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h i g h l i g h t s

• SLA based healthcare big data analytic architecture is designed for Spark platform.
• Ranking of patient’s data is made to improve the processing speed.
• Efficient data distribution mechanism is designed to allocate batch and streaming data.
• Priority based job allocation algorithm is designed.
• Analysis and prediction of future health condition of the patients is designed.
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a b s t r a c t

Large volumeofmulti-structured and low-latencypatient data are generated in healthcare services,which
is a challenging task to process and analyze within the Service Level Agreement (SLA). In this paper, a
Parallel Semi-Naive Bayes (PSNB) based probabilistic method is used to process the healthcare big data in
cloud for future health condition prediction. In order to improve the accuracy of PSNBmethod, a Modified
Conjunctive Attribute (MCA) algorithm is proposed for reducing the dimension. Emergency condition of
the patient is considered by setting a global priority among the patients and an Optimal Data Distribution
(ODD) algorithm is proposed to position both batch and streaming patient data into the Spark nodes.
Further, a Dynamic Job Scheduling (DJS) algorithm is designed to schedule the jobs efficiently to the most
suitable nodes for processing the data taking SLA into account. Our proposed PSNB algorithm provides
better accuracy of 87.8% for both batch and streaming data, which is 12.8% higher than the original Naive–
Bayes (NB) algorithm and can conveniently be employed in various patient monitoring applications.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Digital revolution such as Internet of Things (IoT) [17], Wireless
Body Networks (WBNs) [21], Big Data [6] and Cloud Computing [1]
enables the day-to-day living style easier and better. Big Data deals
with extremely large data sets having four different characteristics
including Volume, Variety, Velocity and Veracity. Besides, cease-
less streams of healthcare data are generated in large volume by
ubiquitous smart devices such as smart phone, pulse oximeters and
body sensors on real-time patient monitoring. Under the existing
solution methods, it is very difficult to analyze and process both
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streaming and batch data together in a single platform within
the deadline. As a result, the first problem is how to reduce the
dimension of the health parameter for better accuracy. The second
problem is how to find the dependencies among the healthcare
parameters and priority of the patients based on the influential
parameters. Third, which appropriatemethod can be used for anal-
ysis and processing of those multi-structured, low-latency patient
data with higher accuracy and efficiency. By considering above-
mentioned issues, Big Data analysis and processing are two major
challenges in the sizable healthcare industry.

In data analysis, various classification [25], clustering [8] and
predictive analytic [24] algorithms are used based on the input and
output data sets. However, many of those tools are outdated [22]
as they are unable to handle large volume of multi-structured
healthcare data sets. Specifically, in healthcare, the patient data are

https://doi.org/10.1016/j.jpdc.2018.04.006
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.04.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.04.006&domain=pdf
mailto:pksahoo@mail.cgu.edu.tw
mailto:suvendukm@mail.ntust.edu.tw
mailto:slwu@mail.cgu.edu.tw
https://doi.org/10.1016/j.jpdc.2018.04.006


122 P.K. Sahoo et al. / J. Parallel Distrib. Comput. 119 (2018) 121–135

not only large in volume but also are generated with a tremendous
speed, which requires an advanced platform for both analysis and
processing. Also, the health condition of a patient is always related
with some uncertain factors based on the clinical parameters. For
probabilistic approach, Naive–Bayes (NB) [27] is the best andmost
popular algorithm due to its efficiency. However,NB algorithm can
be applied only on the independent data sets, which is not suitable
for healthcare big data asmost of the data have dependency among
multiple parameters. Hence, the Semi-Naive Bayes (SNB) [39] algo-
rithm can be used, which allows certain degree of dependency on
input parameters.

In healthcare applications, missing of any SLA [3] has highest
impact on emergency patient data analysis due to the severity of
the disease. The emergence of BigData demands a distributed envi-
ronment with parallel and fast computation. Hence, many big data
processing platforms such as Hadoop [2] and Apache Storm [18]
are mostly used for batch and streaming data processing, respec-
tively. However, the Stormplatform is found to be time-consuming
with low throughput [33] for processing both batch and streaming
data altogether. Healthcare data normally contain both streaming
and batch data [38] for analysis and processing. Therefore, Apache
Spark [13] can be used as our processing platform to process and
analysis of both streaming and batch data altogether in a single
API, which is time efficient. In Spark, Resilient Distributed Datasets
(RDDs) [35] are used for efficient data sharing during parallel
computation, which can enhance the overall system throughput.

Cloud computing is the most promising technology used in
healthcare for distributed storage and processing of patient data
with help of virtualization. Though, some analytic models such
as BStream [14] are proposed for the bursty input and over-
provisioning by using internal cloud to an external one, it is limited
to the processing time, fault and straggler tolerance during exe-
cution [33] as Storm model is used for the processing. Therefore,
it is highly essential to employ a suitable resource scaling and
management scheme in Spark environment to satisfy the SLA.
In [15], authors primarily focus on the Data Center network traffic
prediction. However, the traffic prediction for an external cloud
is not considered by the authors, which can affect both network
utilization and congestion. Therefore, Inter-cloud Data center (ID)
and External-cloud Data center (ED) are incorporated into a single
environment to handle and process the colossal amount of both
streaming and batch data within the SLA. The external cloud is
adopted for hard deadline based jobs and load balancing in the
internal cloud to satisfy the SLA.

Inefficient scheduling of jobs in the worker nodes may lead
to failure of processing within SLA [9]. Hence, it is essential to
schedule the jobs to themost suitable nodes for processing bymin-
imizing the job completion time and satisfying the SLA in a multi-
cloud environment. In this paper, we address all the above issues
to mitigate the processing delay with low network latency and
satisfy the SLA in a multi-cloud environment, which has significant
improvement on patient data analysis and processing.

The remainder of the paper is organized as follows. Related
works on big data analytic and processing are discussed in Sec-
tion 2. Problem formulation of our work is given in Section 3.
Healthcare data processing mechanism is presented in Section 4.
A probabilistic Big Data analytic mechanism is proposed in Sec-
tion 5. Performance evaluation of our proposed models is given in
Section 6 and concluding remarks are made in Section 7.

2. Related work

A comprehensive study has been carried out on healthcare big
data analysis, processing and dimension reduction using various
distributed parallel processing methods. In [4], authors discuss
the recent developments in healthcare big data. In [39], Backward

Sequential Elimination and Joining (BSEJ) method is proposed for
applying the dependencies in classifying instances. However, the
time and space complexity is very high for BSEJ algorithm. In [32],
a dimension reductionmethod is proposed for the improved image
registration of high-dimensional data, which combines both image
pair and detailed texture. In [10], a dimension reduction mecha-
nism is introduced by the authors, where pruning is done based
on the information gain ratio of the decision tree to improve the
accuracy of theproposedPRF algorithm.However, the tree building
time is so high, which increases exponentially with increase in
height of a tree. Hence, a Modified Conjunctive Attribute (MCA)
algorithm is proposed in our work for dimension reduction of the
healthcare data to improve the accuracy of Semi-Naive Bayes (SNB)
algorithm.

In Big Data processing, Storm [18] is commonly used for near
real-time streaming processing. Mostly, Storm platform is found
costly in terms of processing time and communication delay due
to different frameworks. Hence, the in-memory, cluster computing
Spark [5] Streaming platform is used as our processing model for
the near-real time streaming and batch healthcare data processing.
In any parallel processing environment, data locality is one of the
most important performance bottlenecks as missing of any parti-
tions of the data block during execution leads to processing delay.
In [16], a data-locality-aware scheduler is proposed for guarantee-
ing the data locality. In [28], splitting and combination algorithm
for skew intermediate data blocks (SCID) method is proposed for
data placements in Spark environment to improve load balancing
for reduce tasks. However, SCID method takes more time as sam-
pling and sorting are performed. Even, the intermediate results are
fetched froma specific bucket, which lead to a bottleneck situation.
Hence, an adaptive Optimal Data Distribution (ODD) algorithm is
proposed in this paper to overcome the above data locality issues.

