
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019 1029

DYVINE: Fitness-Based Dynamic Virtual Network
Embedding in Cloud Computing

Chinmaya Kumar Dehury and Prasan Kumar Sahoo , Senior Member, IEEE

Abstract— Virtual network embedding (VNE) is the process of
embedding the set of interconnected virtual machines onto the set
of interconnected physical servers (PSs) in the cloud computing
environment. The level of complexity of VNE problem increases
when a large number of virtual machines with a set of resource
demand need to be embedded onto a network of thousands
of PSs. The key challenge of VNE is the efficient mapping
of virtual networks (VNs), which may have dynamic resource
demands. Existing solutions mainly emphasize on the embedding
of static VN resulting in poor resource utilization and very low
acceptance rate. To tackle such level of complexity in VNE,
a fitness-based dynamic virtual network embedding (DYVINE)
algorithm is proposed with the goal to maximize the resource
utilization by maximizing the acceptance rate. Local and global
fitness values of the virtual machines and VN, respectively, are
used to utilize the maximum amount of physical resources. The
proposed VNE algorithm allows the VN to be dynamic, which
indicates that the structure and resource demand can be changed
during its execution time. Furthermore, in order to reduce the
embedding time in each time slot, a set of PSs is selected to
host the VN instead of considering thousands of PSs, which
may significantly increase the embedding time. The proposed
embedding mechanism is evaluated through extensive simulation
and is compared with similar existing embedding algorithms,
which outperforms over others.

Index Terms— Cloud computing, virtual network embedding
(VNE), dynamic VNE, virtual resource allocation.

I. INTRODUCTION

Cloud platform is the most preferable computing paradigm
among the business entities, research organization and acad-
emics. The computing resources are provided to the remote
users on the rented basis as utility computing. Normally,
the cloud resources are referred to as CPU, memory, storage,
and network bandwidth. Multiple Virtual Machines (VMs)
are created with specific resource configuration according to
the users resource requirement. Virtualization is the backbone

Manuscript received May 5, 2018; revised January 22, 2019 and March 8,
2019; accepted March 14, 2019. Date of publication March 21, 2019; date
of current version April 16, 2019. This work was supported in part by
the Ministry of Science and Technology (MOST), Taiwan, under Grant
107-2221-E-182-073 and in part by Chang Gung Medical Foundation, Taiwan
under Grant CMRPD 2H0291. (Corresponding author: Prasan Kumar Sahoo.)

C. K. Dehury is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan City 333, Taiwan (e-mail:
d0321009@stmail.cgu.edu.tw).

P. K. Sahoo is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan City 333, Taiwan, and also
with the Division of Colon and Rectal Surgery, Chang Gung Memorial
Hospital, Taoyuan City 33305, Taiwan (e-mail: pksahoo@mail.cgu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2906744

technology to create, delete, and manipulate a VM [1]. This
allows the Cloud Service Provider (CSP) to assign single
physical server to multiple users by creating dedicated VMs
for each user without compromising the data confidentiality.

Infrastructure as a Service (IaaS) users send the request
to the CSP in terms of number of VMs and the commu-
nication topology with bandwidth requirement among the
VMs [2], [3]. For example, as given in Figure 1(a), a cloud
user may send the request that consists of three VMs
a, b, and c configured with 20 units, 10 units, and 10 units
of computing resource requirement, respectively. The request
also consists of specific network topology among the VMs
and network resource demand such as the resource demand
between VMs a and b is 2 units.

The users request consisting of multiple interconnected
VMs with specific network topology refers to as Virtual
Network (VN). CSP is equipped with thousands of high-end
physical servers interconnected through most popular and
efficient Fat-tree [4] network topology. The network of such
huge number of physical servers is referred to as physical
network. The process of embedding the users’ VN atop the
CSP’s physical network is known as the Virtual Network
Embedding (VNE) [5], [6]. As shown in Figure 1(b), two VNs
are embedded onto the physical network.

VNE refers to as the embedding of a set of VMs onto a
set of physical servers and the assignment of virtual links
to the physical paths. Each physical path may consist of
multiple physical links and connecting devices. The resource
configuration of VMs comprises of CPU, memory, and storage
resource demands. Similarly, the resource configuration of vir-
tual links comprises of bandwidth requirement and maximum
propagation delay. VN embedding could be in sequential or
parallel order. In sequential order, all VMs are embedded
followed by the virtual links or vice-versa. In parallel order,
either each VM is embedded followed by embedding the
attached virtual links or each virtual link is embedded followed
by embedding the VMs at both ends. Different approaches
such as game theory [7], heuristic approach [8], [9] are
followed to solve this NP-hard VNE problem.

