
6104 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Spectrum Allocation With Guaranteed Rendezvous
in Asynchronous Cognitive Radio Networks

for Internet of Things
Sulagna Mohapatra, Prasan Kumar Sahoo , Senior Member, IEEE, and Jang-Ping Sheu , Fellow, IEEE

Abstract—The massive usage of Internet-of-Things devices in
various smart applications enables spectrum scarcity issues. In
order to enhance the dynamic spectrum capability, cognitive
radio network (CRN) is considered as a key technology to address
the spectrum scarcity problem. However, the establishment of
a common communication channel in CRN by considering the
unlicensed heterogeneous devices in an asynchronous environ-
ment is a challenging problem. In this paper, a novel asymmetric
asynchronous channel hopping mechanism is designed, where
secondary users have different sets of available channels and
can enter into the network without any global clock synchro-
nization. The proposed algorithms can guarantee the rendezvous
within a small interval of time with minimum inter rendezvous
intervals. Simulation results show that the designed protocol out-
performs over the existing channel hopping algorithms in terms
of the degree of rendezvous, average time to rendezvous and
throughput.

Index Terms—Asymmetric, asynchronous, channel hopping
(CH), cognitive radio networks (CRNs), Internet of Things (IoT),
spectrum sharing.

I. INTRODUCTION

THE INNOVATIVE Internet of Things (IoT) technology
embedded with various smart applications constitutes a

network of interconnected things, such as sensors and actuators
equipped with different communication interfaces. However,
some portion of the allocated spectrum is over-utilized in the
smart IoT application environment, whereas some part of it is
under-utilized as the IoT devices transmit their data at differ-
ent instants of time based on the application requirements [1].
For example, a smart restaurant embedded with various smart
IoT devices, such as smart light, smart water meter, and smart
chairs are preallocated with certain number of licensed wire-
less channels. The light, fire, and smart chair sensors transmit

Manuscript received July 15, 2018; revised August 29, 2018; accepted
September 16, 2018. Date of publication September 27, 2018; date of current
version July 31, 2019. This work was supported by the Ministry of Science
and Technology, Taiwan, under Grant MOST 106-2221-E-007-019-MY3,
Grant 106-2221-E-182-014, and Grant 107-2221-E-182-073. (Corresponding
author: Prasan Kumar Sahoo.)

S. Mohapatra is with the Department of Computer Science and
Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
(e-mail: d0521007@stmail.cgu.edu.tw).

P. K. Sahoo is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan 33302, Taiwan, and also with
the Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital,
Linkou 33305, Taiwan (e-mail: pksahoo@mail.cgu.edu.tw).

J.-P. Sheu is with the Department of Computer Science, National Tsing
Hua University, Hsinchu 30013, Taiwan (e-mail: sheujp@cs.nthu.edu.tw).

Digital Object Identifier 10.1109/JIOT.2018.2872459

their data very frequently making the allocated spectrum or
channels overcrowded. In contrast, the sensors like weather or
water meter sensors transmit the data in certain intervals of
time, which makes the allocated spectrum under-utilized and
therefore creates the spectrum holes. In this scenario, the light
sensor or the door sensor can utilize the vacant portion of the
weather sensor enabling uniform utilization of the spectrum.
This solution domain can only be possible with the use of
cognitive radio network (CRN) [2].

Cognitive radio (CR) has evolved as a promising technol-
ogy to use the allocated spectrum efficiently in IoT application
environments. Federal communications commission has intro-
duced the CRN technology, which allows the unlicensed
secondary users (SUs) to utilize the unused spectrum assigned
to the licensed primary users (PUs) and therefore enhances
the dynamic spectrum access [1], [3]–[5]. The main objective
of the CRN is to make utilization of the unused spectrum
by fairly distributing it among all the SUs in absence of
the PUs [6]–[8]. Generally, PUs have the higher priority to
utilize the spectrum without interference. However, the unli-
censed SUs are allowed to opportunistically exploit the unused
licensed spectrum called as spectrum holes [6] in absence of
the PUs. Each SU is equipped with one or more CRs to sense
the signals of the PUs periodically within the spectrums to find
out the unutilized available channels, which may vary among
the SUs [9].

Unlike CRN, other wireless communication protocols, such
as ZigBee, Wi-Fi, Bluetooth, and Cellular network do not
have intelligent CRs to sense the vacant spectrum. Hence, it
leads to the nonuniform utilization of the allocated spectrum.
Furthermore, the authorized IoT devices operated on those
traditional wireless technologies do not have the capacity to
share the allocated spectrum with other users even it is unused,
which can be considered as a major pitfall in traditional and
cellular wireless communication technologies [5]. However,
the concept of CRN can be used with the IoT communication
protocols, such as ZigBee, Wi-Fi, and Bluetooth for efficient
utilization of the allocated spectrum dynamically as they oper-
ate on the same 2.4 GHz industrial, scientific, and medical
(ISM) radio band. To fulfill the huge and frequent bandwidth
demands of the mobile devices, combination of CRN with 5G
technology is proposed. The use of CRN with 5G technology
can allow the licensed users of one mobile network to use
the vacant spectrum of another mobile company during the
congestion or network over-utilization.

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0001-7688-5085

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6105

Apart from the advantages of efficient spectrum utilization,
the need for integration of CRN with the IoT is due to the fol-
lowing reasons [5]. The traditional wireless technologies, such
as Bluetooth, Wi-Fi, and ZigBee are operated on ISM band and
support maximum distance up to 100 m. Hence, these legacy
wireless technologies are not suitable for the IoT applications,
such as smart grid, smart vehicular transmission, and environ-
mental monitoring, where the deployed smart IoT devices need
to communicate with far distance base stations. Furthermore,
those traditional wireless technologies do not have any smart
sensing or switching capability in case of any external obstruc-
tion during the data transmission. However, this limitation can
be overcome by using CRN-based IoT paradigm, where the
long distance communication can be achieved with help of the
SUs as they have smart cognitive antennas, which can detect
the neighboring SUs as well as the vacant channels in case of
any congestion.

The fare spectrum distribution quality of CRN as well as the
operation in ISM band, avoid the cost of extra bandwidth pur-
chase. In a smart IoT application environment, the IoT devices
are embedded with multiple heterogeneous wireless commu-
nication technologies, which cause the interference problem
upon mobility of the devices from one place to another.
However, the smart SUs can search the interference-free chan-
nels efficiently in CRN enabled IoT environment, which can
provide better collision-free communication. Furthermore, the
novel CRN technology incorporates the seamless service to
the Internet enabled IoT devices in any place on the go due to
its compatibility with other wireless technologies. However,
IoT devices embedded with traditional wireless technolo-
gies may suffer from noncontiguous communication as the
embedding wireless mechanism may not be available at every
place.

In CRN, SUs can communicate with each other through
the process of rendezvous [10], [11]. They need to meet with
each other in the same available channel at the same time
to establish the rendezvous, which includes both the process
of negotiation and data transfer. In general, rendezvous pro-
cess of SUs in CRN is carried out by channel hopping (CH)
approaches [9], [12], [13]. Each SU hops from one channel to
another to make its rendezvous successful [3], [14] by using
the CH sequences. In this approach, the network is considered
as either synchronous or asynchronous. All SUs normally enter
into the network at the same time in the synchronous environ-
ment, whereas SUs arrive at different time instances without
any clock synchronization [3], [6], [15]–[18] in asynchronous
scenario. The network model is said to be symmetric, if all the
SUs have same set of available channels; otherwise it is said
to be asymmetric, where SUs have different sets of available
channels [6], [15], [16] with at least one common available
channel for the rendezvous.

