
Multimedia Tools and Applications, 20, 67–81, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Efficient Channel Allocation Technique
for Multiple Videos-on-Demand

PRASAN KUMAR SAHOO
JANG PING SHEU sheujp@csie.ncu.edu.tw
Department of Computer Science and Information Engineering, National Central University,
Chung-Li 32054, Taiwan, Republic of China

Abstract. There are several broadcasting protocols for video-on-demand (VOD). Most of these protocols are
tailored to handle the distribution of single video for a specific range of request arrival rates. In order to distribute
multiple videos, broadcasting protocols like fast broadcasting (FB), new pagoda broadcasting (NPB) and universal
distribution (UD) require more channels that are proportional to the number of hot videos to be broadcast. We
present here an efficient broadcasting protocol in which, channel numbers can be reduced when multiple videos
are broadcast either simultaneously or asynchronously. During the low to moderate request rates, our protocol
performs best as similar to other reactive protocols and saves bandwidth and requires lesser number of channels
as compared to other proactive or reactive protocols.

Keywords: broadcasting, video-on-demand, channel allocation

1. Introduction

Video-on-demand is an emerging distributed multimedia application which has recently
drawn much attention from several quarters like entertainment, education, telecommuni-
cation and computer industries. In the current state of technology, though VOD is too
expensive as compared to the video cassette rentals and pay-per-view, still it is widely con-
sidered that it will become an important residential service which can substitute current
home entertainment and information services.

The main components of a VOD broadcasting system are the management service with
a database and user desktop with the client’s request interface. There are several proposals
with or without enough buffer space at the client side. The first video distribution protocols
have attempted to reduce bandwidth either by batching several requests together [2, 3] or
by accelerating the video play back rate to allow the new requests to catch up with previous
transmissions [5]. However this situation changed when Viswanathan and Imielinski [12]
proposed to add to the customer set top box (STB) enough buffer space to store 40–50%
of the video data. The skyscraper broadcasting (SB) [6] emphasizes on reducing the buffer
size of STB and the number of data streams the STB has to receive at any moment. But SB
requires more server bandwidth than fast broadcasting (FB) [8] and new pagoda broad-
casting (NPB) protocol [9] to guarantee the same maximum waiting time. The dynamic
skyscraper broadcasting [4] protocol has improved the skyscraper broadcasting by making
it more dynamic, but it requires a higher server bandwidth than the skyscraper broadcasting
protocol.

68 SAHOO AND SHEU

There are several proposals to reduce the bandwidth requirements of VOD services. Some
of these proposals can be grouped under reactive approaches and others come under the
proactive approaches with a common name of broadcasting protocols [13]. In the reactive
approach, whenever several requests come for the same video in a close succession, the
server will transmit only once and all the data can be shared by two or more requests. On
contrary to the above case, proactive approach anticipates customer demand and distributes
various segments of each video according to the deterministic schedules. Though each of
these approaches has their own advantages and disadvantages, broadcasting protocol is the
best technique to distribute multiple hot videos over a very large customer base. But reactive
protocol performs much better than broadcasting protocol for the low request arrival rates
[11] or for a smaller customer base. There are several proposals to handle the reactive
approaches and universal distribution (UD) protocol [10] is one of them. This protocol
performs very well at the low to medium request arrival rates and performance at high
request arrival rates is not better than any of the broadcasting protocols. The limitations of
UD protocol have been rectified by the dynamic heuristic broadcasting (DHB) protocol [1]
which reasonably performs well at all request arrival rates. But both of the above protocols
have primarily designed to handle request for a single video. In order to distribute multiple
hot videos, these protocols require more channels that are proportional to the number of
videos. Also, in the true VOD, subscribers may want to see various hot videos at different
period of a day. Since the choice varies from customer to customer, there is chance of
concurrent or asynchronous requests for different hot videos at different point of time.
Several proposals have given for different arrival rates to save bandwidth, but neither of the
protocols suggests how to handle requests for different hot videos by which bandwidth can
be saved.

In this paper we propose a reactive approach which can distribute multiple videos at
different request rates. Though our reactive approach is based on the UD protocol, we save
more bandwidth as compared to any other protocol when multiple videos are distributed.
Apart from saving more bandwidth, our protocol never put any additional implementation
burden at the client and server side. In our protocol, we propose to divide the whole broad-
casting scheme into different blocks and slots by which requests for different hot videos
can be handled very efficiently to allocate more or less number of channels at different slots
depending on the demand of a particular video.