In [29], a sub-task scheduling framework ‘‘Millipedes’’ is pro-
posed for Yet Another Resource Negotiator (YARN) including
MapReduce and Spark, where each subtask is allocated to the
nodes by the local scheduler depending on the resource usage.
However, there is no consideration of overall job completion as the
total jobs need to be finished within a certain deadline, i.e. SLA.
In [34], a job scheduling algorithm is proposed by the authors,
where jobs are assigned to the nodes based on data locality using
delay scheduling. However, scheduling of priority jobs with SLA
is not considered in the existing schedulers. In [36], a scheduling
mechanism is proposed for MapReduce jobs. However, the impact
of distort data set on the execution time of jobs is not considered
by the scheduler. In [37], a distributed scheduling algorithm is
designed to schedule the real-time skewedMapReduce jobs. How-
ever, a highperformance overhead is incurreddue to repartitioning
and prediction of partition size.

In [23], a detailed feature analysis of big data schedulers is
addressed, where scheduler latency is found to be the most im-
portant performance characteristic of the scheduler. In [20], a
balanced resource schedulingmechanism is proposed tominimize
the resource cost in multi-cloud environment. However, the com-
munication time is higher in a multi-cloud environment, which
induces the processing delay for healthcare patient data. Almost,
all existing models have higher processing time for the healthcare
prioritized jobs in an emergency condition. Hence, a Dynamic Job
Scheduling (DJS) algorithm is proposed to address the key under-
lying issues such as processing of batch and streaming data based
on priority of the jobs.

Prediction models play a vital role for future disease prediction
upon analyzing the large volumeof healthcare data. In [30], authors
propose the disease prediction model by using different types
of artificial neural networks (ANNs). However, ANN has higher
processing latency as random weights are associated with each
layer during the training of the model. Any small change in the
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input data set has a visible impact on the model that results the
unstable output. A predictive model is proposed in [7] by using the
ECG features and Naive–Bayes classifier for ventricular arrhythmia
disease. However, the clinical data sets such as blood pressure, and
chest pain are not considered as the input parameters. Moreover,
the dependency among the input parameters cannot be considered
in the Naive–Bayes classifier. Hence, a Parallel Semi-Naive Bayes
(PSNB) based probabilistic method is planned in this paper for
healthcare Big Data analysis.

2.1. Motivation and contributions

Most of the data analytic and processingmechanisms are prone
to delay when the input data volume and velocity are very high
even though the inter-dependencies among the input healthcare
parameters are not considered. Hence, it is highly essential to
design a dynamic analytic algorithm for both batch and realtime
healthcare Big Data. Basically, for processing real-time streaming
data, Apache Storm is used. However, processing of both batch and
streaming data is found to be time consumingwith low throughput
as two different APIs are used by Storm. In themedical application,
some emergency patients data need to be processed in priority
basis. To the best of our knowledge, no work considers the current
health condition, disease severity, emergency factor and SLA level
altogether to process the healthcare big data in a priority basis.
Hence, priority of the patient’s emergency data is considered along
with the above constraints to process the data in Spark platform.

Furthermore, processing delay occurs during job scheduling.
In Spark, FIFO and FAIR schedulers are available for concurrent
queries. Basically, FIFO is the default scheduler in Spark for stan-
dalonemode and first job is executed with highest priority over all
other jobs. However, the first execution of large processing time
has significant delay impact on the subsequent job executions. To
overcome the FIFO problem, FAIR scheduler is introduced in Spark
0.8 version, which is the best scheduler in multi-processing envi-
ronment. All the jobs are executed in a RoundRobinmanner in FAIR
scheduler, where all jobs get an equal chance for execution. How-
ever, the FAIR scheduler does not consider the resource constraints
such as processing core, available memory, network bandwidth
and CPU utilization of the workers, which lead to delay in total
job completion time. Thus, the existing scheduling mechanisms
cannot be applied to emergency patient streaming data analysis
in healthcare environment. Hence, a DJS algorithm is proposed
to schedule both prioritized batch and streaming data. The major
contributions of our work can be summarized as follows.

• SLA based healthcare big data analytic architecture is de-
signed to process both batch and streaming patient data in
Spark platform.
• Ranking of patient’s data based on SLA, patients health con-

dition, disease severity and emergency situation is made to
improve the processing speed.
• Efficient data distributionmechanism is designed to allocate

both batch and streaming data among the Spark worker
nodes.
• Priority based job allocation algorithm is designed to allo-

cate jobswithminimum inter-network latency and process-
ing time.
• Probabilistic Semi-Naive Bayes algorithm is designed to an-

alyze and predict the future health condition of the patients
taking inter-dependency among healthcare parameters.
• Algorithm is designed to reduce dimension of the input

healthcare parameters for improving accuracy of prediction.

Fig. 1. Proposed data source and processing model in multicloud.

3. Problem formulation

Let us consider a hybrid healthcare multicloud environment,
where h number of hospitals are present in a set H = {H1,H2,

. . . ,Hh}. Each hospital is coupled with different users such as
doctors, outpatients and Body Area Networks (BAN) patients as
shown in Fig. 1. Here, the outpatients are referred to as the patients
who attend the hospital for treatment without staying there for
treatment. Similarly, BAN patients are referred to as the chronic
disease patients with smart sensors to monitor their health con-
ditions round the clock. All the users act as the data sources of
healthcare Big Data platform.

3.1. System model

Let d be the number of doctors present in a set Dh
i , where i =

{1, 2, . . . , d} of hth hospital, ∀h ∈ H . Thus, Dh
i = {D

h
1,D

h
2, . . . ,D

h
d},

∀i ∈ D. For example, D3
2 represents the doctor 2 that belongs

to the hospital 3. Let p be the numbers of outpatients present in
hth hospital which can be represented in a set Ph

i , where Ph
i =

{Ph
1 , P

h
2 , . . . , P

h
p },∀i ∈ P and∀h ∈ H . For example, P2

1 represents the
patient 1 in hospital 2. In addition to the outpatients, BAN patients
are also available with chronic disease and also registered in a
hospital. Similarly, let b be the number of BAN patients present in
a set Bh

i , where Bh
i = {B

h
1, B

h
2, . . . , B

h
b}, ∀i ∈ B, ∀h ∈ H . For example,

B3
3 represents the BAN patient 3 that belongs to the hospital 3. For

simplicity, it is assumed that the doctors, outpatients and BANs
belong to a particular department in the hospital.

In our study, total N number of geo-distributed data centers
are considered where both internal and external cloud data cen-
ters are included. In our proposed model, an external cloud is
adopted for processing of hard deadline based jobs if unable to
accommodate in internal cloud which results faster processing
and load balancing. In this hybrid model, let m be the number
of Inter-cloud Data center (ID) and n be the number of Exter-
cloud Data center (ED) that are present for healthcare data storage
and processing. The ID and ED sets can be represented as ID =
{ID1, ID2, . . . , IDm} and ED = {ED1, ED2, . . . , EDn}, respectively.
Hence,N= {{ID1, ID2, . . . , IDm}∪{ED1, ED2, . . . , EDn}}. Let ℓbe the
number of gateways that are connectedwith h number of hospitals
for data transmission and the gateway set can be represented as
G = {G1,G2, . . . ,Gℓ}. Those m number of IDs are connected with
ℓ number of user-side gateways and n number of EDs for data
transmission. The user generated data and requests are redirected
by the gateways Gi to any IDj or EDk in multi-cloud, where i ∈ G,
j ∈ ID and k ∈ ED.
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Fig. 2. Proposed Spark architecture for streaming and batch data processing.