Following the CH approach, performance of the SUs is
mainly evaluated based on two important metrics, such as
the degree of rendezvous and time to rendezvous (TTR) [6].
Generally, the degree of rendezvous is defined as how many
times two SUs rendezvous with each other in a CH sequence
(CH_Seq). The TTR of an SU is explained as the num-
ber of time slots required for an SU to rendezvous with

another SU. The worst case of TTR is called as the max-
imum TTR (MTTR). Generally, the smart IoT devices are
operated in an asymmetric asynchronous environment, where
each IoT device is equipped with heterogeneous number of
channels having different data transmission time. In this paper,
a novel CH algorithm called asymmetric asynchronous CH
(AACH) is proposed to enable the guaranteed rendezvous
within a short period of time, which is very challenging in
the asymmetric asynchronous environment.

The rest of this paper is organized as follows. Related
works with contributions are presented in Section II. System
model of the proposed CH protocol is given in Section III.
The proposed asymmetric and asynchronous CH protocol is
described in Section IV. Analysis of different network metrics
is given in Section V. Performance evaluation of the protocol
is made in Section VI. Concluding remarks with future works
are presented in Section VII.

II. RELATED WORK

Recently, many researchers focus on various CH approaches
for the communication in CRN considering the asymmet-
ric asynchronous environment. The symmetric asynchronous
rendezvous CH (SARCH) scheme proposed in [3] can bring
rendezvous between the sender and receiver though they have
different sets of available channels. Any SU can act as a
sender or receiver flexibly in SARCH using the same gen-
erated CH_Seq without any preassigned role. To achieve the
guaranteed rendezvous in the asymmetric scenario, authors
have introduced SA-adaptive CH sequences by replacing each
unavailable channel of an SU with its available channel in
its SA-default sequence. However, the degree of rendezvous
is very less and is nonuniform. Besides, the MTTR value is
large enough, i.e., 2(2N + 1).

In [11], dynamic asymmetric-role quorum-based CH
(D-QCH) and symmetric-role quorum-based CH (S-QCH)
algorithms are proposed considering the asynchronous asym-
metric scenario. Though, SUs are preassigned as sender or
receiver in D-QCH before the data transmission, no role is
preassigned to SUs in S-QCH. The degree of rendezvous of
both S-QCH and D-QCH is <N with large MTTR value ≈ 2N
and 2N2, respectively. In [14], a fast rendezvous CH algo-
rithm (FRCH) is proposed for the asynchronous environment,
where the number of available channels N may be same or
vary for the SUs. The length of one CH period in FRCH is
N(2N + 1), where N represents the number of rounds and
2N + 1 signifies the number of time slots in each round.
Besides, the MTTR value is equal to the length of one CH
period, i.e., N(2N + 1) in FRCH. Furthermore, the numbers
of available channels are under-utilized in FRCH as the ren-
dezvous occur at some particular available channels during the
entire CH_Seq.

The enhanced alternate hop and wait (E-AHW) [15] proto-
col is designed for asynchronous symmetric and asymmetric
environment. Each SU generates a 49-element ID sequence
in E-AHW comprising “2” as the most significant element
and the medium access control address of the SU. Each ele-
ment of the ID sequence is associated with an elementary

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6106 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

CH_Seq. The degree of rendezvous in E-AHW is very small,
i.e., ≤ 15% with large MTTR value, i.e., 3nP, where P is
the smallest prime number > N and n is the length of the
element ID sequence. Liu et al. [16] have designed a jump-
stay (JS) CH algorithm combing the jump and stay patterns
in the asynchronous asymmetric environment. The CH_Seq
is divided into 2N inner-rounds in JS, where each inner-round
consists of a jump pattern and stay pattern of 2P and P number
of slots, respectively, where P > N and P is a prime number.
According to the protocol, SUs hop on each available channel
in the jump-pattern and stay on a specific channel in the stay-
pattern. In JS, it is very difficult to achieve the rendezvous due
to selection of different stay channels and random common
available channel in the jump-pattern by the SUs. Moreover,
the MTTR between two SUs is very large, i.e., ≈3P.

An enhanced JS (EJS) CH algorithm is proposed in [17],
where each round comprises 3P number of slot indexes for
the jump pattern and P number of slot indexes for the stay
pattern. However, the performance of EJS in terms of MTTR
and degree of rendezvous is ≈4P and ≈N, respectively, which
is not very impressive. The asynchronous CH prime sequences
(ACHPSs) scheme is proposed in [18], where SUs can enter
into the network without any global clock-synchronization.
The CH_Seq of length p2 is generated in ACHPSs by concate-
nating p number of periods, where each period is composed
of p number of time slots and channels. The proposed proto-
col achieves higher rendezvous-success rate in two-user and
multiuser cases by implementing different collision-avoidance
schemes. However, the MTTR value of ACHPSs is very large,
i.e., p2 − p. Furthermore, each SU shares the same p num-
ber of available channels, which is not efficient in case of
heterogeneous dynamic spectrum environment.

Dual non-ID and ID-based CH algorithms named as T-
CH and D-CH are proposed in the asymmetric asynchronous
environment considering prime number of channels [19].
Although T-CH tries to increase the degree of rendezvous, the
collision-probability is also increased, specifically in multiuser
environment. Besides, D-CH algorithm gives a larger MTTR
value of N2 + 2N with less degree of rendezvous, if both SUs
have different IDs. Monemi et al. [20] have analyzed the prob-
able interference region generated by the SUs for the PUs in
a CRN. However, the proposed work lacks sufficient analysis
for the degree of rendezvous.

From the survey of the current literature, it is concluded that
the performance of the most CH protocols in terms of degree
of rendezvous, available channel utilization, and MTTR is not
so encouraging. In this paper, an AACH protocol is proposed
to increase the degree of rendezvous, minimize the MTTR and
maximize the channel utilization. The main contributions of
this paper can be summarized as follows.

1) The proposed AACH protocol can work for any number
of channels.

2) AACH guarantees at least 2(|N| + 1) number of ren-
dezvous between any two SUs even with single common
available channel, where |N| is the total number of
available channels in the CRN.

3) AACH can achieve smaller MTTR value, which is
<2(|N| + 1).

4) The AACH protocol works efficiently in multiuser sce-
nario without degrading the degree of rendezvous.

III. PROBLEM FORMULATION

A. System Model

Consider a CRN that consists of a set of licensed PUs and
K numbers of unlicensed SUs those reside in a common geo-
graphical region, where K ≥ 2. Each SU is equipped with one
half-duplex radio transceiver, which can sense the spectrum
holes and performs the transmission of control or data mes-
sages. Let, N be the set of available licensed channels in the
CRN indexed from [0, |N|−1] and the channels of set N are
defined as {c0, c1, . . . , cj, . . . , c|N|−1}. Considering the condi-
tions of asymmetric CH, let CM = {c0, c2, cj, . . . , c|N|−2} and
CN = {c2, c3, cj, . . . , c|N|−1} be the different sets of available
channels for SUM and SUN , respectively. For successful ren-
dezvous in asymmetric scenario, there is at least one common
channel between both SUs, which acts the operational or ren-
dezvous channel. Hence, ∃ cj ∈ (CM ∩ CN) such that CM ∩
CN 	= ∅.

The entire network is divided into multiple time slots or slot
indexes those start from 0, 1,. . . , Tp−1, where Tp is length of
the CH_Seq. The hopping process is executed among different
SUs to find a common vacant channel in which negotiation and
data transfer are accomplished during the communication. The
CH pattern of a particular SU is determined by its CH_Seq
and is expressed as CH_Seq = {(0, c0), (1, c1),. . . , (j, cj),. . . ,
(Tp−1, cTp−1)}, where cj ∈ [0, |N|−1] represents the channel
number visited by an SU at jth time slot in a CH_Seq. Let,
CH_SeqM and CH_SeqN be the CH sequences of SUM and
SUN , respectively, with tm and tn as their entry slot indexes.
Consider CMN as the common channel set of both SUs. A
channel cj ∈ CMN is called as the rendezvous channel for
both SUs in asynchronous environment, if (cj, tr) = (cj, ts),
but (tr 	= ts).