The rest of the paper is organized as follows. In Section 2, we describe the related
works. The description of our protocol has been depicted in Section 3. In Section 4,
we have presented the transmitting and receiving algorithms of the both client and the
server. Section 5 provides the simulation result and its discussion. Conclusions are given in
Section 6.

2. Related works

In this section we focus our discussions on several protocols that are relevant to our present
work. We have reviewed fast broadcasting (FB) scheme and universal distribution (UD)
scheme which have relations to our protocol.

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 69

2.1. Review of the fast broadcasting scheme

Consider a video V of length D with consumption ratio b. Let there are k-channels,
C0, C1, C2, . . . , Ck−1, each of bandwidth b, are assigned to V . The video server uses the
following rule to broadcast the hot video V .

1. Partition the video V into N data segments S1, S2, S3, . . . and SN , where N = 2k − 1.
That is the concatenation S1 • S2 • S3 • · · · • SN = V .

2. The length of each segment d = D/N .
3. Divide each channel Ci into slots of duration d for i = 0, 1, 2, . . . , (k − 1). In each Ci ,

broadcast data segments Si
2, Si

2+1, . . ., and Si+1
2−1 periodically and in that order.

For example, channel C0 broadcasts the first segment S1 periodically; C1 broadcasts the
next two segments S2 and S3 periodically. C2 broadcasts the next four segments S4, S5, S6, S7

periodically. The broadcasting scheme of FB protocol is shown in figure 1.
As shown in figure 1, suppose the video server allocates k = 4 channels to V . So V

will be partitioned into N = 24 − 1 = 15 segments. For a client starting at time slot t0,
it will receive segments S1, S2, S4 and S8 (represented here in light gray) from channels
C0, C1, C2 and C3, respectively. During time slot t1, segment S1 will be consumed and the
other segments S2, S4, and S8 will be buffered at the client’s local storage for the future
use. In slot t2, the client will consume segment S2 from its local storage. At the same time,
segments S3, S5 and S9 from C1, C2, and C3, respectively will be buffered. In slot t3, the
client will consume S3 from its local storage and simultaneously buffer S6 and S10 from C2

and C3 respectively. The consumed segments have been represented in deep gray color in
figure 1. This process will be repeated until the client has received 23 = 8 data segments
from C3. At last the client will finish watching the video at the time t1 + Nd = t1 + 15d.
The FB scheme allows a client to start at the beginning of any time slot by ensuring that
whenever a segment is needed to be consumed, either it has been buffered previously or it
is being broadcast just-in-time.

In this scheme, the client has to pay for extra buffer space to store premature segments.
The maximum buffer requirement is les than half of the video size, Db/2 [7]. In some
cases it is possible for a client to play the video without buffering it, if it waits longer. For
example, in figure 1 a client starting at time t2 does not need to buffer any segment because
it can continuously receive every required segment just-in-time from one of the channels.
However, this may happen only once in every 2k−1 time slots.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

C0 S1 S1 S1 S1 S1 S1 S1 S1 S1 .

C1 S2 S3 S2 S3 S2 S3 S2 S3 S2 .

C2 S4 S5 S6 S7 S4 S5 S6 S7 S4 .

C3 S8 S9 S10 S11 S12 S13 S14 S15 S8 .

Figure 1. Segment scheduling of the FB scheme.

70 SAHOO AND SHEU

The new pagoda broadcasting (NPB) [9] is an improvement to the FB protocol in terms
of less waiting time. But its proactive approach as similar to FB protocol requires more
bandwidth. Also it gives poor performance during low to moderate request rates.

2.2. Review of universal distribution scheme

The UD protocol is based on the FB protocol whose segment-to-slot mapping is easier to
manage. Let us consider a video V of length D which can be distributed in k channels.
Then the UD protocol can be summarized as follows:

1. The video V is partitioned into (2k − 1) segments of equal duration d. These (2k − 1)
segments will be broadcast in k logical channels with segments S j−1

2 to S j
2−1 that are

assigned to channel j .
2. Each channel j has a start slot b j whose initial value is not defined and its value depends

on the slot at which the request is made.
3. When a request arrives during time slot i , the server first looks at the current segment

distribution schedule channel by channel:

(i) If the scheduled segment transmission for channel j is before slot (i + 2 j−1) then
b j = (i + 2 j−1) becomes the new start slot for the channel j .