3.2. Proposed spark architecture

In this subsection, a healthcare big data analytic and processing
architecture is proposed for both streaming and batch data using
multi-cloud (ID and ED) Spark platform as shown in Fig. 2. All
healthcare data are collected from different users such as doctors,
outpatients and BAN patients. Basically, the Request Handler is re-
sponsible for interaction and handling of the data and computation
intensive queries. Hence, a RequestHandler is used in our proposed
model for handling data and query. The collected data are catego-
rized as either batch or streaming type based on their arrival rates
(λ). In Spark Streaming, the patient data and upcoming analysis
requests are divided into small RDDs objects and channeled into
different parallel streams based on their λ, block (βL) and batch
(βA) intervals. Let us consider a cardiac patient and an orthopedic
patient, where data of the Cardiac patient are generated much
faster as compared to an Orthopedic patient as Cardiac related
to the ongoing observation of the hearts i.e. streaming data and
Orthopedic is related to the periodic observation or batch data.
In this example, streaming and batch data are channelized into
stream1 and stream2, respectively. Similarly, the jobs queued into
the streams based on the priority of the patients are handled by the
Request Handler. Before execution of any job in the IDs or EDs, the
Estimator (Ξ )must calculate the required processing time (T P ) and
required memory (ξR) of the job during the profiling phase.

In this healthcare scenario, some emergency patients exist,
where prioritized jobs such as the data analysis of the Intensive
Care Unit (ICU) patients and the doctors query during any oper-
ation are also executed continuously. Therefore, the emergency
patient jobs are prioritized based on the SLA, current health con-
ditions (α), disease severity (ψ) and emergency factor (ε). Hence,
the patient’s health condition analysis must be finished within
the SLA which refers to the hard deadline. Similarly, some batch
jobs are executed on the large volume of healthcare data such
as any chronic disease patients historical data analysis which can
tolerate some admissible time delay known as a soft deadline. In
this situation, hard deadline based jobs get higher priority than soft
deadline based jobs.

The collected patient data are placed in the local cachememory
(ξc) of theworker nodes by themaster node based on the availabil-
ity of the storage space. Even, if some data blocks are not fit in ξc ,
then those extra blocks are transferred to the secondary memory
(ξs) of theworkerwithin the data center. Similarly, the jobs are also
assigned to the Spark worker nodes by the Spark master in the IDs,
if the estimated time iswithin the SLA. Otherwise, the Sparkmaster
estimates the T P and ξR of the EDs by considering the data transfer
time (T τ ). It is assumed that there is no data transfer time within
the IDs. This profiling phase of the job is executed on both batch
and streaming type data sets. Zookeeper is used to update and
manage the resources between IDs and EDs. Eventually, the jobs are
assigned to the most suitable worker nodes by the Spark master
which having minimum processing time based on the previous

estimation Ξ . Finally, the output of the jobs from IDs and EDs are
combined together to produce the final output and send back to
the users for better patient care.

4. Healthcare Big Data computation

Big Data computation is a major aspect for any data intensive
applications due to agile and immense data volume. In our Big
Data processing, the healthcare patients data and their associated
jobs are processed in parallel and distributed fashion on Spark
platform. Before any data analysis, the data must be placed on
the worker nodes to achieve the data locality, which has great
impact on the execution time. To achieve the best locality for both
batch and streaming data, an ODD algorithm is proposed and dis-
cussed in this section. Besides, the analytical jobsmust be executed
efficiently without violating the SLA by considering the resource
constrained such as CPU, memory and network bandwidth. Hence,
a DJS algorithm is explained in this section by considering the
resource constrained and priority of the jobs. In patient monitor-
ing, some emergency patients may arrive based on their current
health status, disease severity and emergency condition. Hence, a
GPS algorithm is proposed to prioritize the patient data and jobs
based on the health conditions. The symbols for healthcare big data
computation are listed in Table 1.

4.1. Global priority setting

In this section, the global priority of the patient is decided by
considering the SLA, current health condition (α), disease severity
(ψ) and emergency factor (ε). Let ρφmin and ρφmax be the minimum
andmaximum range for each health parameter (φ), respectively. In
healthcare domain, doctors rely on the value of clinical outcomes
of the health parameters as an evidence of the disease. As investi-
gated in [12], stage IIa in high risk (IIaHR) and low risk (IIaLR) colon
cancer patients is identified based on the pathological features. It
is observed that maximum diameter of a tumor in IIaLR group is
< 4 cm, whereas the tumor diameter in IIaHR group is > 4 cm.
Similarly, age, Body Mass Index (BMI), Hemoglobin, etc. can have
different levels of severity and therefore, we generalize the disease
risk of a patient by assigning α,ψ , and ε. For example, Eosinophil is
a parameter for the patient, i.e. φ = Eosinophil, where the normal
range is ρEosinophil

min = 0 to ρEosinophil
max = 5. During the priority setting,

α,ψ and ε are set based on the value of ρφmin and ρ
φ
max. If value ofφ is

within the range of ρφmin and ρ
φ
max, α is set as αN ,ψ is set asψ L and ε

is set as εN , whereαN ,ψ L and εN are the values of normal condition
for α,ψ and ε, respectively. Similarly, in another situation, if value
ofφ lieswithin ρφmin−∆ and ρφmax+∆ from the normal ranges, then
α is set as αS ,ψ is set asψH and ε is set as εN , where αS ,ψH and εN
are the serious, high and no emergency condition values for α, ψ
and ε, respectively. Here, ∆ is the admissible range of each φ for
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Table 1
Symbols and description for healthcare big data computation.

Symbols Description Symbols Description

α Current health condition ψ Disease severity
ε Emergency factor φ Health parameter
∆ Admissible range of each φ ω Weight

ρ
φ

min Minimum range of φ f Priority function

ρ
φ
max Maximum range of φ γ Priority coefficients
λ Arrival rates Γ Global priority
βL Block interval βA Batch interval
ζ Number of jobs δ Number of data blocks
X Number of workers assigned for streaming processing Y Number of workers assigned for batch processing
ξ Storage memory η Size of each data block
Ξ Estimator C Number of CPU cores
T τ Transfer time T E Job execution time
ϖ Transferred packet size ∂ Data transmission rate
LD Link distance SP Propagation speed
QL Queue length Λ Job scheduling function

each patient P . In case of an emergency condition,α,ψ and ε are set
as αS , ψV and εE for the patients, where ψV represents very high
disease severity and the value of φ is lower or higher than ρφmin−∆

and ρφmax + ∆ with emergency condition. If multiple parameters
and their impact on disease severity are considered, variance and
correlation among the parameters should be calculated for the
analysis. Based on the correlation value as High or Low, severity
and emergency factors can be assigned. In this paper, the threshold
values are generalized as they vary from one disease to another.
These threshold values can be set by the analyst by examining
the priority of the patient from the clinical outcomes. Further, a
weight (ω) is calculated based on α and ψ in the initial step of GPS
algorithm as shown in Eq. (1).

ωi(t) = αi(t) ∗ ψi(t) (1)

After determiningω, the global priority function is evaluated to
calculate the priority among the patients and their associated jobs
(analysis and queries). In this study, the logistic function is used as
the priority function (f (ωi(t))) for evaluation as shown in Eq. (2).

f (ωi(t)) =
SLAi(t)

1+ e−ωi(t)∗ε(t)
(2)

In our analysis, three types of priority coefficients are consid-
ered to stabilize the global priority, i.e. High (γ H ), Medium (γM )
and Low (γ L) as shown in Eq. (3).

γ =

⎧⎨⎩γ
H # For High Priority
γM # For Medium Priority
γ L # For Low Priority

(3)

Further, the global priority Γ is calculated based on value of γ
and f (ω) as given in Eq. (4).

Γ (t) =
γ (t)∑
γ (t)
∗ f (ω(t)) (4)

The step by step procedures of priority calculation are shown
in Algorithm 1. Let us consider an example to explain the priority
setting algorithm of the jobs among different patients. In this
example, let P1, P2 and P3 be the patients having jobs J1, J2 and J3,
respectively. Let the SLA values are same for P1 and P2. However,
it is different for the patient P3. For example, the SLA value for P1
and P2 is 5 s, whereas P3 has 6 s. Similarly, the value of γ H , γM and
γ L are set to be 2, 1 and 0, respectively. According to the priority
algorithm, the values of αi, ψi and εi are set for each patient i. In
this healthcare scenario, there will be three cases of priority such
as High, Medium and Low.