VNE can be classified into two types [10], [11], such as
static and dynamic VNE. In static VNE, users are not allowed
to change the resource configuration of each VM and the
network topology of the VN after embedding onto the physical
network. For instance, huge amount of batch and streaming
data are generated from the smart city environment, which
need to be handled by the CSP. CSP needs to allow the cloud

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-3496-1195

1030 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Fig. 1. An example of virtual network embedding. (a) Virtual networks (b) Physical network.

users to change the resource requirement and the structure of
the VN in order to handle such growth of data. It is possible,
if the VNE is designed to handle the change in the structure
of the VN, which is known as dynamic VNE. Change in
the structure of VN includes addition and deletion of VMs
and virtual links. This also includes the change in resource
requirement of VMs and virtual links. While designing the
dynamic VNE algorithm, the CSP must also consider other
parameters of dynamic VNE such as frequency at which the
VN can be changed by the users or the time interval between
any two adjacent changes.

A. Motivation

One of the major advantages of the cloud computing is its
ability to scale-up and scale-down its resources. Because of
this feature, exact amount of resources can be assigned to the
user’s request to provide the better quality of service with-
out engaging more number of physical resources. Normally,
the user’s requests arrive in the form of VNs, which is a
set of virtual nodes and virtual links. The user’s request can
be classified into two categories such as static and dynamic.
Static requests or VNs are the requests, where the resource
requirement is fixed throughout the duration of execution.
On the other hand, the resource requirement may change over
time in case of Dynamic request or VN.

Based on our recent literature survey, it is observed that
most of the research articles introduce different VNE mecha-
nisms considering the static VN. The static VNE mechanism
produces very efficient results due to fixed resource require-
ment for entire execution time. However, it is a cumbersome
task for the cloud service provider to handle the VN, whose
resource requirements changes with time. Let us consider an
example of providing online game as a service, which allows
multiple players to join the game at any time within one
session and one VM can be assigned to only one player. This
indicates that the number of VMs required for the one session
of the game is decided by the number of players those who
are playing currently. In this scenario, the underline resource
requirement in the form of number of VMs will change at any
time instance, since the number of players may change with
time. This infers that the resource requirement is not static so
as the requested VNs.

Similar situation can also be observed in a smart city
scenario, which generates huge volume of data. To process
the smart city big data, CSP installs a set of interconnected
virtual nodes onto its available physical resources. Though the
embedded VN may able to process the smart city data for
few days or months, the increasing number of IoT devices
and growth in volume of generated data force the CSP to
reconfigure the VN and assign more resources to it. This
indicates that the resource requirement of the VN is dynamic.

Embedding such kind of VNs with help of the static VNE
algorithm is not an efficient approach. Though dynamic
VN can be embedded onto the physical network using static
VNE mechanism, the dynamic VN needs to be embedded
repeatedly due to the changes in the resource requirement,
which is a time-consuming process. This will also decrease the
acceptance rate, if the resource requirement cannot be fulfilled
by the CSP at any time instance during the execution time.
Decrease in the acceptance rate has also direct impact onto
the revenue of the CSP. The aforementioned research issue
motivates us to revisit the design and embedding procedure
of existing VNE mechanism. As a result, a novel DYnamic
VIrtual Network Embedding (DYVINE) algorithm is proposed
considering the dynamic resource requirement of the VNs.

The main contributions of our work are summarized as
follows,

• A novel dynamic VNE algorithm is proposed based on
the fitness values, which are calculated considering the
resource demand of the VN and the resource availability
of the Physical Servers (PSs) at different time instances.
By doing so, the users are allowed to change the structure
and resource configuration of the entire VN.

• The propagation delay of each physical path is considered
during the embedding process of the virtual links along
with the resource availability and demands at any instant
of time.

• Two sub-algorithms of DYVINE are proposed with the
goal to maximize the resource utilization. By doing so,
the rate of acceptance of the VNs can be maximized,
which may play a significant role in maximizing the
revenue of the CSP.

• In order to reduce the total required embedding time of
the VNs, a small set of most suitable physical servers are

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1031

TABLE I

COMPARISON OF RELATED WORKS

selected instead of considering all PSs that are available
with the CSP.

