines with link con-
nectivity probability of 0.8. The number of virtual requests
ranges from 10 through 100. Each virtual request consists of
2 to 4 numbers of VMs with a minimum link connectivity
probability of 0.9.

Fig. 16 shows the comparison of our proposed LVRM
algorithm with optimal solution in terms of number of
hops. The average number of hop counts in the proposed
LVRM ranges between 1.267 and 1.518 while maps from 10
to 100 numbers of virtual requests. The number of hop
counts ranges from 1.019 through 1.298 for mapping the
same number of virtual requests. In Fig. 17, comparison of
proposed LVRM algorithm with optimal solution is done in
terms of average number of required PMs. An average of
approximately 1.2 and 1.02 PMs is required to map 10 vir-
tual requests in case of LVRM and optimal solution, respec-
tively. However, the average number of PMs increases to
1.5 to map 100 virtual requests in case of LVRM algorithm,
which is approximately 25 percent more than that of the
optimal solution.

7 CONCLUSIONS

In this paper, we deal with virtual resource mapping prob-
lems and have proposed an efficient link based virtual
resource management algorithm to minimize the number
of physical machines. In the proposed approach, virtual
links are mapped followed by the virtual nodes as the inef-
ficient mapping of virtual links have direct impact on the
execution time of the corresponding tasks even if the com-
putation resource demand is fulfilled. The virtual links
with highest network bandwidth demand are given maxi-
mum priority. Graph theory is used as a tool to repre-
sent the incoming tasks, required VMs and available PMs.
Dijkstra algorithm is applied to find the substrate path
between two physical machines. Furthermore, the pro-
posed algorithm takes advantage of assigning multiple
VMs to single PM to ignore the network demand of the
corresponding VMs. This is one of the reasons for higher
acceptance rate of the users’ requests. Besides, our

proposed algorithms are simulated extensively to compare
our result with similar algorithms along this direction and
the superiority of our proposed approach over others is
clearly demonstrated. However, in order to verify and
improve the results, we strive to implement the proposed
virtual resource mapping mechanism in real cloud environ-
ment, which will be part of our future work.

ACKNOWLEDGMENTS

This work is partly supported by Ministry of Science and
Technology (MOST), Taiwan under the grant number 106-
2221-E-182-014.

REFERENCES

[1] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr.–Jun. 2012.

[2] Y. Dong, X. Zhang, J. Dai, and H. Guan, “HYVI: A hybrid virtuali-
zation solution balancing performance and manageability,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 9, pp. 2332–2341, Sep. 2014.

[3] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
placement and routing for data center traffic engineering,” in
Proc. IEEE INFOCOM, 2012, pp. 2876–2880.

[4] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris,
C. Cervello-Pastor, and A. Monje, “On the optimal allocation of
virtual resources in cloud computing networks,” IEEE Trans. Com-
put., vol. 62, no. 6, pp. 1060–1071, Jun. 2013.

[5] A. Aral and T. Ovatman, “Network-aware embedding of virtual
machine clusters onto federated cloud infrastructure,” J. Syst.
Softw., vol. 120, pp. 89–104, 2016.

[6] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,”
IEEE Trans. Cloud Comput., vol. 3, no. 1, pp. 42–53, Jan. 2015.

[7] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 3, pp. 816–827, Mar. 2014.

[8] T. Wang and M. Hamdi, “Presto: Towards efficient online virtual
network embedding in virtualized cloud data centers,” Comput.
Netw., vol. 106, pp. 196–208, 2016.

[9] S. Haeri and L. Trajkovic, “Virtual network embedding via Monte
Carlo tree search,” IEEE Trans. Cybern., vol. PP, no. 99, pp. 1–12,
2017, doi: 10.1109/TCYB.2016.2645123.

[10] J. Duan and Y. Yang, “Placement and performance analysis of vir-
tual multicast networks in fat-tree data center networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 10, pp. 3013–3028, Oct. 2016.

[11] Z. Yang and Y. Guo, “An exact virtual network embedding algo-
rithm based on integer linear programming for virtual network
request with location constraint,” China Commun., vol. 13, no. 8,
pp. 177–183, Aug. 2016.

[12] L. Zhang, X. Yin, Z. Li, and C. Wu, “Hierarchical virtual machine
placement in modular data centers,” in Proc. IEEE 8th Int. Conf.
Cloud Comput., 2015, pp. 171–178.

Fig. 16. Comparison of LVRM with optimal allocation in terms of hop
counts.

Fig. 17. Comparison of LVRM with optimal allocation in terms of number
of required PMs.

SAHOO ET AL.: LVRM: ON THE DESIGN OF EFFICIENT LINK BASED VIRTUAL RESOURCE MANAGEMENT ALGORITHM FOR CLOUD... 899

http://dx.doi.org/10.1109/TCYB.2016.2645123

[13] A. Jarray and A. Karmouch, “Decomposition approaches for vir-
tual network embedding with one-shot node and link mapping,”
IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 1012–1025, Jun. 2015.

[14] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A PTAS mechanism
for provisioning and allocation of heterogeneous cloud resources,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 9, pp. 2386–2399,
Sep. 2015.

[15] N. Ogino, T. Kitahara, S. Arakawa, and M. Murata, “Virtual net-
work embedding with multiple priority classes sharing substrate
resources,” Comput. Netw., vol. 112, pp. 52–66, Jan. 2017.