B. Generation of Common Sequence Set

A distributed CH mechanism is proposed to generate the
common sequence set (CS), which is used by the SUs to
generate their CH Sequences. Algorithm 1 represents the gen-
eration of a matrix called SeqMat considering the concept of
longest common subsequence (LCS) and Addition Modular
Arithmetic. The designed SeqMat consists of (|N|+1) number
of rows and (|N|+1) number of columns, where each row and
column represents individual Common Sequences. According
to the concept of LCS, the initial row and column is occupied
by empty sequences, i.e., either 0 or φ. Let, aij be any ele-
ment of LCS matrix. The value of aij for first row and column
can be defined as LCSi×j = aij = 0, when i = j = 0. In the
proposed algorithm, the number 0 is replaced with common
available channel Cc of both the SUs. The reason to place
common available channel in the row0 and col0 is to increase
the degree of rendezvous. For the generation of rest of the
elements of SeqMat, the Addition Modular Arithmetic is used.

According to Algorithm 1, Addition Modular Arithmetic is
applied across individual rows except row0, which is already
occupied by the common available channel Cc. Each row

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6107

Algorithm 1 Generation of Common Sequence Matrix SeqMat
Input: N: Set of available channels in the CRN.
Output: SeqMat[i][j] : Common Sequence Matrix.

Notations:
AVSUi : Available channels set for any SU i; AVSUj :
Available channels set for any SU j; CAVSUi ,SUj : Empty
set which will store the common available channels for
any SU i and j.

1: Initialize row = col = 0, i = j = 0;
2: CAVSUi ,SUj = AVSUi

⋂
AVSUj ;

3: Cc = rand[CAVSUi ,SUj];
4: if (row == 0 && col == 0) then
5: for row = 0 to |N| do
6: SeqMat[row][col] = Cc;
7: end for
8: row = 0;
9: for col = 0 to |N| do

10: SeqMat[row][col] = Cc;
11: end for
12: end if
13: for row = 1 to |N| do
14: j = 0;
15: for col = 1 to |N| do
16: SeqMat[row][col] = (N[i] + N[j])%|N|;
17: j = j + 1;
18: end for
19: i = i + 1;
20: end for
21: Return SeqMat

starting from row1 is associated with individual channel of
set N, i.e., [0, |N|−1]. In other words, row1 is associated
with channel 0, row2 with channel 1, and so on. To calculate
the elements of individual row, its corresponding channel is
going to be added with the channels of set N. For exam-
ple, the initial channel, i.e., channel 0 is added with each
channel of set N across all the columns starting from col1
to col|N| to generate the elements of row0. The elements
placed in row1 are generalized as SeqMat[row1][col1] =
{(N[0] + N[0])}%|N|, SeqMat[row1][col2] = {(N[0] +
N[1])}%|N|, . . . , SeqMat[row1][col|N|] = {(N[0] + N[|N| −
1])}%|N|. Thus, the rest of the elements of the SeqMat is
calculated.

Each row and column of the matrix SeqMat is associ-
ated with individual sequence known as Common Sequence
and each element represents specific channel number. Hence,
2(|N|+ 1) numbers of common sequences are generated from
|N| number of channels out of which s0, . . . , s|N| are obtained
by considering the sequences across all the rows from left
to right and s|N|+1, . . . , s2(|N|+1) are occurred by considering
bottom up approach across all the columns. Hence, channels
of row0 are associated with common sequence s0. Likewise,
col0 is associated with the common sequence s|N|+1, and so
on. Finally, the CS is generated by concatenating individual
common sequence of SeqMat as given in Algorithm 2. Upon
generating the common sequences, each SU has to choose the

Fig. 1. Generation of common sequence matrix SeqMat.

permutation of any |N| + 1 number of common sequences
out of 2(|N| + 1) number of common sequences to generate
its CH_Seq.

Let us consider an example, where |N| = 5, i.e.,
{0, 1, 2, 3, 4}. Let, SU1AV = {0, 1, 3} and SU2AV = {2, 3, 4}
be the available channel sets for SU1 and SU2, respec-
tively. Hence, the common available channel between both
SUs is {3}. Based on Algorithm 1, a SeqMat matrix of
(|N| + 1)× (|N| + 1), i.e., 6 × 6 is created as shown in Fig. 1.
According to Algorithm 1, both initial row (row0) and col-
umn (col0) are occupied by common available channel, i.e., 3.
The rest of the values starting from row1 to row|N|, such as
row1 to row5 of SeqMat are generated by considering Addition
Modular Arithmetic, which is given in Algorithm 1. The values
of row1 beginning from col1 to col|N| is obtained by adding the
initial channel 0 with each channel of the set N starting from 0
to 4. The values of row1 in SeqMat are SeqMat[row1][col1] =
(0 + 0)%5 = 0, SeqMat[row1][col2] = (0 + 1)%5 = 1.
Likewise, SeqMat[row1][col|N|] = (0 + 4)%5 = 4. Hence,
the values of row1 become <3, 0, 1, 2, 3, 4>, where the
initial channel 3 represents the common available channel.
Upon proceeding this way, the final row row5 is obtained as
SeqMat[row5][col1] = (4 + 0)%5 = 4, and goes on up to
SeqMat[row5][col5] = (4 + 4)%5 = 3, as shown in Fig. 1.
It is to be noted that each row and column of SeqMat is
associated with individual common sequence. Hence, based on
Algorithms 1 and 2, from |N| = 5, 2(|N|+1), i.e., 12 numbers
of common sequences are generated, such as s0, s1,. . . , s11.

Common sequences s0, s1, . . . , s5 are generated considering
all rows from row0 to row5 known as the row related common
sequences. Similarly, s6, . . . , s11 are obtained from all colum-
nar values starting from col0 to col5 in bottom up approach
and is known as the column related common sequences. All
common sequences starting from s0, . . . , s11 are shown with
arrow (→) mark in Fig. 1. For generation of CH_Seq, each
SU selects a permutation of (|N|+1), i.e., 6 numbers of com-
mon sequences out of total 12 numbers of generated common
sequences.

Lemma 1: An SU visits all the channels of set N, i.e.,
[0, |N| − 1] in each common sequence within N + 1 slot
indexes.

Proof: It is already explained that the initial or the final
slot index of a common sequence is occupied by the common
available channel Cc, where rest of the channels are obtained
by Addition Modular Arithmetic. Let us consider a common

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6108 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Algorithm 2 Generation of CS
Input: SeqMat[i][j]: Sequence Matrix.
Output: CS: Set of Common Sequences.

Notations: s: Temporary Empty set;
1: Initialize row = col = 0, index = j = 0, CS = s = φ;
2: for row = 0 to |N| do
3: for col = 0 to |N| do
4: s[index] = SeqMat[row][col];
5: index = index + 1;
6: end for
7: CS =< CS ‖ s >;
8: end for
9: for col = 0 to |N| do

10: for row = |N| to 0 do
11: s[index] = SeqMat[row][col];
12: index = index + 1;
13: end for
14: CS =< CS ‖ s >;
15: end for
16: Return CS

sequence si that contains a particular channel cr twice without
counting its presence in the initial or final slot index. The
above statement can be generalized as follows. N[i] + cd = cr

and N[i]+cd′ = cr, which implies cd = cd′ . From the set N, it
is observed that the difference between any two channel is 1,
i.e., ci −cj = 1, where i > j. Similarly, the difference between
cd and cd′ can be calculated as cd −cd′ = 1, which contradicts
that cd = cd′ . Hence, the lemma follows.

Lemma 2: The number of common channel overlapping
between any two common sequences can be 0 ≤ 1 ≤ (|N|+1).