(ii) For any slot greater than i , if the segment Sl of channel j has not been scheduled,
then the server will schedule a new transmission of Sl in slot [b j + (l − 2 j−1)].

For example, as shown in figure 2, an incoming request arriving during slot 0 is followed
by two other requests respectively arriving during slots 3 and 4. To handle the first request,
we allocate segment S1 in channel C1and segments S2 and S3 in channel C2. The segments
S4, S5, S6 and S7 are allocated in channel C3 as shown in figure 2. For the requests at slots
3 and 4, S1 will be allocated in channels C1 at slots 4 and 5. The segments S2 and S3 will
be allocated in slots 5 and 6 respectively so that both segment transmissions can be shared
with the third request. The segments S5, S6 and S7 that have been allocated in channel C3

can be shared too.
The dynamic heuristic broadcasting (DHB) [1] protocol is a slotted protocol and an

improvement to the UD protocol. This protocol works fine during the low to moderate
request rates and requires same bandwidth as in NPB during high request rates. When
the customers want to view the video at any instant of time, their STB sends a request to

t0 t1 t2 t3 t4 t5 t6 t7 t8

C1 -- S1 -- -- S1 S1 -- -- --

C2 -- S3 S2 S3 S2 S2 S3 S2 S3

C3 --- S5 S6 S7 S4 S5 S6 S7 S4

Figure 2. Segment-to-slot mapping of UD protocol.

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 71

the video server and the server transmits the schedules starting at the next slot. Though this
protocol achieves minimum bandwidth by scheduling each segment on demand according
to its minimum frequency, there may be heavy segment scheduling burden on the server.
This protocol performs better than NPB or UD for broadcasting a single video, but for
multiple hot videos, it requires more channels similar to FB, UD or NPB protocol and the
segment scheduling is a complex task for the server.

3. Our protocol

The UD protocol is the reactive one that works fine at the low request rates but out performs at
high request rates as compared to the NPB protocol. However the DHB protocol which is not
based on any of the existing broadcasting schemes, suggests how to achieve minimum band-
width by scheduling each segment on demand. It performs very well for the low as well as the
high request rates. But the disadvantage of this protocol is its slotted technique. Each time,
whenever any customer requests a video, their STB sends a request message to the video
server and then the server prepares the transmission schedules starting at the next slot. This
technique adds an extra burden to the server to schedule the transmission for each request.
Moreover, it is not feasible at all for multiple videos on demand. It is observed that neither
the UD nor the DHB protocols are suitable to handle multiple videos with minimum channel
requirements at any request rates. Also, there is no such protocol which proposes for multiple
videos, that achieves at the minimum bandwidth and less number of channels. From the prac-
tical point of view, different customers may request different hot videos. We can’t guarantee
that all customers may request only one hot video as choice varies from person to person.

So we propose here one protocol that efficiently distributes any number of hot videos and
achieves the minimum bandwidth at low to moderate request rates and requires less number
of channels as compared to UD protocol. Our protocol can be summarized as follows to
achieve the following objectives.

• To handle requests, for multiple hot videos.
• To save bandwidth, by allocating less number of channels when request comes for dif-

ferent hot videos.
• To implement reactive approach, in order to distribute multiple hot videos over a large

customer base.

The basic idea behind our protocol is same as that of FB and UD protocols taking an
existing proactive protocol and transmitting it into reactive protocol by broadcasting required
segments on demand. As similar to UD protocol, we have not chosen NPB protocol due
to its precise segment-to-slot mapping which shows poor performance at low to moderate
request arrival rates. Moreover, the segment-to-slot mapping is easier to manage in FB
protocol. So, our broadcasting scheme is based on the FB protocol considering the segment
sharing approach.

Let there are m-different videos denoted as V1, V2, V3, , and Vm . The duration of each
video is D and the consumption rate is ‘b’ megabits/second. (For MPEG-encoded videos b
is approximately 1.5). So size of each video is S = D ∗ b. Each video is equally divided in

72 SAHOO AND SHEU

Figure 3. Partition of the duration D of the video into odd and even blocks.

to N -segments. So length of each slot for each video is d = D/N . Let Sx
i denote the i-th

segment of the x-th video. Then the concatenation (•) of all the segments give size of the
x-th video i.e. Sx = Sx

1 • Sx
2 • Sx

3 • · · · • Sx
N where x denotes the video number, e.g. x = 1, 2,

3, . . . , m and S1, S2, S3, . . . , and Sm are size of each video and all are of equal duration D.
There are k channels C1, C2, C3, . . . , and Ck each having bandwidth b and can be

assigned to any video. We use FB protocol to distribute segments in different channels.
So, each video will be divided into (2k − 1) segments which can be distributed in different
channels based on our algorithm.