[16] X. Hesselbach, J. R. Amazonas, S. Villanueva, and J. F. Botero,
“Coordinated node and link mapping {VNE} using a new paths
algebra strategy,” J. Netw. Comput. Appl., vol. 69, pp. 14–26, 2016.

[17] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, and N.-H. Bao,
“Power-efficient provisioning for online virtual network requests
in cloud-based data centers,” IEEE Syst. J., vol. 9, no. 2, pp. 427–
441, Jun. 2015.

[18] J. A. Aroca, A. F. Anta, M. A. Mosteiro, C. Thraves, and L. Wang,
“Power-efficient assignment of virtual machines to physical
machines,” Future Generation Comput. Syst., vol. 54, pp. 82–94,
2016.

[19] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Trans. Com-
put., vol. 63, no. 11, pp. 2647–2660, Nov. 2014.

[20] H. Liu and B. He, “F2C: Enabling fair and fine-grained resource
sharing in multi-tenant IaaS clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 9, pp. 2589–2602, Sep. 2016.

[21] H. Shen and Z. Li, “New bandwidth sharing and pricing policies
to achieve a win-win situation for cloud provider and tenants,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2682–2697, Sep.
2016.

[22] W. Hou, Z. Ning, L. Guo, Z. Chen, and M. S. Obaidat, “Novel
framework of risk-aware virtual network embedding in optical
data center networks,” IEEE Syst. J., vol. PP, no. 99, pp. 1–10, 2017,
doi: 10.1109/JSYST.2017.2673828.

[23] P. Choudhury, P. Chakrabarti, and R. Kumar, “Online scheduling
of dynamic task graphs with communication and contention for
multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 1,
pp. 126–133, Jan. 2012.

[24] K. Kanoun, N. Mastronarde, D. Atienza, and M. van der Schaar,
“Online energy-efficient task-graph scheduling for multicore
platforms,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 33, no. 8, pp. 1194–1207, Aug. 2014.

[25] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen,
“Reducing the energy consumption of ethernet with adaptive link
rate (ALR),” IEEE Trans. Comput., vol. 57, no. 4, pp. 448–461,
Apr. 2008.

[26] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate
network resources to virtual network components,” in Proc. IEEE
INFOCOM, 2006, pp. 1–12.

[27] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and
migration,” ACM SIGCOMMComput. Commun. Rev., vol. 38, no. 2,
pp. 17–29, 2008.

Prasan Kumar Sahoo received the BSc
(with Honors) degree in physics and the MSc
degree in mathematics from Utkal University,
India, in 1987 and 1994, respectively. He received
the MTech degree in computer science from the
Indian Institute of Technology (IIT), Kharagpur,
India, in 2000 and the PhD degree in mathematics
from Utkal University, India, in 2002, and the 2nd
PhD degree in computer science and information
engineering from National Central University, Tai-
wan, in 2009. He is currently a professor in the

Department of Computer Science and Information Engineering, Chang
Gung University, Taiwan. He is an associate researcher in the Depart-
ment of Cardiology, Chang Gung Memorial Hospital, Linkou since 2016.
He has worked as an associate professor in the Department of Informa-
tionManagement, Vanung University, Taiwan from 2007 to 2011. He was
director of International Affairs Center, Chang Gung University from Feb,
2013 to Jan, 2017. He was a visiting associate professor in the Depart-
ment of Computer Science, Universite Claude Bernard Lyon 1, France.
His current research interests include big data analytic, cloud computing,
and IoT. He is an Editorial Board member of the International Journal
of Vehicle Information and Communication Systems (IJVIC) and has
served as the Program Committee member of several IEEE and
ACM conferences. He was Program chair of ICCT, 2010 and is a senior
member of the IEEE.

Chinmaya Kumar Dehury received the BCA
degree from Sambalpur University, India, in June
2009 and the MCA degree from Biju Pattnaik Uni-
versity, India, in June 2013. Currently he is work-
ing toward the PhD degree in the Department of
Computer Science and Information Engineering,
Chang Gung University, Taiwan. His research
interests include scheduling, resource manage-
ment, and fault tolerance problems of cloud
computing.

Bharadwaj Veeravalli received the BSc degree
in physics from Madurai-Kamaraj University,
India, in 1987, the master’s degree in electrical
communication engineering from the Indian Insti-
tute of Science, Bangalore, India, in 1991, and
the PhD degree from the Department of Aero-
space Engineering, Indian Institute of Science,
Bangalore, India, in 1994. He received gold med-
als for his bachelor degree overall performance
and for an outstanding PhD thesis (IISc,
Bangalore India) in the years 1987 and 1994,

respectively. He is currently with the Department of Electrical and Com-
puter Engineering, Communications and Information Engineering (CIE)
Division, National University of Singapore, Singapore, as a tenured
associate professor. His main stream research interests include cloud/
grid/cluster computing, scheduling in parallel and distributed systems,
and multimedia computing. He is one of the earliest researchers in the
field of Divisible Load Theory (DLT). He is currently serving the editorial
board of the IEEE Transactions on Cloud Computing as an associate
editor. He is a senior member of the IEEE and the IEEE-CS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

900 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 4, APRIL 2018

http://dx.doi.org/10.1109/JSYST.2017.2673828

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