Proof: The common channel overlapping takes place,
when both common sequences contain the common channel
at the same slot index. According to the proposed proto-
col, there must be a complete common channel overlapping,
i.e., (|N| + 1) between any combination of s0 and s|N|+1.
However, there will be no overlapping between any two
common sequences si and sj, where si ∈ {s0, . . . , s|N|},
sj ∈ {s|N|+1, . . . , s2(|N|+1)} and vice versa. Besides, the
number of channel overlapping between any two common
sequences could be 1, if both of them belong to row
related sequences {s0, . . . , s|N|} or column related sequences
{s|N|+1, . . . , s2(|N|+1)}. Furthermore, an SU can select N + 1
number of common sequences out of 2(|N| + 1) number of
common sequences in P{2(|N| + 1), |N| + 1} = x number of
ways, whose value is >>> |N|. Hence, there is higher chance
of common channel overlapping among any two CH sequences
due to occurrence of common available channel either at the
initial or final index of the common sequences.

IV. ASYMMETRIC ASYNCHRONOUS CHANNEL

HOPPING MECHANISM

To achieve rendezvous in asymmetric asynchronous envi-
ronment is very challenging as SUs enter into the network
at different instances of time with different sets of available
channels. For establishing the communication among both

(a) (b)

Fig. 2. Example of RRT.

SUs in asynchronous scenario, the slot indexes should over-
lap with each other in the common available channel Cc. In
the proposed AACH protocol, the concept of round Robin
tournament (RRT) [21] is used for achieving the guaranteed
rendezvous.

A. Round Robin Tournament

Let us consider an RRT that consists of N number of teams.
In order to construct the round Robin schedule for N number
of teams, let us take an example for N = 5. Since, N is odd
here, let a dummy team (say team number 6) be added for the
fair distribution of the teams in each round. Let, all N = 5
number of teams be arranged in a circular manner as shown in
Fig. 2(a). The teams are placed along the row and rounds are
presented along the column of a matrix as shown in Fig. 2(b).
Based on the rules given in [21], the first “bye” is placed
in the column number ([N + 1]/2), i.e., ([5 + 1]/2) = 3 in
Round 1. Hence, Team 3 is going to play with dummy Team
6 in Round 1 and draw a bye. In order to calculate the team
in each successive round that needs to play with the dummy
Team 6, a clockwise movement of ([N + 1]/2) number of
steps is performed starting from the team that draw a bye
in the previous round. Applying the same rule for Round 2,
Team 1 will play with Team 6 and draw a bye after the clock-
wise movement of 3 number of steps starting from Team 3.
Similarly, in Round 3, Round 4, and Round 5, the teams, such
as Team 4, Team 2, and Team 5, respectively, will pair with
Team 6 as shown in Fig. 2(b).

In the first round, the teams are placed starting from N
through 1 in each empty cells to get the pairing, such as N,

N−1, . . . , bye, . . . , 2, 1 and by skipping the cell that is already
occupied by bye. As shown in Fig. 2(b), the ordering of teams
that occupies the cells in the Round 1 is Team 5, Team 4, bye,
Team 2 and Team 1. Similarly, the teams in the next round are
obtained by moving one place along the clockwise direction
from the teams of the previous round. For example, one place
right from the Team 5 is Team 1, which should be allocated
in the first cell of Round 2. Since, it is already occupied with
bye, this cell needs to be skipped. Next to the bye in Round 2,
it is the Team 5 located one step right to the Team 4 of the
previous round. Thus, the playing schedule for other teams can
be calculated as shown in Fig. 2(b), where a bye is appeared
in each round after addition of the dummy Team 6.

B. Creation of Round Robin Matrices

Let us consider the whole round Robin schedule as a matrix
consisting of N number of rows and columns, where the

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6109

values inside the matrix are individual channel numbers. The
presence of bye in each row can be remapped with certain
channels. The main idea is to replace the common avail-
able channel in the slot indexes as well as channel numbers
of a common sequence whose values are identified by the
remapped channels. Suppose, bye is remapped with chan-
nel j, then the slot index and channel number j of each
common sequence are replaced by the common available
channel Cc.

As given in lines 2–4 of Algorithm 3, the set of total
available channels N is divided into three groups, such as
Nleading(Nl), Ncentral(Nc), and Nfollowing(Nf). The reason behind
this division is to incorporate the RRT concept in Nl and Nf ,
which increases the utilization of common channels inside a
common sequence. It is previously discussed that a bye can
only occur if the total number of channel is odd. Hence, upon
finding |Nf | or |Nl| is even, the channel of Nc is combined
with the set having even cardinality to make it odd, which
is explained in lines 5–10 of Algorithm 3. Let us consider
the channels present inside the set Nl = {Ca, Cb, . . . , Cd} and
|Nl| is even. In order to make |Nl| as odd, a union opera-
tion Nl ∪ Nc = {Ca, Cb, . . . , Cd, Ce} is carried out, where
Ce ∈ Nc.

In Algorithm 3 from lines 11–42, the procedures of creation
of round Robin matrices, such as RRMatl and RRMatf are
described. The total channels of set Nl divided into a matrix
of 0 to |Nl| number of rows and columns is known as RRMatl.
For common channel replacement, only the remapped chan-
nels are needed that appeared in the place of bye. Lines 11–25
represent the remapping of channels in the corresponding row
and column in the similar place with occurrence of bye. In the
proposed protocol, the word bye is used as place of reference
for the placement of the remapped channels. However, all cal-
culation and common available channel replacement is based
on the number of remapped channels. Let |Nl| be the number
of channels present in the set Nl. In the first row, the bye is
placed in the column number equal to value = ([|Nl| + 2]/2),
which is given in lines 12–15. For the placement of rest of
the bye in the remaining rows, the movement should be along
clockwise direction by ([|Nl| + 2]/2) number of steps starting
from the previous generated value and should continue until a
bye is placed in every row as given in lines 16–19. As shown
in lines 21 and 22, the remapped channels are placed in the
same row and column with bye in RRMatl, where the index
of remapped channel is equal to the value-th element of set
Nl, i.e., Nl[value]. The calculated channel number is used for
the common channel replacement in each common sequence.
The same procedure is also applied to the set Nf , where the
total schedule is divided into 0 to |Nf | number of rows and
columns.

C. Generation of CH Sequences

As given in Algorithm 4, the remapped channels are selected
from those row and column numbers, whose values are same
as the common available channel number Cc. Sometimes, the
index of common channel Cc ≥ |RRMatl| or |RRMatf |. In this

Algorithm 3 Creation of Round Robin Matrices
Input: N: Set of licensed channels in the CRN.
Output: RRMatl[][]: Round Robin Matrix generated from the chan-

nels of set Nl; RRMatf [][]: Round Robin Matrix generated from
the channels of set Nf .
Notations:
Nl: Set that stores front segment of channels of set N;
Nf : Set that stores back segment of channels of set N;
Nc: Set that stores the middle channel channel of set N;
replacel[]: Stores the values of remapped channels generated;
from the matrix RRMatl; replacef []: Stores the values of
remapped channels generated from the matrix RRMatf .