4.1.1. Case 1: High priority
The priority for a patient is considered to be high, if and only if

current health condition of a patient is serious and disease severity
along with emergency factor is large for which γ is set as γ H . For
example, let P1 be a serious patient with high value of disease
severity and emergency situation such that value of α1, ψ1 and
ε1 is 0.2, 0.2 and 0.1, respectively. Hence, the weighted factor ω1
is calculated based on the above conditions and is found to be
0.04. Therefore, the priority function f (ω1) is calculated as 2.50.
Eventually, value of Γ1 is calculated based on Eq. (4) and is found
to be 1.66.

4.1.2. Case 2: Medium priority
A patient’s data is considered to be medium priority if current

health condition is serious, disease severity is high and emergency
factor is small for which γ is set as γM . In this case, let P2 be the
patient with high disease severity such that value of α2, ψ2 and
ε2 is 0.9, 0.2 and 1, respectively. Hence, the weighted factor ω2
is calculated based on the above conditions and is found to be
0.18. Therefore, the priority function f (ω2) is calculated as 2.73.
Eventually, the value of Γ2 is found to be 0.91.

4.1.3. Case 3: Low priority
A patient’s data is set to be low priority if current health con-

dition is normal, disease severity is low and emergency factor is
also small for which γ is set as γ L. In this case, let P3 be the patient
with normal health condition and low disease severity such that
value of α3, ψ3 and ε1 is 0.9, 0.9 and 1, respectively. Hence, the
weighted factor ω3 is calculated as 0.81 and the priority function
f (ω3) is calculated as 4.16. The value of Γ3 is found be 0.

It is to be noted that the priorities are arranged in descending
order of the values of Γ . In this example, order of the priorities is
Γ1,Γ2 andΓ3. It is observed that the priority decreases if value of α,
ψ , ε and SLA increases and vice versa. For example, Γ3 has a lower
priority as values of α, ψ , ε and SLA are higher as compared to the
value of Γ1 and Γ2. This GPS algorithm can be implemented on all
patients and their associated jobs. In case of same priority label for
multiple patients is found, a random selection can be performed.
Hence, the data and jobs are queued based on the global priority
of the patients for scheduling and processing without violating the
SLA.

4.2. Optimal data distribution

The main objective of optimal data distribution mechanism is
to allocate both batch and streaming data blocks efficiently among



126 P.K. Sahoo et al. / J. Parallel Distrib. Comput. 119 (2018) 121–135

Algorithm 1 Global Priority Setting (GPS) Algorithm
Require: αi(t) : Current health condition of ith patient at time t .

ψi(t) : Disease severity of ith patient at time t .
εi(t) : Emergency factor of ith patient at time t .
SLA : SLA value (in time) for processing of the jobs.
φi : be the number of health parameters of ith patient.
ρ
φ

min :Minimum range of φi.
ρ
φ
max :Maximum range of φi.
∆ : The admissible range of φi over the normal range.

Ensure: Γi(t) : The global priority of the patient at time t .
Notations: αS

i (t) : Serious health condition of ith patient at
time t .
αN
i (t) : Normal health condition of ith patient at time t .
ψV

i (t) : Disease severity is very high of ith patient at time t .
ψH

i (t) : Disease severity is high of ith patient at time t .
ψ L

i (t) : Disease severity is low of ith patient at time t .
1: Initialize ωp(t) = 0;
2: Γ p

= {};
3: for each patient p in P do
4: if ρφmin ≤ φi ≤ ρ

φ
max then

5: αN
= αi, ψ L

= ψi and εN = εi;
6: else if ρφmin −∆ ≤ φi ≤ ρ

φ
max +∆ then

7: αM
= αi, ψM

= ψi and εN = εi;
8: else
9: αH

= αi, ψH
= ψi and εE = εi;

10: end if
11: The weights (ω) is calculated based on Eq. 1;
12: The priority function (f (ω)) is evaluated based on Eq. 2;
13: if αi(t) = αS

i (t) && ψi(t) = ψV
i (t) && εi(t) = ε

E then
14: Set γ as γ H based on Eq. 3 ;
15: else if αi(t) = αS

i (t) && ψi(t) = ψH
i (t) && εi(t) = εN then

16: Set γ as γM based on Eq. 3 ;
17: else
18: Set γ as γ L based on Eq. 3 ;
19: end if
20: Calculate the global priority Γi(t) based on Eq. 4;
21: Arrange the patients in descending order of Γi(t);
22: end for
23: Return Γi(t);

the Spark worker nodes. Spark streaming supports mini batches of
data sets as input. Based on the arrival rate, we divide the input
data into batches and streaming jobs, which is supported by Spark
DStream, a sequence of RDDs [26].

It is assumed that the patient data are alighted with different
arrival rates (λ). Initially, λi is checked for each ith patient’s in-
coming record. If the patient data arrival rate is continuous and
high (For example, 10pkts/s) with less packet size (For example,
10mb/pkt), those data are treated as the streaming data sets. The
streaming data arrival rate can be symbolized as λSi for ith patient.
Likewise, if the data arrival rate is low (For example, 5pkts/s) with
large packet size (For example, 100mb/pkt), those data are treated
as the batch data sets. The batch data arrival rate can be symbolized
as λBj for jth patient. By taking the advantages of Spark platform,
the streaming and batch data are dispatched in parallel by using
multiple streams to the Spark workers. Once the input data are
segregated as batch and streaming data sets, the Block interval (βL)
and Batch interval (βA) are set for each type of patient data. By
adjusting βL and βA, the total number of jobs (ζ ) can be calculated
to know the overall throughput of the system. The definition of βL,
βA and ζ are described as follows.

Definition 1 (Block Interval (βL)). The block interval is defined as
the interval at which the data are received by the Spark streaming
receivers and are chunked into blocks of data before storing in the
Spark nodes.

Definition 2 (Batch Interval (βA)). The batch interval is defined
as the interval in which mini-batches are received by the Spark
master, where mini-batches are the combination of multiple data
blocks.

Definition 3 (Total # of Jobs (ζ )). The total number of jobs per
stream per batch can be defined as the ratio of the batch interval
(βA) and block interval (βL).

In the Spark model, the number of blocks in each mini-batch
determines the number of ongoing jobs to execute on the worker
nodes. Let βS

L and βS
A be the block and batch interval of the stream-

ing data, respectively. For example, βS
L and βS

A are set to be 100 ms
and 1 s, respectively. Let ζ S be the total number of jobs that can be
executed on the streaming data sets. Hence, ζ S can be evaluated as
βSA
βSL

. In this example, ζ S can be executed as 1000 ms/100 ms, which

is 10. Similarly, let βB
L and βB

A be the block and batch interval for
batch type data sets, respectively. For example, βB

L and βB
A are set

to be 1000 ms and 5 s, respectively. Let ζ B be the total number
of jobs that can be executed on batch type data sets. Hence, ζ B

can be calculated as βBA
βBL

. In this example, ζ B can be executed as
5000 ms/1000 ms, which is 5. If the numbers of jobs are less than
the numbers of cores per CPU within a Spark worker node, an
underload situation occurs. To balance this situation, the number of
jobs can be increased by reducing the block intervals of each job for
the batch intervals. It is to be noted that the data size is samewithin
the mini-batches (batch intervals). However, it can be changed in
the next batch intervals based on each block size and incoming job
size. The computation of the assigned jobs is samewithin the batch
interval βA. However, it can be changed in the next interval based
on the availability of resources such as CPU and memory.