• Extensive simulations are performed and compared with
existing VNE schemes considering the resource utiliza-
tion, acceptance rate, embedding time and other related
parameters as performance metrics.

The rest of the paper is organized as follows. Section
II presents the brief summary of the related works. The
physical and virtual networks are modeled in Section III
followed by the formulation of dynamic VNE problem and
objective functions. The proposed DYnamic VIrtual Network
Embedding (DYVINE) algorithm is presented with theoretical
analysis in Section IV. Performance evaluation of the proposed
algorithm is done in Section V followed by the concluding
remarks in Section VI.

II. RELATED WORKS

Generally, the VNE problem is decomposed into two sub-
problems as virtual node mapping and virtual link mapping.
Mostly, virtual node and link mappings are done separately and
mapping of virtual nodes is followed by the mapping of virtual
links. A number of VNE approaches have been proposed

considering the dynamic resource requirement, topology of
the data center, energy consumption, and revenue maximiza-
tion [12]–[15]. An extensive comparison of the related works
is presented in the Table I.

Considering the dynamic nature of the incoming VN,
Zhang et al. [10] propose an energy-aware VNE (EAD-
VNE) algorithm with the objective to minimize the energy
consumption, which leads to the maximization of revenue.
The basic and workload dependent power consumption by
both physical server and networking devices are taken into
account to achieve the objective. However, it is essential to
consider the resource utilization in order to minimize the
energy consumption. Besides, the proposed algorithm does not
exploit the opportunity to map multiple similar inter-connected
virtual machines onto a single physical server in order to
reduce the energy consumption of the networking switches,
which further can minimize the total energy consumption.
Similarly, a cost-efficient VNE (DVNMA) algorithm is pro-
posed by formulating the problem as a mixed integer linear
programming problem in [11]. Authors address the problem
of frequent changes in the structure and resource demand
of the virtual network and the objective of the proposed

1032 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

algorithm is to minimize the reconfiguration cost. Though
various parameters are taken into account in the proposed
heuristic method, assigning the VMs in one-to-one manner
may not give efficient result in terms of reconfiguration cost.
Further, the proposed algorithm does not consider the fact that
by allowing multiple virtual machines to be embedded onto
single physical server also leads to saving the cost of mapping
or allocating the resources to the corresponding virtual links,
resulting in further minimization of total reconfiguration cost.

Yan et al. [12] propose a novel VNE mechanism consid-
ering the congestion in the link mapping phase. Dividing
the capacity of each server into slots with same capacity
results in poor resource allocation, as the VMs in a VN are
heterogeneous in nature, which is the major disadvantages
of the proposed approach. A greedy VNE algorithm is pro-
posed in [8], where the Euclidean distance shortest path
approach is followed in the link mapping. Mapping all virtual
nodes followed by all virtual links are some of the major
disadvantages of the proposed VNE approach. This may also
produce inefficient result in terms of embedding time when the
reallocation is required for the efficient embedding solution.
A novel approach is followed in embedding the VN in [20],
where one virtual node is split into multiple virtual nodes for
efficient resource utilization and acceptance rate maximization.
However, the proposed VNE cannot be used in case of
compute-intensive application. Further, CSP must have detail
knowledge of the application. By splitting a virtual node into
multiple virtual nodes will directly affect the network resource
utilization.

With the goal to minimize the embedding cost and
maximize the revenue of the infrastructure provider,
Wang and Hamdi [14], Haeri and Trajkovic [21], and
Hesselbach et al. [22] formulate the VNE problem as multi-
objective linear programming problem. Embedding cost refers
to as allocating exactly equal number of physical links.
However, this objective would not be achieved if the virtual
links would have mapped after mapping the virtual nodes.
Hesselbach et al. [22] propose VNE mechanism with the
objective to maximize the revenue, where the virtual nodes
and virtual links are mapped simultaneously instead of sequen-
tially. Considering the federated cloud environment, Aral and
Ovatman [23] propose embedding algorithm for mapping
multiple VM clusters. Though, the authors nearly achieve the
objective of maximizing the acceptance ratio, they ignore the
fact that data transfer incurs extra cost in terms of time in
the geographically distributed cloud environment.