1: Initialize Nl = Nc = Nf = φ;
2: Nc = |N|/2;
3: Nl = {0, 1, . . . , (|N|/2) − 1};
4: Nf = {(|N|/2) + 1, . . . , |N| − 1};
5: if (|Nl|%2 == 0) then
6: Nl = Nl ∪ Nc;
7: end if
8: if (|Nf |%2 == 0) then
9: Nf = Nf ∪ Nc;

10: end if
11: for row = 0 to |Nl| do
12: if (row == 0) then
13: value = (

|Nl|+2
2) − 1;

14: previous value = value;
15: col = value;
16: else
17: value = {previous value + (

|Nl|+2
2)}%Nl;

18: previous value = value;
19: col = value;
20: end if
21: RRMatl[row][col] = “bye”;
22: RRMatl[row][col] = Nl[value];
23: replacel[i] = RRMatl[row][col];
24: i = i + 1;
25: end for
26: i = 0;
27: for row = 0 to |Nf | do
28: if (row == 0) then
29: value = (

|Nf |+2
2) − 1;

30: previous value = value;
31: col = value;
32: else
33: value = {previous value + (

|Nf |+2
2)}%Nf ;

34: previous value = value;
35: col = value;
36: end if
37: RRMatf [row][col] = “bye”;
38: RRMatf [row][col] = Nf [value];
39: replacef [i] = RRMatf [row][col];
40: i = i + 1;
41: end for
42: Return RRMatl and RRMatf ;

case, a modular operation is carried out as Cc % |RRMatl|
or |RRMatf |. If the SUs have more than one common avail-
able channels, more than one row and column number are
selected for the common channel replacement. In Algorithm 4,
the remapped channel number is calculated by consider-
ing both matrices RRMatl and RRMatf . After calculation of
remapped channels based on the individual common available
channel, each SU executes Algorithm 5 for generating its
CH_Seq.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6110 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Algorithm 4 Selection of Remapped Channel Number From
Round Robin Matrices
Input: Nl; Nf ; RRMatl; RRMatf ; replacel[]; replacef [];

Cc: Selected common available channel between SU1 and
SU2;

Output: chrl : Remapped channel generated from the row
considering set Nl; chcl : Remapped channel generated
from the column considering set Nl; chrf : Remapped chan-
nel generated from the row considering set Nf ; chcf :
Remapped channel generated from the column considering
set Nf ; CAVSUi ,SUj : Set of common available channels.
Notations:
Cctotal: Total number of available channels for both the
SUs.

1: Cctotal = |CAVSUi ,SUj |;
2: for i = 1 to Cctotal do
3: if Cc ≥ |RRMatl| or |RRMatf | then
4: num = Cc%(|RRMatl| or |RRMatf |);
5: end if
6: for col = 0 to |Nl| − 1 do
7: for index = 0 to sizeof (replacel) do
8: if RRMatl[num][col] == replacel[index] then
9: chrl = replacel[index];

10: end if
11: end for
12: end for
13: for row = 0 to |Nl| − 1 do
14: for index = 0 to sizeof (replacel) do
15: if RRMatl[row][num] == replacel[index] then
16: chcl = replacel[index];
17: end if
18: end for
19: end for
20: for col = 0 to |Nf | − 1 do
21: for index = 0 to sizeof (replacef) do
22: if RRMatf [num][col] == replacef [index] then
23: chcf = replacef [index];
24: end if
25: end for
26: end for
27: for row = 0 to |Nf | − 1 do
28: for index = 0 to sizeof (replacef) do
29: if RRMatf [row][num] == replacef [index] then
30: chcf = replacef [index];
31: end if
32: end for
33: end for
34: Return chrl , chcl , chrf , chcf ;
35: Execute Algorithm 5 for creation of CH sequence

considering the obtained remapped channels;
36: end for

The generation of CH_Seq using those remapped channels
from Algorithm 4 is deduced in Algorithm 5. Each SU selects
a permutation of |N|+1 number of common sequences before
generating its CH_Seq. The selected remapped channel num-
bers signify the channel numbers and slot indexes, where the

Algorithm 5 Generation of CH_Seq in AACH
Input: CS: Common Sequence Set.

CAVSUi ,SUj : Set of common available channels.
chrl ; chcl ; chrf ; chcf ; Cc.

Output: CH_seq: Channel Hopping Sequence.
Notations: s: Individual Common Sequence.

1: Initialize seq_num = 0, CH_seq = φ;
2: Each SU choose |N| + 1 number of common sequences

randomly from set CS;
3: while seq_num < |N| + 1 do
4: Process the selected individual common sequences for

common channel replacement;
5: for index = 0 to |N| do
6: if (s[index] == chrl ||s[index] == chcl ||s[index] ==

chrf ||s[index] == chcf) then
7: s[index] = Cc;
8: end if
9: if (index == chrl ||index == chcl ||index ==

chrf ||index == chcf) then
10: s[index] = Cc;
11: end if
12: end for
13: CH_seq =< CH_seq ‖ s >;
14: i = i + 1;
15: seq_num = seq_num + 1;
16: end while

common available channel Cc is going to be replaced inside the
selected common sequence si. Let, cf and cl be the remapped
channels, which are obtained from the round Robin matri-
ces. Then the common channel Cc is going to be replaced
in the slot indexes along with channel numbers equal to cl

and cf inside the common sequence si. As given in line 13
of Algorithm 5, the CH sequences are generated by each SU
considering the modified common sequences.

Let us consider an example, where the total number of avail-
able channels is |N| = 5, which are indexed as {0, 1, 2, 3, 4}.
Let the available channels for SU1 and SU2 be SU1AV =
{0, 3, 4} and SU2AV = {1, 3, 5}, respectively. Hence, the num-
ber of common available channels between SU1 and SU2
is 3. Let the entry slot index of SU1 and SU2 be 0 and 1,
respectively. Based on Algorithm 3, the channel present in
the set Nc = {|N|/2} = {5/2} = {2}. Similarly, the chan-
nels present in the set Nl = {0, 1, . . . , (|N|/2 − 1)} = {0, 1}
and Nb = {(|N|/2 + 1), . . . , (|N| − 1)} = {3, 4}. As both
|Nl| and |Nf | are even, the channels of set Nc need to be
added with the channels of both sets Nl and Nf to generate
bye in each column and row. After addition of the chan-
nel 2 ∈ Nc, the updated sets of Nl and Nf are {0, 1, 2}
and {2, 3, 4}, respectively, as shown in Fig. 3(a). To calcu-
late the remapped channel, let the channels of set Nl and Nf

be arranged in a ring as given in Fig. 3(a). By considering
the number of channels of set Nl and Nf , the round Robin
matrices such as RRMatl and RRMatf are generated as shown
in Fig. 3(b).

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6111

(a)

(b)

(c)

Fig. 3. Selection of remapped channels using RRT concept. (a)
Representation of channels in set Nl and Nf . (b) RRMatl and RRMatf .
(c) Selection of remapped channels.

Now, in the matrix RRMatl, the first bye is placed in
row 0 and the column number is calculated as value =
([|Nl| + 2]/2) − 1 = ([|3| + 2]/2) − 1 = 1. For easy under-
standing, bye is only used as the place of reference for the
remapped channels. Hence, the first bye is placed in column
1 in row0. Then, the bye is remapped with the value-th ele-
ment of set Nl, i.e., Nl[value] = Nl[1] = 1. Similarly, for
row2 of matrix RRMatl, the bye is allocated in the column
number value = {previous value + ([|Nl| + 2]/2)}%|Nl| =
{1 + ([|3| + 2]/2)}%|3| = 0. Hence, in row2, bye is placed in
col0 and is remapped with the channel number of set Nl, i.e.,
Nl[0] = 0. Similarly, the bye and the remapped channels are
placed in the rest of the rows and columns of both matrices
RRMatl and RRMatf , which is shown in Fig. 3(b).

Certain remapped channels are selected from both RRMatl
and RRMatf , where the column and row number is equal to
the common channel number (Cc) of both SUs. The remapped
channels represent the channels and slot indexes, where the
common channel is going to be replaced inside the common
sequence. In the discussed example, the common available
channel Cc = |RRMatl| and |RRMatf | = 3. Hence, a modu-
lation operation is carried out as 3% (|RRMatl|) = 0 and 3%
(|RRMatf |) = 0. Here, the value 0 signifies the row0 and col0
of both the matrices RRMatl and RRMatf . Upon executing
the modulation operation, the remapped channels are selected
from the row0 and col0 of RRMatl, i.e., channels 0 and 1 along
with channels 2 and 3 from RRMatf as shown in Fig. 3(c).