In our scheme, we divide the whole broadcasting period into certain odd and even blocks
and each block into certain slots. The duration D of any video is equal to the duration of one
odd and one even block. Also we divide each block into certain slots. If a video of duration
D is divided into N -segments which can be allocated in k-channels, as our protocol, each
odd block contains (2k−1 −1) slots and even block contains (2k−1) slots. In figure 3, duration
D of a video contains 7 segments and those 7 segments are partitioned into odd and even
blocks. Each slot can be termed as a segment of duration ‘d’. Based on the above rule, we
have taken 3 slots in the odd block and 4 slots in the even block as shown in the figure 3.

In each odd block we need (m ∗ k − m + 1) channels irrespective of any concurrent or
asynchronous request for any video, where m is the total number of videos to be broadcast
and k is the number of channels allocated for each video based on FB protocol. Similarly,
in each even block we need (m ∗k) channels irrespective of any concurrent or asynchronous
request for any video.

For example, at any instant of the odd block, if customers request for 4 different videos and
we allocate 3 channels for each video in the previous protocols, then our protocol needs (m∗
k −m +1) channels which is equal to 9 channels as m = 4 and k = 3 here. Similarly, for the
request at any instant of the even block, our protocol needs (m ∗ k) channels which is equal
to 12 as m = 4 and k = 3 here. Generally 12 numbers of channels are required in any previ-
ous protocols like FB, DHB and UD to broadcast 4 different videos with 7 segments each.

In order to understand the scheduling of segments under the process of block and slot
division, let us consider an example in which we have to broadcast three different hot videos
as shown in the figure 4. We assume that all videos are of equal duration D. Let all the
videos be divided into 7 segments each. In the FB protocol, we require 3 different channels
to broadcast each video and all the segments starting from S1 to S7 of each video can be
scheduled within these 3 channels. In our protocol, the duration D of each video can be
divided into odd block comprising 3 slots namely t0, t1, t2 and even block containing 4 slots
t3, t4, t5 and t6. Thus the whole broadcasting scheme can be divided into odd and even blocks
along with their respective slots as shown in the figure 4.

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 73

Figure 4. Segment-to-slot mapping during odd block of our protocol based on UD protocol.

Since, we want to broadcast 3 different videos, here number of videos, m = 3 and
number of channels required for each video, k = 3. So, our protocol needs maximum
(3 ∗ 3 − 3 + 1) = 7 channels during odd block and maximum 3 ∗ 3 = 9 channels during
even block. Within the first odd block there is probability of requesting any video concur-
rently or asynchronously at any slot t0, t1 or t2. Let at slot t0, video-1 (V1) and video-3 (V3)
are requested concurrently. Then first segment (S1

1) of V1 will be allocated in C1 and rest
segments S1

2 to S1
7 will be allocated in the channels C2 and C3 in a step by step method

as shown in the figure 4. Similarly the first segment (S3
1) of V3 will be allocated in C5

and rest segments S3
2 to S3

7 of V3 will be allocated in channels C6 and C7 as shown in the
figure 4.

In the same way, let us suppose that a request comes for video-2 (V2) at slot t1, then the
first segment (S2

1) of V2 can be allocated in C3 and rest segments S2
2 to S2

7 will be allocated
in channel C4 and C5. If the request comes at slot t2 for all the three videos concurrently,
then the first segment of V1, V2 and V3 i.e., S1

1 , S2
1 , and S3

1 will be allocated in channels
C1, C3 and C5, respectively. The rest segments of the first video V1 i.e. S1

2 to S1
7 will be

allocated in channels C2 and C3. Similarly the rest segments of video V2 i.e. S2
2 to S2

7 will
be allocated in channels C4 and C5 and the rest segments of video V3 i.e. S3

2 to S3
7 will be

allocated in channels C6 and C7. Segment to slot mapping of all the requested videos has
clearly been shown in figure 4. The segments which are scheduled in different channels
due to the request at different slots for different hot videos during an odd block have been
represented in deep gray color.