Data placement is a major determinant of the performance of
Spark jobs. For that reason, the data blocks are placed in such a
way that most of the jobs can achieve data locality during the
execution. In our work, an Optimal Data Distribution (ODD) al-
gorithm is proposed for better data locality and faster execution
of the jobs. The complete steps of our proposed ODD algorithm
are shown in Algorithm 2. In our Spark model, the workers are
divided into two different groups within the data centers. Let
X and Y be the number of workers assigned for streaming and
batch data processing, respectively. The basic difference between
the streaming and batch worker is the processing capability and
memory size. The streaming workers are having less ξc and high
processing capability whereas the batch workers are having high
ξc than the streaming workers. Let δ(t) be the total number of data
blocks coming from the setℜ after applyingMCA algorithm at time
t . Moreover, out of those δ(t) blocks, δS and δB number of stream-
ing and batch data blocks need to be placed on the respective
workers for better performance in terms of less T P , where δ(t) =
δS(t) + δB(t). Besides, each βS

A and βB
A must fit in the streaming

(ξ Sc ) and batch (ξ Bc ) local cache, respectively. The required cache
memory is calculated based on the input data blocks as given in
Eq. (5) to store the data sets.

ξ SR (t) = δ
S
∗ ηS

ξ BR (t) = δ
B
∗ ηB

}
(5)

where ξ SR and ξ BR are the total required memory for storage
of incoming streaming and batch data, respectively. In Eq. (5),
ηS and ηB are the size of each streaming and batch data blocks,
respectively.
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Algorithm 2 Optimal Data Distribution (ODD) Algorithm
Require: δ(t) : Total number of data blocks coming at time t .

λi(t) : Data arrival rate for ith patient at time t .
Ensure: Optimal placement of each data block δ at time t .

Notations:
λSi (t) : Streaming data arrival rate for ith patient at time t .
λBi (t) : Batch data arrival rate for ith patient at time t .
ξ SLR and ξ SBR : Required memory of streaming and batch data.
X : Set of workers assigned for streaming job processing.
Y : Set of workers assigned for batch job processing.

1: δ(t) = δS(t) + δB(t);
2: for each data block δi do
3: if λi = ‘‘HIGH" && ‘‘CONTINUOUS" then
4: δS = i; # For streaming data.
5: else
6: δB = i; # For batch data.
7: end if
8: Calculate βS

L , β
B
L , β

S
A , and β

B
A intervals;

9: Evaluate ζ S = βSA
βSL

;

10: Evaluate ζ B = βBA
βBL

;

11: Separate X for streaming and Y for batch data processing
nodes;

12: Calculate ξ SLR and ξ SBR based on Eq. 5;
13: if ξ SLR ≤ ξ

S
c then

14: Assign δSi into ξ Sc of streaming worker [i] ∈ X;
15: else
16: Assign δSi into ξ Ss of streaming worker [i] ∈ X;
17: end if
18: if ξ BLR ≤ ξ

B
c then

19: Assign δBi into ξ Bc of batch worker [i] ∈ Y ;
20: else
21: Assign δBi into ξ Bs of batch worker [i] ∈ Y ;
22: end if
23: end for

The required memories, ξ SR and ξ BR must fit in ξ Sc and ξ Bc , re-
spectively. However, if ξ SR and ξ BR are not fit in ξ Sc and ξ Bc , then the
remaining data blocks are sent to the streaming (ξ Ss ) and batch
(ξ Bs ) secondarymemory of theworker nodes. In another scenario, if
the data blocks are large in volume and cannot be accommodated
in a single worker node, then the remaining blocks are placed in
another local worker node. Basically, the received RDDs are au-
tomatically cleared after execution in Spark streaming. However,
the persisted RDDs are used to store the RDDs in local memory for
future use and accessible to outside the streaming application.

4.3. Dynamic Job Scheduling

In this section, a Dynamic Job Scheduling (DJS) mechanism is
proposed for Apache Spark platform to minimize the processing
time without violating SLA. To the best of our knowledge, priority
based patient job scheduling in Spark platform is the first work
in healthcare domain. Prior to the scheduling, GPS algorithm is
executed to prioritize the patient and their related jobs. The data
related to the prioritized patients are placed onto theworker nodes
by using our proposed ODD algorithm. Hence, the DJS algorithm
is applied on those prioritized jobs for placement. Specifically, a
profiling based analytic model is designed to minimize the job
completion time. Here, the profiling phase is offline before the real
execution. This ensures the reduction of waiting time of the jobs.
Once a job is submitted to the Spark framework, the Estimator (Ξ )
receives the profiling information and uses the DJS and analytic

model for the processing purpose. First of all, the near optimal
processing time and required memory are calculated by the es-
timator for the sample jobs in the profiling phase. Let ΞCPU and
Ξξ be the processing and memory estimator for the sample jobs,
respectively. Later stage of the DJS algorithm, all other jobs are
scheduled and placed on the Sparkworker nodes by comparing the
profiling results. Since Streaming and Batch jobs are considered in
our analysis, profiling is done differently based on the types of jobs.
Irrespective of the job types, the estimatorΞCPUij andΞCPUij can be
expressed as given in Eq. (6), where the processing time estimator
of ith job is scheduled either in jthworker node of IDs or kthworker
node of EDs, where j ∈ X ID and k ∈ XED.

ΞCPUij = T E
ij , i ∈ ζ , j ∈ X ID, # Data in IDs

ΞCPUik = T E
ik + T τik, i ∈ ζ , k ∈ XED, # Data in EDs

}
(6)

where T E
ij is the ith job execution time on jth worker node in

IDs when data locality is achieved. Similarly, T E
ik and T τik are the

execution and transfer time, respectively, on kth worker node in
EDs when the data locality is not achieved within the IDs or the
estimated execution time is greater than the SLA, i.e. T E

ij > SLAi.
T E
ij and T E

ik are calculated as deduced in Eq. (7).

T E
ij =

(ζT − ζE) ∗ T
ζ

i

βAi ∗ Cj

T E
ik =

(ζT − ζE) ∗ T
ζ

i

βAi ∗ Ck

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

where ζT and ζE are the total and already executed streaming
jobs, respectively. Here, T ζi is the execution time, which is defined
as the time taken by the ith job to be processed in a specific worker
node. βAi is the batch interval of ith job. In this equation, Cj and
Ck are the number of CPU cores present in jth and kth node of ID
and ED, respectively. Conversely, if the node cannot achieve data
locality in the IDs or the T E

ij is higher than the SLA, then the jobmust
be moved to the EDs for execution. Hence, the additional network
traffic delay is occurred. The additional traffic delay T τik for ith jobs
can be expressed as given in Eq. (8).

T τik =
ϖ

∂
+

LDk
SPk
+

QLk

λi
(8)

whereϖ is the transferred packet size, ∂ is the data transmis-
sion rate and λi is the data arrival rate of ith job. LDk, SPk and QLk
are the link distance, propagation speed and queue length of the
network, respectively, for the worker node k ∈ XED. Further, the
estimator for the required cachememoryΞξ i of ith job is estimated
as expressed in Eq. (9), which is same for both IDs and EDs.

Ξξ i = δi ∗ η (9)

where δi is the numbers of data blocks needed to be processed
for ith jobs and η is the size of each data block.

Upon determining the values of ΞCPU and Ξξ in the profiling
phase, the final job assignment is performed based on the values
of the profiling parameters. In our analysis, ζ is channelized to
the workers by the Request Handler. Λ(ζ ) is the job scheduling
function for the prioritized jobs as defined in Eq. (10).

Λ(ζi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Assigned to node X ID
j ← ζi

If (ΞCPUij ≤ SLAi &&Ξξ i ≤ ξcj)
Assigned to node XED

k ← ζi
If (T E

ij > SLAi &&ΞCPUik ≤ SLAi
&&Ξξ i ≤ ξck)

Reject Otherwise

(10)

where ith job ζi needs to be placed in jth Spark worker node in
the IDs, i.e. X ID

j . Here, ΞCPUij is the estimation time for processing
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Table 2
Symbols and description for healthcare big data analysis.