In the next step, each SU selects |N| + 1 number of com-
mon sequences from the CS. The set of common sequences

(a) (b)

Fig. 4. Replacement of Cc in common sequences having remapped channels
0, 1, 2, and 3.

generated from |N| = 5 are CS = {s0, s1, s2, . . . , s11}, those
are shared by both SU1 and SU2. Let, <s0, s2, s4, s8, s3,
s1> and <s3, s4, s5, s6, s2, s0> be the permuted common
sequences selected by SU1 and SU2, respectively. Now, based
on Algorithm 5, the common available channel Cc = 3 is
going to be replaced in the channel numbers and slot indexes
0, 1, 2, and 3 of each common sequence for both SUs. The
channel order of selected common sequences before and after
the replacement of Cc is shown in Fig. 4. Upon replacing the
common available channel, each SU creates its CH_Seq by
concatenating the modified common sequences. Fig. 5 shows
the rendezvous between both SUs in the common available
channel number 3 after applying the concept of RRT for which
the degree of rendezvous is 33 out of 36 number of slot
indexes.

V. ANALYSIS OF CRN METRICS

In this section, we would like to analyze different metrics
of the CRN based on the designed AACH algorithm those
influence the performance of the IoT devices.

A. Degree of Rendezvous

Degree of rendezvous is defined as the number of times two
SUs meet with each other in a CH_Seq. In AACH, the degree
of rendezvous is deduced by considering different scenarios
explained in the Lemma 3.

Lemma 3: In AACH protocol, degree of rendezvous
between any two SUs is ≤ (CHlength−βtotal), where CHlength is
the length of the CH_Seq, β is the total number of slot indexes,
where the common channel is not replaced in a CH_Seq.

Proof: The βtotal in a CH_Seq is defined as the summation
of the slot indexes having no common channel replacement.
Hence, βtotal = ∑|N|

i=0 βcsi(SU1)
+ ∑|N|

j=0 βcsj(SU2)
, where βcsi(SU1)

and βcsj(SU2)
represent the β value in each common sequence

selected by both SU1 and SU2, respectively. Furthermore, it
is observed that the value β varies with the number of com-
mon available channels and the selection of remapped channels
from RRMatl and RRMatf . The individual value of β in each
common sequence can be calculated by considering different
common channel replacement scenarios.

Scenario 1: If the remapped channel is selected from the
last row and column of RRMatl and RRMatf and the common
available channel is not equal to the remapped channel.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6112 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Fig. 5. Rendezvous between two SUs in AACH.

In this scenario, the number of remapped channel in a com-
mon sequence is at most 8 × Cctotal, where Cctotal is the
number of common available channels. Each row and col-
umn of RRMatl and RRMatf gives unique remapped channels.
Individual β value in a common sequence falls within the
range 0 ≤ β ≤ ([|N| + 1]/2) for |N| < 8 and 0 ≤ β ≤
(|N|+1)−8 for |N| > 8 as the maximum number of common
available channel replacement in a common sequence is 8.

Let us consider an example as explained in Fig. 5, where
the remapped channels are 0, 1, 2, and 3. It can be observed
that the rendezvous occur in every slot indexes and channels
of common sequences that are already replaced by common
available channel 3 either due to the remapping or default
presence of common available channel. However, the number
of slot indexes, where the common available channel is not
replaced could be βtotal = βs2(SU1)

+ βs1(SU1)
+ βs2(SU2)

= 1 +
1 + 1 = 3, which is equal to the number of nonrendezvous
slot indexes of both SU1 and SU2. As shown in Fig. 5, the
total number of rendezvous = {CHlength − βtotal} = 36 − 3 =
33 out of 36 slot indexes.

Scenario 2: If the remapped channel is selected from last
row and column of RRMatl and RRMatf , where the common
available channel is equal to any of the remapped channels.

In this scenario, the number of remapped channel in each
common sequence is equal to 1 as the intersection of last row
and column generates a single remapped channel from both
of the matrices. Hence, the number of replacement is ≤ 4
in a common sequence including both channel and slot index
replacement. Here, β is defined as 0 ≤ β < (|N|+ 1)− 4. Let
us consider an example, where Cc = 2. Based on the value of
Cc, the remapped channels, such as 2 and 4 are selected from
row2 and col2 of both the matrices RRMatl or RRMatf . The
degree of rendezvous in Scenario 2 is less than Scenario 1 as
the number of remapped channel in Scenario 2 is only two, i.e.,
2 and 4. Hence, the number of common channel replacement
in each common sequences is < = 4.

After analyzing the individual degree of rendezvous in both
scenarios, the degree of rendezvous in AACH can be gener-
alized as {0 ≤ degree of rendezvous ≤ (|N| + 1)2 − β}, i.e.,
{0 ≤ degree of rendezvous ≤ CHlength − β}, where β value
lies in between 0 ≤ β < |N| + 1.

B. Maximum Time to Rendezvous

The MTTR is defined as the maximum number of slot
indexes taken by an SU for the initial rendezvous with another
SU in a CH_Seq, which is considered as the worst case of the

TTR. In AACH, a generalized MTTR value can be deduced
as given in Lemma 4.

Lemma 4: In AACH, the MTTR is <2(|N| + 1), where
(|N| + 1) is length of the common sequence.

Proof: In AACH, if the number of available channel
Cctotal > 2, the MTTR is <|N| + 1. The worst case of TTR
arises when the remapped channel is selected from the last row
and column of RRMatl and RRMatf and the single common
available channel is equal to any of the remaped channels. Let
us consider a scenario, where both SUs are having a common
available channel Cc = 2, where Cc ∈ Cctotal. Thus, the num-
ber of remapped channels selected from RRMatl and RRMatf
are only two, i.e., 2 and 4 as the common available channel
2 represents the last row and column index of both the matri-
ces. Furthermore, from Fig. 6. It is observed that both SUs
wait more than |N|+ 1 number of slot indexes for rendezvous
having single common available channels Cc = 2. Hence, it is
concluded that the MTTR value is affected by the permutation
order of common sequences as well as the entry slot index of
the SUs. In order to achieve rendezvous within a short interval
of time, a novel mechanism known as slot sacrifice (SS) is
adopted in the designed AACH protocol.

The SS mechanism is implemented by the later entry SU
after finding no rendezvous within |N| + 1 number of slot
indexes. Based on the example shown in Fig. 6, the SU2 will
check how many number of slot indexes is behind of SU1.
Let it be θ numbers of slot indexes. Let the time duration
of each slot index be tt. In case of finding no rendezvous in
the first common sequence, SU2 will halt its hopping for a
certain interval of time. Let it be th for θ numbers of slot
indexes, where th = θ × tt. After the expiry of th duration,
SU2 resumes its hopping from the second common sequence.
However, at the end of the CH_Seq, SU2 will sacrifice θ num-
ber of slot indexes to maintain the uniformity of the hopping
duration with SU1. Although, SU2 will sacrifice θ number of
slot indexes at the end, it will gain at least |N| + 1 number of
rendezvous in the previous slot indexes.

Let us consider an example, as shown in Fig. 7 to explain
the SS mechanism. To show the significant improvement in the
waiting time, the same CH scenario is considered as shown
in Fig. 6. In Fig. 7, θ = 1 as SU2 is one slot index behind
of the SU1 and does not have any rendezvous in the first
common sequence s9. Hence, SU2 adopts SS mechanism to
have rendezvous, where it will halt its hopping for the time
duration of th = 1 × tt. This halting duration is equal to the
duration of the slot index = 7 and continues its transmission
from the slot index = 8 starting from the second common
sequence. After waiting for one slot index duration, SU2 can

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6113

Fig. 6. Example of longer waiting time for rendezvous in AACH.