Let us discuss now the segment-to-slot mapping in case of an even block for various
request rates as shown in figure 5. This block contains slots t3, t4, t5 and t6 which continue
just after slot t2 of odd block. Let, the first and third videos be requested at slot t3. The first
segment S1

1 of V1 will be allocated in channels C1 and the first segment S3
1 of V3 will be

allocated in an additional channel C9. The second segments of both videos have already
been allocated due to the requests in the odd blocks. So the third segments of both videos
will be allocated as usually in channels C2 and C6 for the videos V1 and V3, respectively.
Since the segments S4 to S7 of video V1 and V3 have already been allocated in channels

74 SAHOO AND SHEU

Figure 5. Segment-to-slot mapping during even block of our protocol based on UD protocol.

C3 and C7 respectively due to the request during the odd block, there is no need of any
additional channels to broadcast those segments. Let all the three videos are requested at
slot t4. The first segment of video V1 will be allocated in channel C1, whereas the first
segments S2

1 and S3
1 of videos V2 and V3 will be allocated in the additional channels C8

and C9 respectively. The allocation of segments S2 and S3 of all the three videos have been
based on the previous continuity. The segment S4 of all the three videos can be allocated
in channels C7, C8, and C9 for the videos V1, V2 and V3 respectively. The rest segments S5

to S7 of all the three videos are already in buffer due to the requests during odd block. So
these segments should not be allocated in channels.

If all the three videos are requested at slot t6, S1 of each video will be allocated in
channels C1, C8, and C9 for the videos 1, 2 and 3, respectively. The segments S4 to S6

of each video will be allocated in channels C7, C8, and C9 for the videos 1, 2 and 3,
respectively. The segment S7 of all the three videos are already in the buffer, as a result
of which, all the requests can be handled efficiently. In figure 5, the segments which are
scheduled in different channels due to the request at different slots for different hot videos
during an even block have been represented in deep gray color and the segments which have
already been scheduled due to the request during odd block have been shown in light gray
color.

In the figures 4 and 5, though we have taken the requests for different videos at different
slots arbitrarily, it can work fine for any form of requests at any slot. Combining the re-
quests for different videos at different slots for both odd and even blocks, we have shown the
segment-to-slot mappings in figure 6. It clearly indicates that server needs only 7 channels
during odd block whereas 9 channels during even block in order to broadcast three different
hot videos.

4. Transmitting and receiving algorithms

In this section we have designed the server broadcasting and client receiving algorithms. In
our protocol, we have divided the duration of each video D in to certain blocks and slots
which can be summarized as follows:

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 75

Figure 6. Segment-to-slot mapping during both odd and even blocks of our protocol based on UD protocol.

• Let us broadcast m-different hot videos, V1, V2, . . . , and Vm .
• Each video has duration D and divided into N equal segments. So d = D/N is the length

of each segment for each video.
• Each video V1, V2, . . . , and Vm is partitioned into (2k − 1) segments of equal duration d

and these segments will be allocated in k-logical channels.
• The duration D of each video is divided into odd and even blocks.
• Each odd or even block or the block as a whole is divided into slots. The length of each

segment is equal to magnitude of each slot.
• Each odd block contains (2k−1 −1) slots and each even block contains (2k−1) slots, where

k is the number of channels allocated to each video according to FB protocol.
• In our protocol, we need (m ∗ k − m + 1) number of channels during each odd block and

(m ∗ k) channels during each even block.

4.1. Server broadcasting algorithm

4.1.1. Channel allocation algorithm

Step 1: Initialize m, the total number of videos to be distributed and initialize k, the number
of channels required for each video.

Step 2: Set a timer in the server to fix the duration of each odd block = d ∗ (2k−1 − 1) and
duration of each even block = d ∗ (2k−1).

Step 3: If requests arrive:

(a) During the odd block for x th video, the server allocates channels C1+(x−1)(k−1),
C2+(x−1)(k−1), . . . , C1+x∗(k−1) to x th video.

(b) During even block for the first video, the server allocates channels C1, C2, . . . ,

Ck and Cm∗k−m+1 to the first video.

For the x th video [x is not equal to 1], the server allocates channels C2+(x−1)(k−1),
C3+(x−1)(k−1), . . . , C1+x∗(k−1) and Cm∗k−m+x to x th video.

76 SAHOO AND SHEU

4.1.2. Segment scheduling algorithm

Step 1: Initialize m, the total number of videos to be distributed and initialize k, the number
of channels required for each video and N = (2k − 1).