Symbols Description Symbols Description

p Number of patients Υ Class label of the disease
MΦ Health parameter matrix MCL Class matrix
Count Counter variable of the class υ Class label
Ω Threshold ℜ Reduced set of the parameters
ℵ Tuple Θ Class probability
µ Mean value σ 2 Variance
℘ Conditional probability E Evidence

ith job in jth Spark worker, which needs to be less than or equal to
the SLAi. Further, the required memory Ξξ i for ith job must satisfy
the local cache ξcj of jth Spark worker node. Hence, the ith job is
placed in jth Spark worker if and only if it satisfies both CPU and
memory requirements. However, if the T E

ij is greater than the SLAi
due to heavy load in node j, the ith job must be executed in EDs
to satisfy the SLAi. Therefore, T P

i is increased due to occurrence of
the data transfer time (T τik) from kth node. Eventually, the ith job
is scheduled in kth Spark worker of ED, if the processing time and
memory satisfy the SLA. The complete steps of DJS is presented in
Algorithm 3.

Algorithm 3 Dynamic Job Scheduling (DJS) Algorithm
Require: SLA : SLA value (in time) for processing of the jobs.
Ensure: Schedule each job ζi dynamically on Spark workers.
1: for for each patient p in P do
2: Γ (t): Execute GPS();
3: Execute ODD();
4: Arrange the patients in descending order of Γi(t);
5: end for
6: for each job ζi do
7: EstimateΞCPUi for ith job as in Eq. 6;
8: EstimateΞξ i for ith job as shown in Eq. 9;
9: end for

10: ifΞCPUqi ≤ SLAi &&Ξξq ≤ ξci then
11: AssignΛ(ζi) to ID worker node X ID

q as in Eq. 10;
12: else if T E

i > SLAi &&ΞCPUik ≤ SLAi &&Ξξk ≤ ξci then
13: AssignΛ(ζi) to ED worker node XED

k as in Eq. 10;
14: else
15: Reject;
16: end if
17: ReturnΛ(ζ );

5. Healthcare Big Data analysis

In healthcare Big Data analysis, we intend to predict the future
disease of the patient based on their health parameters. In a med-
ical environment, the immense volume of patient physiological
data are generated with high dimensions. In fact, out of all the data
sets, only few dimensions of data have very high impact on the dis-
ease prediction. Hence, a dimension reduction is awfully essential
to minimize the data volume and maximize the accuracy of the
outcomes. For example, let us consider a patient that belongs to
the Cardiology department, where the disease severity is different
for each individual with the same number of health parameters.
Therefore, in our proposedwork, we are interested to find themost
influential parameters with respect to the disease within a specific
department. Hence, those most influential health parameters with
respect to the disease are selected based on our proposed MCA
dimension reduction algorithm. Later, the future disease of the pa-
tients are predicted by using our PSNB prediction algorithm based
on those influential parameters instead of considering all collected
health parameters for analysis. Moreover, dimension reduction
and disease prediction are twomajor components in our proposed
healthcare Big Data analysis. The symbols for healthcare big data
analysis are listed in Table 2.

5.1. Dimension reduction

Prior to the data analysis, the high dimensional input data are
reduced to a finite set by using dimension reduction mechanism
[11]. In our healthcare environment, p number patients present
in a hospital, where each patient belongs to a specific department
∀p ∈ P . Each patient is associated with a class label with respect to
the disease (Pp,Υυ ). Let Υ be the class label set, where υ number
of class labels present, i.e.Υi = {Υ1,Υ2, ...,Υυ}. For example,Υ Card

be the class for heart patients, where c can be a heart disease Yes or
No, i.e.Υ Card

= {ΥYes,ΥNo}. Here, num represents the class label for
heart patient as shown in Fig. 3 Input Data, where 0 represents no
heart disease, 1, 2 and 3 represent the heart disease with different
severity. Let φ be the numbers of health parameters present in a
set Φ for each patient Pi, where Φi = {Φ1,Φ2, . . . ,Φφ}. Before
predictive analysis, the health parameters (Φ) of pth patient are
presented in the form of a health parameter matrix (MΦ

p ) as given in
Eq. (11).

MΦ
p =

( Φ1 Φ2 . Φφ

Pp (Pp,Φ1) (Pp,Φ2) . (Pp,Φφ)
)

(11)

Besides, total p numbers of patients are available, where p ∈ P
with φ number of health parameters. The health parameters are
stored in class matrix (MCL

p ) as given in Eq. (12).

MCL
p =

⎛⎜⎝
Φ1 Φ2 . Φφ

P1 (P1,Φ1) (P1,Φ2) . (P1,Φφ)
P2 (P2,Φ1) (P2,Φ2) . (P2,Φφ)
. . . . .

Pp (Pp,Φ1) (Pp,Φ2) . (Pp,Φφ)

⎞⎟⎠ (12)

Let us consider an example, where a patient from the Cardiol-
ogy(Crd) department has 14 different parameters related to the
heart disease [19]. For example, p number of Cardiology patients
have multiple heart disease parameters. Now, the class matrix
MCLCrd

p can be represented as given below.

MCLCrd
p =

⎛⎜⎝
Age Sex cp trestbps . thalach

P1 62 1 1 145 . 145
P2 68 1 4 132 . 160
. . . . . . .

Pp 70 2 2 156 . 139

⎞⎟⎠
In this example, 1 and 0 in Sex column represent the male and

female patients, respectively. Similarly, cp type can be represented
as 1: typical angina, 2: atypical angina, 3: non-anginal pain and
4: asymptomatic pain and other health parameters hold their
respective values. It is very tedious task to consider all φ number of
parameters for a heart patient, where some of them are irrelevant
to the disease. Hence, we remove some parameters considering
only the most influential parameters using our MCA algorithm.
MCA algorithm is applied only once in the initial phase of the
analysis as the most influential parameters are fixed for a specific
department. However, it is re-executed for analysis once a new
parameter is added to the list. MCA algorithm has four identical
steps as shown in Fig. 3, i.e. Preprocessing, count the occurrence of
class label, attribute pruning based on the threshold and conjunct
the parameters based on the highest count value.
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Fig. 3. Example of execution of MCA algorithm.

Initially, all φ number of health parameter attributes are taken
as input for our proposed MCA algorithm, where ∀φ ∈ Φ . In the
preprocessing phase, all φ number of original attribute values are
transformed into an annotated format to represent the severity of
that particular health parameter. For example, the CP value 1 is
transformed to Low for patient number 1 in the first step of theMCA
algorithm as shown in Fig. 3. In the next step ofMCA algorithm, the
class label occurrence for each attribute is counted based on the
annotated format values. Let Count be the counter variable to count
the class label υ occurrence for each parameter φ, where ∀υ ∈ Υ
and ∀φ ∈ Φ as shown in Eq. (13).

Countφυ =
p∑

i=1

φ∑
j=1

υ∑
k=1

count[MCL
[i][j][k]] (13)

For example, the Count value is 4 for class label No of Low
cheat pain parameter. In the third step ofMCA algorithm, attribute
pruning is performed based on a threshold (Ω) value, which is
decided by the lower frequency value. For example, the threshold
value is set as 2 in this heart disease case. The parameters are
deleted whose Count values are less than the threshold. For exam-
ple, the Count value is zero for Yes label of Low chest pain, which
is deleted from the list. Further, the conjunction is carried out for
all possible combinations and compute the joint Count value. The
highest Count value is considered as the most influential parame-
ters with respect to the disease. The most influential parameters
are selected for the prediction purpose by discarding all other
health parameters as they have less influence on the occurrence
of the disease. For example, CP and ECG jointly provide the Count
value as 7 for No class label and 10 for Yes class label, which is
highest among all other joint parameters. Hence, in this example,
CP and ECG are considered as the input for predictive analysis.
Finally, the most influential parameters are stored in a reduced set
ℜ, where ℜ < MCL, which is the output of our MCA algorithm by
which we can reduce the dimension of the health parameters. The
formal steps of theMCA algorithm is described in Algorithm 4.