Fig. 7. Rendezvous between two SUs in AACH after adopting SS mechanism.

achieve the rendezvous immediately in the slot index = 8,
which is the beauty of the purposed SS mechanism. Upon
adopting the SS mechanism, AACH guarantees rendezvous
within 2(|N| + 1) number of slot indexes regardless the per-
mutation type or entry slot indexes of SUs. Hence, the MTTR
of AACH is <2(|N| + 1).

Lemma 5: The AACH protocol guarantees at least
2(|N| + 1) number of rendezvous in an asymmetric
asynchronous scenario.

Proof: By analyzing Lemmas 3 and 4, it is concluded that
the purposed AACH mechanism grantees at least 2(|N| + 1)

number of rendezvous in a CH sequences even if with single
common available channel and irrespective of the permutation
or entry slot indexes of SUs.

C. Average Time to Rendezvous

Average TTR (ATTR) is calculated by considering all pos-
sible values of TTRs including the minimum and maximum
values of TTR in the system. Hence, average of all possible
values of TTRs is taken into account to calculate the ATTR.

Lemma 6: In AACH, the ATTR is <(|N| + 1), where |N|
is total number of available channels in the network.

Proof: In Lemma 4, it is proved that the minimum value
of the TTR in AACH is 0, whereas the maximum value of the
TTR is <2(|N|+1). Hence, ATTR can be calculated by consid-
ering all possible values of TTRs in the network. Accordingly,
ATTR in AACH = ([

∑
(All possible values of TTRs)]/

[Total numbers of TTRs]) = ([0 + 1 + · · · + 2(|N| + 1)]/
[2(|N| + 1)]) < (|N| + 1), since MTTR < 2(|N| + 1).

D. Maximum Inter Rendezvous Interval

The number of slot indexes between any two consecutive
rendezvous in a CH_Seq is defined as the inter rendezvous
interval (IRI). The maximum value of all possible IRIs in that
CH_Seq is called as maximum IRI (MIRI). If the first ren-
dezvous between two SUs occurs at slot ti and next one occurs
at tj, IRI between the SUs is {(tj − ti) − 1} and MIRI is the

MAX{(tj − ti)− 1}. In a CRN, the MIRI should be minimized
to reduce the waiting period between the first and the next
rendezvous.

Lemma 7: The MIRI of AACH is |N| + 1.
Proof: The MIRI of AACH is |N| + 1 in case of sin-

gle common available channel, which is one of the remapped
channel as shown in Fig. 6. However, with increase in number
of common available channel, the IRI can be minimized.

VI. PERFORMANCE EVALUATION

The performance evaluation of the proposed AACH pro-
tocol is performed using OMNeT++ simulator IDE version
4.5 considering the asymmetric channel model. It is consid-
ered that each SU can have different sets of available channels
with at least one common available channel among them and
can enter to the network at different slot indexes fulfilling
the asynchronous condition. Performance of AACH is com-
pared with similar protocols, such as SARCH [3], FRCH [14],
JS [16], and EJS [17]. The proposed asymmetric simulation
environment is implemented with 100 numbers of randomly
deployed SUs with different numbers of available channels
in presence of 50 numbers of licensed PUs over an area
of 1000 m × 1000 m. The simulated CRN is divided into
multiple slot indexes, where the duration of each slot index is
considered to be 0.02 s.

In the designed simulation environment, the size of each
packet is considered to be 2000 bytes with a packet data rate
22.69 Mb/s. The generated data packet at each SU follows the
Poisson process of arrival, where the multiple queues are main-
tained by each SU for its one-hop neighbors. In the proposed
AACH model, the destination SU is decided when the RTS
sent by the source SU is cleared by the CTS during the ren-
dezvous. After the successful exchange of RTS/CTS between
both SUs, the data transmission continues during the subse-
quent time slots, where the rendezvous occurs. The study of
the impact of a number of channels on throughput, ATTR,

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6114 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Fig. 8. Throughput versus number of channels.

Fig. 9. Throughput versus number of channels versus number of SUs.

and % of rendezvous in the asynchronous environment is per-
formed for both two-user and multiuser scenarios considering
asymmetric channel model.

The impact of throughput over number of channels is shown
in Fig. 8, where AACH outperforms over others as it guaran-
tees at least 2(|N|+1) number of rendezvous in the asymmetric
asynchronous scenario. In case of both JS and EJS, there is
no guaranteed rendezvous if both SUs choose different stay
channel and random common available channel in the jump
pattern. Although there is guaranteed rendezvous in FRCH and
SARCH, the rendezvous percentage is very low resulting lower
throughput. Furthermore, AACH shows better performance
in terms of throughput even in asynchronous condition by
introducing the SS mechanism.

In Fig. 9, the impact of throughput over number of chan-
nels in a multiuser scenario is evaluated. The throughput of
JS and EJS gradually decreases in the multiuser scenario due
to less chance of getting a common available channel in the
jump pattern as both protocols adopt the random selection
of the commonly available channels. Similarly, in case of
SARCH and FRCH, although the introduction of adaptive
CH_Seq mechanism creates the opportunity for rendezvous,
the degree of rendezvous is very small as the replacement of
common available channel varies with the selected rotation
seed. However, in the proposed AACH protocol, the through-
put in the multiuser scenario is very high due to collision-free
rendezvous as two or more SUs can have a plenty of choice for
selection of common sequences. Besides, AACH guarantees at
least 2(|N| + 1) numbers of rendezvous in a CH_Seq.

From Fig. 10, it is observed that the percentage of ren-
dezvous in AACH is very high in comparison to other

Fig. 10. Percentage of Rendezvous versus number of channels.

Fig. 11. ATTR versus number of channels.

protocols. In AACH, there is at least 2(|N| + 1) number ren-
dezvous in a CH_Seq and maximum degree of rendezvous
is {(|N| + 1)2 − ([|N| + 2]/2)}. In contrast, the percentage of
rendezvous in case of JS and EJS gradually decreases due
to the random selection of the common available channels in
the jump and stay pattern creating a lower chance of ren-
dezvous in a common available channel during the CH. It is
observed that percentage of rendezvous in SARCH and FRCH
is ≈ (2|N|/[(2N + 1)2]) and (4/[(2N + 1)]), respectively,
even after implementing the concept of adaptive sequences,
which is very low.

The impact of ATTR over number of channels is evaluated
as shown in Figs. 11 and 12. ATTR of AACH is very small,
i.e., <(|N| + 1) with the availability of the single common
channel, which can be improved with an increase in the num-
ber of available channels. However, in both JS and EJS, the
value of ATTR is > 3P and > 4P, respectively, where P > N.
In case of SARCH and FRCH, the ATTR value increases with
the number of channels as the generation of CH_Seq depends
on the value of the rotation seed. Hence, it takes a longer time
for both SUs to find a common available channel, if both of
them choose different rotation seeds. Furthermore, the MTTR
in SARCH and FRCH is very large, i.e., > 4N and > 2N +1,
respectively.

The impact of throughput and ATTR over different clock
drift values with the fixed number of channels |N| = 30 are
shown in Fig. 13(a) and (b), respectively. The clock drift value
is considered as the entry slot index of the SUs to the network.
From Fig. 13(a), it is observed that AACH performs better as

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

MOHAPATRA et al.: SPECTRUM ALLOCATION WITH GUARANTEED RENDEZVOUS IN ASYNCHRONOUS CRNs FOR IoT 6115

Fig. 12. ATTR versus number of channels versus number of SUs.

(a)

(b)

Fig. 13. Performance comparison between AACH with other protocols con-
sidering clock drift values. (a) Throughput of rendezvous versus clock drift.
(b) ATTR versus clock drift.

compared to other protocols even with variable clock drift val-
ues. In AACH, the throughput gradually increases for the clock
drift values > 0.12, whereas it gradually decreases or almost
remains constant for other protocols. Based on different clock
drift values, the jump and stay pattern of the SU varies, thereby
resulting in less number of rendezvous in case of JS and EJS.
In case of SARCH and FRCH, the common available chan-
nels are replaced with the unavailable channels in a CH_Seq.
Hence, the SUs with different clock drift values have a higher
chance to meet in their personal available channel instead of a
common available channel. However, AACH outperforms over
other protocols as there must be at least 2(|N|+ 1) number of
rendezvous in any scenario.