Step 2: Set a timer in the server to fix the duration of each odd block = d ∗ (2k−1 − 1) and
duration of each even block = d ∗ (2k−1).

Step 3: Initialize first odd block A = 0 and each time increment A when the next odd block
starts. Similarly initialize first even block B = 0 and each time increment B when the
next even block starts.

Step 4: Partition each video into (2k − 1) segments of equal duration d and these (2k − 1)
segments of each video will be grouped into maximum k-logical channels.

Step 5: If the requests arrive at slot i :

(a) During odd blocks for the video x , then schedule the segments Sx
1 in channel

C1+(x−1)(k−1) in slot (i + 1) and schedule the segments Sxk−1
2 to Sxk

2−1 in channel
C1+x∗(k−1) starting from slot (A ∗ N + 2k−1) to (A ∗ N + 2k − 1) of x th video.

(b) During the even blocks, for the video x :

If request comes for the video x = 1, server schedule the segment S1
1 in C1 in slot

(i + 1).
Schedule the segments S1k−1

2 to S1k
2−2 in channel Cm∗k−m+1 from slot (B ∗ N + 2k) to

(B ∗ N +3∗2k−1 −2) and the segment S1k
2−1 in channel Ck in slot (B ∗ N +2k −1).

If request comes for the video x > 1, schedule the segments Sxk−1
2 to Sxk

2−2 in channel
Cm∗k−m+x from slot (B ∗ N + 2k) to (B ∗ N + 3 ∗ 2k−1 − 2) and the segment Sxk

2−1
in channel C1+x∗(k−1) in slot (B ∗ N + 2k − 1) of video x .

Step 6: When requests arrive during slot i for the video x , the server first finds the current
segment scheduling channel by channel for [1 + (x − 1)(k − 1)] < j < [1 + x ∗ (k − 1)]:

(a) Assign the segments Sx j−1
2 to Sx j

2−1 of video x in channel C j .
(b) If the last scheduled segment transmission in channel C j is before slot (i + 2 j−1),

then (i + 2 j−1), becomes the new start slot in channel C j for video x .
(c) If the segment Sx

l of channel j , has not been scheduled for video x in slots greater
than i , then the server will schedule a new transmission Sx

l in slot (i + l) in chan-
nels C j .

4.2. Client receiving algorithm

To receive the segments of any requested hot video, without any burden at clients end, we
propose to set a Hot Video Chart (HVC) and a set top box (STB) with each client. The client
has to select one of the hot videos given in the HVC and accordingly enjoy the requested
video. The STB is used to buffer the premature segments when the client starts to see the
requested video. The client/customer may select either the first video V1 or any one of the
video V2, V3, . . . , and Vm from the HVC and sends the request to the server. The server
schedules the segments as the server scheduling algorithm which is based on the request

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 77

of the client at a particular slot and a block. In order to minimize the complexity at clients
end, the server sends the list of channels from which STB can download the segments.
Accordingly, we have designed the algorithm to expedite the process to download segments
for different videos from different channels.

Algorithm:

if Selection = V1

Download (2k − 1) segments from the channels (C1, C2, C3, . . . , Ck−1) and (Ck or
Cm∗k−m+1).

end if

if Selection = Vx (x <> 1)

for x : = 2 to m

Download (2k − 1) segments from the channels (C1+(x−1)(k−1) or Cm∗k−m+x) and
(C2+(x−1)(k−1), C3+(x−1)(k−1), . . . , C1+x∗(k−1))

end for loop

end if

5. Analysis and comparisons

In our protocol, we have proposed to distribute multiple videos on demand at different
request rates based on a reactive approach. We have analyzed how to reduce the number
of channels at all request rates and to minimize bandwidth during low to moderate request
rates for a particular video. As similar to UD protocol, our protocol requires less bandwidth
and saves more channels than UD and FB protocols.

From the practical point of view, any subscriber may want to see different hot videos
at different time in a day. Protocols like FB, UD and DHB, requires (m ∗ k) channels
always in order to broadcast m different hot videos assigning k-channels to each one.
But in our protocol, we need (m ∗ k − m + 1) channels during odd block and (m ∗ k)
channels during each even block. So we save (m − 1) channels in each block as compared
to all previous protocols. Moreover we need same bandwidth that is totally identical to UD
protocol.