5.2. Prediction of heart disease

Recently, most of the data analysis methods lack adequate
functionality to predict the future health condition of a patient

Algorithm 4MCA Algorithm
Require: MCL

: The health parameters class matrix with the class
label.

Ensure: ℜ : Reduced parameter set.
Notations:

1: Ω = Threshold;
2: Ψ [] = {Ψ1, Ψ2, ..., Ψψ };
3: Φ[] = {Φ1,Φ2, ...,Φφ};
4: Υ [] = {Υ1, Υ2, ..., Υυ};
5: Count[i][j][k] = 0;
6: Transform each Mij into an annotated format based on Class

Label and severity;
7: for each patient p in P do
8: for each parameter φ inΦ do
9: Calculate the Countφυ value for each class label based on

Eq. (13);
10: end for
11: end for
12: if Count[p][φ][υ]<Ω then
13: DiscardΦφ;
14: else if Count[p][φi, φj][υ]<Ω then
15: DiscardΦφi,φj , where i ̸= j;
16: Otherwise, ℜ = {Φφi,φj};
17: end if
18: Return ℜ;

accurately as the healthcare data have many conditional depen-
dencies and uncertainty. Hence, a probabilistic predictive model
is designed here to predict the future disease condition of the
patients. Basically, the predictive modeling can be Supervised,
Unsupervised or Semi-supervised, where the class label is known
for Supervised learning. Similarly, the class label is unknown for
Unsupervised learning. In some cases, the class label is known for
a specific data set, i.e. training data and unknown for other data
sets, which are Semi-supervised learning. In our analysis semi-
supervised learning is used as the class label, which is known for
some existing patients and is unknown for the newpatients, which
needs an accurate prediction.

The Naive–Bayes model has popularity due to its accuracy and
efficiency as compared to other state-of-art algorithms. In order
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to improve the accuracy and make the model more realistic for
healthcare, Semi-Naive Bayes model is adopted to overcome the
problems of the Naive–Bayes model. The Semi-Naive Bayes model
allows certain degree of dependency among the input parameters
and has different distribution mechanism for future estimation of
the parameters. Basically, Gaussian distribution is used for con-
tinuous data, where the continuous incoming values (patients)
are associated with each class (Heart disease class) in a Gaussian
manner. Therefore, Gaussian distribution is used in our healthcare
scenario for Semi-Naive Bayes.

Let a Tuple (ℵ) exists for each patient such that ℵ = ⟨P,Υ ⟩,
where a class label Υυ is assigned to each patient Pp, i.e. ∀υ ∈ Υ
and ∀p ∈ P . Further, the class probability (Θ(Υ |φ)) is predicted for
any unlabeled patient p. Θ(Υ |φ) is evaluated by calculating dif-
ferent sub-steps such as mean (µφ), variance (σ 2

φ ) and conditional
probability (℘). Further, µυφ is calculated for each class label Υυ ,
where ∀υ ∈ Υ , which is expressed in Eq. (14).

µυφ =
1
φp

φ∑
ı=1

p∑
ȷ=1

MCL
p [ı][ȷ] (14)

After themean calculation, the variance (σ 2
φ ) is evaluated for entire

cluster matrix as expressed in Eq. (15).

σ 2
φ =

1
p

φ∑
ȷ=1

p∑
ı=1

(Pυı φȷ − µ
υ
φ)

2 (15)

Further, the conditional probability for each class with respect
to the parameters (℘(υ|φ)) is calculated using Gaussian Semi-
Naive Bayes model as shown in Eq. (16).

℘(υ|φ) =
1

√
2πσ 2

e

⎛⎝−(φυp −µυφ )2
2σ2

⎞⎠
(16)

where φυp is the input value for the attribute φ of the class υ that
belongs to pth patient. Furthermore, the probability (Θ(υ|φ)) of
the class (υ) for the patient p is calculated using Eq. (17).

Θ(υ|φ) = argmax
υi

(
℘(υi)

φ∏
j=1

℘(υi|φi, φj)
E

)
(17)

Where E is the evidence described in Eq. (18).

E =
υ∑

i=1

φ∏
j=1

℘(υi|φj), where i ̸= j. (18)

Let us continue the example as discussed in dimension reduc-
tion section. After dimension reduction, the reduced parameters
are kept in the reduced set ℜ. In our example, CP and ECG are
two input attributes present in ℜ as our training set, where ℜ =
{CP, ECG}. Let Υ Card be the heart disease class for heart patients,
where Υ Card

= {υYes, υNo}. Further, the mean value is calculated
separately for all Yes and No patients, i.e. µYes

CP , µ
Yes
ECG, µ

No
CP and µNo

ECG.
Afterward, the variance is evaluated for both CP and ECGparameter
of the class Yes and No, i.e. σ Yes2

CP , σ Yes2
ECG , σNo2

CP and σNo2
ECG . Further,

the conditional probability (℘) is calculated for individual and
conjuncted CP, ECG of Yes and No class, i.e. ℘(Yes|CP), ℘(Yes|ECG),
℘(No|CP),℘(No|ECG),℘(Yes|(CP, ECG)) and℘(No|(CP, ECG)). Even-
tually, Θ(Yes) and Θ(No) probabilities are calculated for each pa-
tient in the training phase. Finally, testing is performed to predict
the class label of an unknown patient, i.e. Υu, where CP and ECG
values are 4 and 2, respectively.Θ(Yesu) andΘ(Nou) are calculated
and the class is assigned based on themaximum value. Here, value
of Θ can be negative, greater than or less than 1 as probability
density is used rather than a probability for continuous values of
CP and ECG. The value of Θ(Yesu) is larger than Θ(Nou) as shown

in Fig. 4. Hence, the patient having heart disease for respective CP
and ECG values can have necessary medications as prescribed by
the doctors.

Algorithm 5 PSNB Algorithm
Require: ℜ : Reduced parameter set.
Ensure: Θ(υ|φ) : Predicted class probability.
1: ssc = spark.StreamingContext();
2: for each patient p in P do
3: for each parameter φ in ℜ do
4: Design the dependent and independent DAGs;
5: Load RDDs = spark.read.load(DAGs);
6: RDDData = ssc.parallelize(RDDs);
7: flatmapOp = RDDData.flatmap{
8: Calculate the mean (µφ) using Eq. (14);
9: Calculate variance (σ 2

φ ) using Eq. (15);
10: Calculate conditional probability (℘) using Eq. (16);
11: }
12: predictionOp = map(flatmapOp){
13: Calculate the class probability (Θ(υ|φ)) using Eq. (17);
14: }
15: end for
16: end for
17: action = spark.write.save(Θ(υ|φ));
18: Return action andΘ(υ|φ);

The SNB is executed on the Spark Platform in a parallel and
distributedmanner. The PSNB algorithm is designed to improve the
accuracy and reduce the execution time by taking the advantages
of both Bayesian network and Spark parallelism. In the first stage
of the PSNB algorithm, the dependent and independent Direct
Acyclic Graph (DAG) are created based on the Bayesian influence
network. Since some influential parameters exist in the system,
an influential DAG is created. Similarly, all other DAGs are created
based on the dependent and independent parameters. In the next
stage, the DAGs are assigned to the Spark RDD objects for parallel
execution. In the next stage, the mean (µφ), variance (σ 2

φ ) and
the conditional probability (℘) are executed in the Transformation:
flatmap function of the PSNB algorithm. In the subsequent step of
PSNB algorithm, the class probability (Θ(υ|φ)) is predicted using
the Transformation:map function of Spark by using previous output
of µφ , σ 2

φ and ℘. Finally, the prediction output is stored using
Action: Save function for the users in the PSNB algorithm. Both
flatmapand map jobs are executed on appropriate Spark worker
nodes based on the DJS algorithm for each prioritized patient. The
formal steps of PSNB algorithm is described in Algorithm 5.