A cloud resource allocation and provisioning algorithm
is proposed in [24], which works in a multi-service cloud
environment considering the service cost, SLA, resource avail-
ability and users’ demand. Though the proposed resource
allocation algorithm performs well in the mentioned scenario,
however, ignoring the network resource in resource allocation
process may not be able give efficient result in real-life
scenario. The importance of network resource is presented
and the inefficient network resource reservation problem is
addressed in [19] with the goal to maximize the revenue
generated by the CSP. The above-mentioned VNE schemes
share a common disadvantage, i.e., inability to reconfigure the

VN during its execution. This infers that the users need to
send the maximum resource requirement of the VMs and
virtual links, which may lead to the resource over-subscription
problem and cost ineffectiveness.

Reinforcement learning in machine learning approach is
followed to embed the VN in [25]. Maximizing the revenue
of the CSP by maximizing the acceptance ratio by using the
historical usage data is the sole goal of the proposed VNE
scheme. However, the proposed embedding algorithm does not
support the dynamic VN and therefore may not effectively
maximize the acceptance ratio. The membrane computing is
exploited in order to embed the incoming VNs as proposed
in [16]. Though the proposed approach achieves the mentioned
goal of maximizing the revenue and acceptance ratio, the VNE
algorithm does not support the dynamic nature of the incoming
VNs and each VM is embedded onto separate physical servers,
which may not maximize the acceptance ratio effectively.
Pyoung and Baek [17] propose a VNE scheme taking the
trade-off between the energy consumption and load balancing
into account. The energy consumption can also be minimized
by utilizing less network resource. However, in the proposed
VNE scheme each VM is mapped onto single physical server,
which indicates that the amount of network resource allocated
is not less than its demand and hence the proposed embedding
algorithm may not give efficient result in terms of power
consumption.

The VNE problem can be formulated as a graph bisec-
tion problem as proposed in [26]. The proposed embedding
algorithm allows the users to provide the location preference,
which can be used for integrating the VMs and virtual link
mapping. This also prohibits the physical servers to host
multiple VMs from one VN. As a result, the network resource
utilization is not optimized. Zhang et al. [27] propose the VNE
algorithm considering the structure of the VN. The structure of
the VN includes the clustering and degree information of the
VMs. The objective of the proposed algorithm is to minimize
the network utilization and maximize the acceptance ratio.
This may give inefficient result as the dependencies among the
VMs is not considered along with the dynamic nature of the
VNs. Taking the network resource into consideration, the VNE
algorithm in [28] uses the temporal and spatial network topol-
ogy information to minimize the link interference. All the three
above-mentioned algorithms suffer a common research issue,
i.e., they do not support the dynamic nature of the incoming
VNs. As a result, the acceptance ratio and resource utilization
is not optimized.

III. PROBLEM FORMULATION

In this section, the network model of physical servers and
user’s requests are presented. Afterward, the fitness matrix and
the fitness value are formulated followed by the formulation
of the objective function.

A. Physical Network

In the data center, a large number of physical servers
are connected using specific network topology. The physical
network consists of a set of interconnected physical machines

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1033

or physical servers and a set of connecting devices. The
communication topology can be of two types such as switch-
centric and server-centric. In this paper, we are considering
switch-centric network topology, where all the physical servers
are connected through the network devices such as switches.
It is to be noted that fat-tree, VL2 and Jellyfish are some
of the popular switch-centric network topologies [12]. The
physical network is represented as an undirected weighted
graph, Gp(Np, Ep), where Np = {P1, P2, P3, ..., Pm} is
the set of m number of physical servers and Ep is the
set of physical paths. Each physical server Pi ∈ Np is
associated with mainly two parameters, which are available
computing resource (i.e. CPU and memory), and available
network resource (i.e. network bandwidth). We use Ax

i (t) to
denote the available computing resource at time t of type
x ∈ {memory, CPU} in the physical server Pi ∈ Np. Each
physical path, denoted as Lp

ij ∈ Ep between the physical
servers Pi and Pj is associated with the bandwidth availability
and propagation delay. The notation Na

ij(t) is used to denote
the available network bandwidth at time t between the physical
servers Pi and Pj . Using the value of Na

ij(t), the network
bandwidth Na

i (t) available at the physical server Pi at time t
can be calculated as,

Na
i (t) = max

∀Pj∈Np
Na

ij(t), i �= j (1)