In our study, figure 7 compares the channel requirements of our protocol for ten hot
videos with 127 segments each with channel requirements of UD, FB and our protocol. The
request arrival rates have been expressed in arrivals per hour and dedicated channels are
expressed in multiples of the requested videos. It is to be noted that our protocol is based on
reactive approach as similar to UD protocol. As the bandwidth requirement of our protocol
is equal to the UD protocol, we have not compared the bandwidth with different arrival
rates for UD and FB protocols.

From the simulation result for 10 different hot videos as shown in figure 7, we find
that our protocol requires less number of dedicated channels than UD and FB protocols

78 SAHOO AND SHEU

0

10

20

30

40

50

60

70

80

0 50 100 150 200
Arrivals/hour

D
ed

ic
at

ed
 c

h
an

n
el

s

FB

UD

Our Protocol (127segments)

Figure 7. Compared channel requirements of FB, UD and our protocols with 127 segments for 10 hot videos.

for different request rates. Albeit, our protocol performs better at low to moderate request
rates which is totally feasible for multiple hot videos with fixed number of subscribers. We
assume to distribute always hot videos having equally likely demands on each of them. So
we may expect moderate request rates for a particular video as all the videos are hot one
and numbers of customers are fixed in any metropolitan VOD network; thereby our protocol
saves more bandwidth as compared to FB and NPB protocols and requires less number of
channels than UD and FB protocols.

For example, let there be 50 different hot videos to be distributed and each having duration
2 hours. Suppose all the videos are partitioned into 127 segments which can be broadcast in
7 different channels as FB or UD protocol. For 50 different videos, all other protocols need
50 ∗ 7 = 350 different channels, where as we need (50 ∗ 7 + 1 − 50) = 301 channels and
we save 49 channels in each odd block. It can be analyzed that we save 14% channels in
each odd block. In general, in each odd block, we save (m − 1) channels and at an average
(m − 1)/(m ∗ k) = (1/k)(1 − 1/m) channels which is nearly equals to 1/k channels. We
find that, the more number of hot videos we broadcast, the more number of channels can
be saved which is highly useful from the commercial point of view.

Suppose we want to distribute m number of hot videos and we partition each video into
127 segments. In our protocol, duration of each video contains 63 slots in an odd block and
64 slots in an even block. So during an odd block, any number of concurrent or independent
requests can be processed up to 63 slots, there by up to 63 ∗ 0.95 = 1 hour, we can save
(m − 1) channels [as 0.95 minute is the duration of each slot]. However, for any 2 hours
video, we need (m ∗ k − m + 1) channels up to 50% of the duration of a video, and (m ∗ k)
channels for the rest 50%. As per FB or UD protocol, if we allocate 7 channels to each 50
different hot videos, we need 301 channels up to 1 hour and in the next 1 hour if request
comes, we need 350 channels. So in an average we need 325.5 channels throughout the
video distribution period but both UD and FB protocols need 350 channels to distribute
same number of videos.

We use reactive approach which can perfectly handle 100 or more popular videos over a
very large customer base. As shown in figure 8, we require always less number of channels

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 79

Figure 8. Compared channel requirements of FB, UD and our protocols with 127 segments for consecutive hot
videos request rates.

than UD and FB protocol for consecutive requests of the hot videos. Moreover we require
same bandwidth as in UD protocol and reduce the number of dedicated channels. In the
given figures, though we have not compared our protocol with NPB protocol, but it has
observed that our protocol out performs than FB and NPB protocols for low or moderate
request rates on a particular hot video which may be possible for multiple hot videos on
demand. Though we have referred to the partition technique of FB protocol and reactive
approach of UD protocol, our segment-to-slot mapping is totally different from them. An
interesting finding led us to implement the idea behind our protocol in NPB protocol to save
both channel and bandwidth which we haven’t discussed here to avoid the complexity.

6. Conclusions

Several protocols of reactive or proactive nature have been proposed to distribute videos on
demand that can be implemented to handle different hot videos. But those protocols need
channels that are multiple to the number of videos to be broadcast. In contrary to this, when
we broadcast multiple videos, our protocol saves more channels and requires less bandwidth
during low to moderate request rates as similar to the UD protocol. Also we save channels
that are proportional to the number of distributed hot videos. Since the request rates may be
equally likely for all the hot videos, our protocol can be commercially feasible to distribute
multiple hot videos with a fixed customer base.

References

1. S.R. Carter, J.-F. Paris, S. Mohan, and D.D.E. Long, “A dynamic heuristic broadcasting protocol for video-
on-demand,” in IEEE Conference on Distributed Computing System, April 2001, pp. 657–664.