The time complexity of Naive–Bayes (NB) algorithm is O(pR),
where p is the number of patients and R is the number of reduced
parameters present in the reduced set ℜ. The time complexity
of the MCA algorithm is O(pφ), where φ is the number of health
parameters for each patient. Hence, the total time complexity of
our proposed PSNB algorithm is O(pR+ pφ).

6. Performance evaluation

Performance of our proposed algorithms is evaluated in a Spark
cluster that comprises one Master and 10 Worker nodes. The
simulation results are compared with the existing methods. Out of
10 Worker nodes, 5 nodes are used in the IDs and another 5 nodes
are used in the EDs to reveal the performance in the real-world
scenarios. The SparkMaster is installed in Asus Rack server (RS700-
X7/PS4) with Ubuntu 14.04 LTS Operating System, Intel Xeon(R)
CPU ES-2620v2 2.10 GHz x 12 CPU, 16 GBmemory and 1 TB storage
configuration. All workers are installed in commodity hardware
with Ubuntu 14.04 LTS Operating System, Intel Core i7-6700 CPU
3.40 GHz x 8 CPU, 8 GB memory and 1 TB storage configuration.
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Fig. 4. Prediction example.

Fig. 5. Average prediction accuracy.

Apache Ambari is used as the data platform management tool for
the cluster provisioning, maintenance and management irrespec-
tive of the clusters. The major components of Apache Ambari are
Hadoop 2.7.1, Spark 1.5.2., HDFS, YARN 2.7 and ZooKeeper 2.3.4,
Scala 2.10.4. In our experimental setup, two nodes are considered
in ID and another two nodes are used for implementing the ED.

Tomanifest the prediction accuracy of our proposed PSNB algo-
rithm, experiments are performed and compared with the state-
of-art algorithms. The heart disease data sets are taken as input
for our PSNB algorithm collected from the UCI machine learning
repository [19]. The average accuracy of PSNB algorithm for both
batch and streaming data are shown in Fig. 5. Initially, the aver-
age accuracy is low for all the comparative algorithms when the
number of patients are less than 100. As the number of patient
increases, the average prediction accuracy is increased gradually
and has a convergence trend of all these algorithms. The average
accuracy of PSNB prediction is 12.8% higher than that of original
NB algorithm and is 23.8% higher than ANN algorithm when the
number of patients is equal to 300. Therefore, it is observed that the
PSNB algorithm accuracy is improved significantly and the trend
continues for the rest of the patients.

In our observation, processing or job completion time is an
important parameter to observe the efficiency of the algorithm as
shown in Fig. 6. In our proposed model, the job completion time
is defined as the sum of scheduling, execution and transfer time

of the jobs on different nodes within ID and ED. It is observed
that the average job completion time of our proposed model is
less than Hadoop YARN [31] and Bstream [14], respectively, when
the number of nodes are high in ID and ED. For small number of
nodes, the processing time of the proposed model is just above
the Btream, though it is less than the Hadoop YARN. However,
increase in the number of nodes does not enhance the processing
timedue to sparse data and as it needsmore time for execution. The
saturation point for job completion time is achieved after 7 number
of nodes. Therefore, the processing time is directly proportional to
the scheduling, execution and data transfer time.

The average execution time of the job is shown in Fig. 7. For
small data size, i.e., less than 0.40GB (∼= 400 MB), the execution
times of Bstream is less than the proposedmodel as a fixed amount
of time is required for the Spark cluster’s setup and configuration.
Initially, the Batch and Block intervals are decided for the incoming
data sets, which take some time to find the optimum case. How-
ever, a noticeable execution time gap is observed for the larger data
size> 0.40 GB, and the trend continues until it reaches up to 1 GB.
Hence, our proposedmodel has lower execution time thanBstream
and Hadoop YARN for large data sets as most of the jobs achieve
data locality in IDs and EDs. Moreover, the Spark based healthcare
big data processing platform has significant strength over Bstream
and YARN due to in-memory and parallel execution of the jobs.

The priority of the jobs are decided by the priority weight func-
tion (f (w)) as shown in Fig. 8, where SLA, current health condition,
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Fig. 6. Average processing time for different cluster size.

Fig. 7. Average execution time for different data size.

disease severity and emergency factor of a patient are taken as
input for the evaluation. It is clearly observed that the value of f (w)
is increased with the increase in SLA. The f (w) value is found to be
501 for 1000 as value of SLA, where α, ψ and ϵ values are 0.2, 0.2
and 0.1, respectively, which has the highest priority. Similarly, for
same SLA value, with different α, ψ and ϵ values such as 0.9, 0.9,
and 0.9, f (w) is calculated as 674, which has the lowest priority.
The medium priority is evaluated as 540 when value of α, ψ and ϵ
is 0.2, 0.8, and 0.9, respectively. For lower values of α, ψ and ϵ the
condition of the patient is critical. Hence, the lower value of f (w)
is considered as the highest priority.

In Fig. 9, the violation of SLA for different priority jobs in ID
and ED is displayed. The numbers of violations of low priority jobs
are higher than the high priority jobs as the high priority jobs are
executed earlier in order. Even the number of violations are further
reduced by incorporating the EDs during heavy load. For instance,
6 and 3 numbers of low priority jobs are failed to satisfy the SLA
during execution of 50 jobs in only ID and IDwith ED, respectively.
However, less numbers of high priority jobs are failed such as 2 and

1 out of total 50 number of jobs, executed in only ID and ID with
EDs, respectively. Hence, the throughput of the system is increased
by considering both ID and ED in the cloud.

In Fig. 10, the speedup of the proposed model is viewed for
different cluster size and is compared with the existing data pro-
cessing models. The speedup is calculated by taking the ratio of
execution time of the standalone and cluster mode. By considering
the in-memory, parallel execution in cloud-based Spark platform,
the speedup of our proposed model tends to increase with the
increase in the number of worker nodes. For instance, the speedup
of our proposed model almost touches to 0.6 and 1.8 as compared
to Storm and YARN, respectively, when the number of worker
nodes is equal to 7. Thereafter, there is a saturation on the speedup
even though the number of node is increased to 10. Hence, our
proposed model can process the patient data speedily within the
SLA.

As shown in Fig. 11, the communication cost of the proposed
model is evaluated with respect to Spark-MLRF [10]. It is observed
that the shuffle write of the proposed model is less than that of
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Fig. 8. Priority function evaluation for different SLAs.

Spark-MLRF and it outperforms for more number of nodes. For
instance, if the number of worker nodes is increased from 1 to 10,
the shufflewrite of Spark-MLRF is increased from75MB to 420MB.
However, the shuffle write of the proposed model is increased
slowly from 10.5 MB to 80 MB, which becomes steady with the
increase in the number of worker nodes. This is due to the data
locality achieved by the ODD mechanism. There is a significant
reduction of data communication overhead and therefore, our pro-
posedmodel outperforms as compared to other parallel processing
models.

7. Conclusion

In this work, SLA based healthcare big data analysis and com-
putingmodel is proposed, where both batch and streaming patient
data are analyzed in ID and ED environment. A PSNB method is
proposed for healthcare Big Data analysis and a MCA algorithm is
also designed for dimension reduction to improve the accuracy of
PSNB algorithm. Besides, a GPS algorithm is proposed to prioritize
the emergency jobs of the patients. To achieve data locality, anODD

Fig. 9. Violation of SLA for different priority jobs in ID and ED.

Fig. 10. Speedup comparison of Proposed model with BStream and YARN.

algorithm is proposed in this paper. To improve the execution time
of the prioritized jobs, aDJS algorithm is proposed that satisfies the

Fig. 11. Communication using shuffle write.
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SLA. Implementation results show that our forefront healthcare big
data analytic model and proposed algorithms have outperformed
in terms of accuracy and overall job completion time. The pro-
posed model can be conveniently employed in various medical
applications specifically for emergency patient data processing and
analysis.
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