As shown in Fig. 13(b), it is observed that the ATTR value
of AACH is less as compared to other protocols. In case of
JS, EJS, FRCH, and SARCH, the ATTR value is very large,
i.e., > |N| and almost constant for different clock drift values.
Nevertheless, in AACH the value of ATTR is <(|N| + 1),
which enables smaller waiting time for rendezvous between
the SUs.

(a)

(b)

Fig. 14. Performance comparison between AACH with and without RRT
concept. (a) Throughput versus number of channels. (b) ATTR versus number
of channels.

In order to compare the performance of AACH with and
without RRT concept, simulations are performed for the
throughput and ATTR as shown in Fig. 14(a) and (b), respec-
tively. It is to be noted that the CH_Seq consists of the
common sequences in case of AACH with RRT, which is
modified by using the concept of RRT. In the second sce-
nario, CH_Seq is created by using only the permuted common
sequence without the use of the RRT concept. In the latter
scenario, the common available channel appears maximum
two times in the common sequences except for s0 and s|N|+1.
However, due to the slot misalignment in the asynchronous
scenario, SUs get a very rare chance to meet in that two
numbers of common available channels resulting in gradual
decrease of the throughput. In contrast, the number of ren-
dezvous in each common sequence is at least 4 after common
channel replacement using RRT in the scenario of AACH with
RRT concept. Since, there is no guaranteed time interval for
rendezvous without RRT in AACH, larger MTTR value is
observed as shown in Fig. 14(b). However, the AACH with
RRT guarantees the rendezvous within 2(|N| + 1) number of
slot indexes after applying SS mechanism.

VII. CONCLUSION

In this paper, a new AACH algorithm is designed for IoT-
based CRNs to achieve the guaranteed rendezvous within
a bounded interval of time by using the concept of RRT.
Furthermore, a novel concept of SS mechanism is introduced
in the proposed protocol to minimize the MTTR. Theoretical
analysis of AACH protocol is made to justify the correctness
and to measure its performance. Performance evaluation of
AACH indicates that it can outperform in terms of degree

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

6116 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

of rendezvous, ATTR and throughput as compared to other
protocols. Though, higher degree of rendezvous is bit chal-
lenging in asymmetric asynchronous environment, AACH can
provide 100% guaranteed rendezvous in a CH_Seq. Hence,
the proposed protocol can be highly useful for CR enabled
IoT devices to utilize the unused spectrum efficiently. The
proposed AACH protocol guarantees the rendezvous between
two-users as well as multiusers considering the one-hop
scenario. However, to overcome the limitations of data trans-
mission range due to low bandwidth, low data rate, and
signal fading, the proposed work can be extended to multihop
communication scenario. Furthermore, SUs equipped with
multiradios can be implemented.

REFERENCES

[1] S. Aslam, W. Ejaz, and M. Ibnkahla, “Energy and spectral efficient
cognitive radio sensor networks for Internet of Things,” IEEE Internet
Things J., vol. 5, no. 4, pp. 3220–3233, Aug. 2018.

[2] H. A. B. Salameh, S. Almajali, M. Ayyash, and H. Elgala, “Spectrum
assignment in cognitive radio networks for Internet-of-Things delay-
sensitive applications under jamming attacks,” IEEE Internet Things J.,
vol. 5, no. 3, pp. 1904–1913, Jun. 2018.

[3] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channel-
hopping schemes for cognitive radio networks,” IEEE Trans. Mobile
Comput., vol. 13, no. 2, pp. 407–421, Feb. 2014.

[4] P. K. Sahoo, S. Mohapatra, and J.-P. Sheu, “Dynamic spectrum allocation
algorithms for industrial cognitive radio networks,” IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3031–3043, Jul. 2018.

[5] A. A. Khan, M. H. Rehmani, and A. Rachedi, “When cognitive radio
meets the Internet of Things?” in Proc. IEEE Conf. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Sep. 2016, pp. 469–474.

[6] P. K. Sahoo and D. Sahoo, “Sequence-based channel hopping algorithms
for dynamic spectrum sharing in cognitive radio networks,” IEEE J. Sel.
Areas Commun., vol. 34, no. 11, pp. 2814–2828, Nov. 2016.

[7] S. Mohapatra and P. K. Sahoo, “ASCH: A novel asymmetric syn-
chronous channel hopping algorithm for cognitive radio networks,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2016, pp. 1–6.

[8] X. J. Tan, C. Zhou, and J. Chen, “Symmetric channel hopping for blind
rendezvous in cognitive radio networks based on union of disjoint differ-
ence sets,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10233–10248,
Nov. 2017.

[9] J.-P. Sheu and J.-J. Lin, “A multi-radio rendezvous algorithm based on
Chinese remainder theorem in heterogeneous cognitive radio networks,”
IEEE Trans. Mobile Comput., vol. 17, no. 9, pp. 1980–1990, Sep. 2018.

[10] C.-S. Chang, G.-C. Yang, M.-H. Chiang, and W. C. Kwong,
“Construction of synchronous-symmetric channel-hopping sequences
over Galois extension field for cognitive radio networks,” IEEE
Commun. Lett., vol. 21, no. 6, pp. 1425–1428, Jun. 2017.

[11] J.-P. Sheu, C.-W. Su, and G.-Y. Chang, “Asynchronous quorum-based
blind rendezvous schemes for cognitive radio networks,” IEEE Trans.
Commun., vol. 64, no. 3, pp. 918–930, Mar. 2016.

[12] J. Li, H. Zhao, J. Wei, D. Ma, and L. Zhou, “Sender-jump receiver-
wait: A simple blind rendezvous algorithm for distributed cognitive radio
networks,” IEEE Trans. Mobile Comput., vol. 17, no. 1, pp. 183–196,
Jan. 2018.

[13] X. Liu and J. L. Xie, “Priority-based spectrum access in cognitive D2D
networks for IoT,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–6.

[14] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping algo-
rithm for cognitive radio networks,” IEEE Commun. Lett., vol. 17, no. 7,
pp. 1475–1478, Jul. 2013.

[15] I.-H. Chuang, H.-Y. Wu, and Y.-H. Kuo, “A fast blind rendezvous
method by alternate hop-and-wait channel hopping in cognitive radio
networks,” IEEE Trans. Mobile Comput., vol. 13, no. 10, pp. 2171–2184,
Oct. 2014.

[16] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-stay rendezvous algo-
rithm for cognitive radio networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 10, pp. 1867–1881, Oct. 2012.

[17] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced jump-stay ren-
dezvous algorithm for cognitive radio networks,” IEEE Commun. Lett.,
vol. 17, no. 9, pp. 1742–1745, Sep. 2013.

[18] W.-C. Chen, G.-C. Yang, M.-K. Chang, and W. C. Kwong, “Construction
and analysis of shift-invariant, asynchronous-symmetric channel-
hopping sequences for cognitive radio networks,” IEEE Trans. Commun.,
vol. 65, no. 4, pp. 1494–1506, Apr. 2017.

[19] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-based channel hop-
ping algorithms for cognitive radio networks,” IEEE Trans. Wireless
Commun., vol. 14, no. 5, pp. 2755–2768, May 2015.

[20] M. Monemi, M. Rasti, and E. Hossain, “On characterization of feasible
interference regions in cognitive radio networks,” IEEE Trans. Commun.,
vol. 64, no. 2, pp. 511–524, Feb. 2016.

[21] T. Koshy, Elementary Number Theory With Applications. Amsterdam,
The Netherlands: Academic, May 2007.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:38:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