2. A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, “Channel allocation under batching and VCR control
in video-on-demand systems,” Journal of Parallel and Distributed Computing, Vol. 30, No. 2, pp. 168–179,
1994.

80 SAHOO AND SHEU

3. A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for an on-demand video server,”
Multimedia Systems, Vol. 4, No. 3, pp. 112–121, 1996.

4. D.L. Eager and M.K. Venon, “Dynamic skyscraper broadcasting for video-on-demand,” in Proc. 4th Int.
Workshop on Advances in Multimedia Information Systems, Sept. 1998, pp. 18–32.

5. L. Golubchik, J. Lui, and R. Muntz, “Adaptive Piggybacking: A novel technique for data sharing in video-
on-demand storage servers,” Multimedia Systems, Vol. 4, No. 3, pp. 140–155, 1996.

6. K.A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting scheme for metropolitan video-on-
demand systems,” in Proc. ACM SIGCOMM’97 Conference, Sept. 1997, pp. 89–100.

7. L.-S. Juhn and L.-M. Tseng, “Fast broadcasting for hot video access,” RTCSA’97, Oct. 1997, pp. 237–243.
8. L. Juhn and L. Tseng, “Fast data broadcasting and receiving schemes for popular video service,” IEEE Trans.

on Broadcasting, Vol. 44, No. 1, pp. 100–105, 1998.
9. J.-F. Paris, “A simple low-bandwidth broadcasting protocol for video on demand,” in Proc. ICCCN’99 Con-

ference, Oct. 1999, pp. 690–697.
10. J.-F. Paris, F.S.W. Carter, and D.D.E. Long, “A universal distribution protocol for video-on-demand,” in Proc.

Int. Conf. on Multimedia and Expo 2000, July 2000, pp. 657–664.
11. J.-F. Paris, D.D.E. Long, and P.E. Mantey, “A zero delay broadcasting protocol for video on demand,” in Proc.

1999 ACM Multimedia Conf., Nov. 1999, pp. 189–197.
12. S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand services using pyramid broadcasting,”

Multimedia Systems, Vol. 4, No. 4, pp. 197–208, 1996.
13. J.W. Wong, “Broadcast delivery,” in Proc. of the IEEE, Vol. 76, No. 12, pp. 1566–1577, 1998.

Prasan Kumar Sahoo received B.Sc. degree in Physics and M.Sc. degree in Mathematics from the Utkal
University, Bhubaneswar, India, M.Tech degree in Computer Science from the Indian Institute of Technology,
Kharagpur and Ph.D. degree in Applied Mathematics from Utkal University, India taking Advisor from IIT,
Kharagpur, India.

He joined in the Software Research Center, National Central University, Taiwan in 2001 and his research
interests include Ad-hoc wireless, WLAN and Bluetooth.

Jang-Ping Sheu received the B.S. degree in computer science from Tamkang University, Taiwan, Republic of
China, in 1981, and the M.S. and Ph.D. degrees in computer science from the National Tsing Hua University,
Taiwan, Republic of China, in 1983 and 1987, respectively.

AN EFFICIENT CHANNEL ALLOCATION TECHNIQUE 81

He joined the faculty of the Department of Electrical Engineering, National Central University, Taiwan, Republic
of China, as an Associate Professor in 1987. He is currently a Professor of the Department of Computer Science
and Information Engineering, National Central University. He was a Chair of Department of Computer Science
and Information Engineering, National Central University from August 1997 to July 1999. He was a visiting
professor at the Department of Electrical and Computer Engineering, University of California, Irvine from July
1999 to April 2000. His current research interests include wireless communications, mobile computing, parallel
processing, and distributed computing Systems.

He was an associate editor of Journal of the Chinese Institute of Electrical Engineering, from August 1, 1996
to July 31, 2000. He was an associate editor of Journal of Information Science and Engineering from August 1,
1996 to July 31, 2002. He is an associate editor of Journal of the Chinese Institute of Engineers. He was a Guest
Editor of Special Issue for Wireless Communications and Mobil Computing Journal. He was a Program Chair
of IEEE ICPADS’2002. He received the Distinguished Research Awards of the National Science Council of the
Republic of China in 1993–1994, 1995–1996, and 1997–1998.

Dr. Sheu is a senior member of the IEEE, a member of the ACM and Phi Tau Phi Society.