B. Virtual Network

Users send their resource requirement in the form of Virtual
Network (VN). Each VN consists of a set of virtual nodes
and a set of virtual links, which defines the communication
among the virtual nodes. Here, each virtual node represents
one VM. Since, in this paper, we are dealing with the dynamic
nature of the VNs, the graph of VN is designed as a function
of time. As a result, the undirected weighted graph of the
VN is denoted by the notation Gv

t (Nv
t , Ev

t), where Nv
t =

{V t
1 , V t

2 , V t
3 , ..., V t

n} represents the set of nt number of VMs
at time t, and Ev

t represents the set of virtual edges at time
t. The vertex of the graph represents one VM and the edge
in the graph represents one virtual link. Further, each VN is
associated with various parameters such as computing resource
requirement, i.e., CPU and memory, network resource require-
ment, i.e., network bandwidth, and maximum link propagation
delay. Let, Rx

j (t) be the computing resource requirement of
the VM V t

j ∈ Nv
t . Here, x ∈ {memory, CPU} represents

the resource type, which includes the memory and CPU
type. Lv

ij(t) represents the virtual link between the VMs
V t

i , and V t
j , 0 < i, j ≤ nt, i �= j. The network bandwidth

requirement by the virtual link Lv
ij(t) is represented by N r

ij(t).
Using the value of N r

ij(t), the network bandwidth requirement
N r

i (t) by VM Vj ∈ Nv
t at time t can be calculated as follows.

N r
j (t) =

∑

∀V t
i ∈Nv

t

N r
ij(t), i �= j (2)

In order to access the better quality of service, each virtual
link Lv

ij(t) is associated with the maximum propagation delay
demand Rg

ij(t) at any particular time t. This indicates the
maximum propagation delay allowed on any physical link,

Fig. 2. An example of dynamic virtual network.

which is selected to be used by a virtual link. In addition
to that, user must provide the number of time slots Y that is
required to execute the VN.

C. Dynamic Virtual Network

A VN is said to be dynamic, if the resource configuration
and structure of the VN change over time within the specified
time slots. Here, the resource configuration is referred to as the
computation and network resource requirement of the virtual
nodes and virtual links, respectively. The structure of the VN is
referred to as the topology of the VN. The dynamic VN that is
considered in this paper can be defined as the addition of new
virtual nodes or virtual links, change in resource requirement
of virtual nodes and virtual links, and removal of virtual nodes
and virtual links.

For the better understanding, let us consider an example
as presented in the Figure 2. The initial VN is presented
in Figure 2(a) with three VMs having the resource demand of
20units, 10units, and 10units, respectively. The virtual links
(ab), (ac), and (bc) require the network resource of 2units,
3units, and 7units, respectively. Let, 10 units of time slots
be required by the VN to finish its execution. At time t = 1,
the structure and resource configure remain unchanged. How-
ever, at time t = 2 as shown in Figure 2(b), one new VM d is
added with 15units of resource requirement. As it is assumed
that the VN is represented as an undirected graph with no
isolated VM, VM d is connected with VMs b, and c with 4,
and 2units of network resource demand, respectively. At time
t = 3, only one new virtual link (ad) is added with 10units of
network resource demand as depicted in Figure 2(c). Similarly,
dynamic nature can also be referred to as the removal of VMs
or only the virtual links. For example, as shown in Figure 2(d)
and Figure 2(e), only one virtual link (ad) and one VM c
is removed, respectively. Removal of VM c also indicates
the removal of virtual links, i.e., (ac) and (cd) as shown in
Figure 2(e). The dynamic nature of the VN refers to as the
change in the resource requirement of the VMs or the virtual

1034 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

links. As shown in Figure 2(f), the resource requirement of
VM a and d is changed along with the resource requirement
of virtual link (ad).

It is believed that the existing VN may change its struc-
ture and the resource configuration under two circumstances.
Firstly, due to the workload fluctuation, where the workload on
the virtual node or on the virtual link may increase or decrease.
As a result, the resource requirement of the VN will change.
Secondly, due to the user’s intervention, where the user may
intentionally change the resource configuration of the virtual
nodes and the virtual link along with the structure of the VN.

D. Fitness Matrix

Before embedding any VM onto a PS, it is essential to see
the left out resources on that PS. For better understanding,
let us take an example of two PSs, PS1 and PS2 with the
resource availability of 65 and 60 units, respectively. Let,
V M1 be the virtual machine with resource demand of 58
units, which needs to be embedded onto either PS1 or PS2.
The remaining resource availability on PS1 would be 7 units,
if the V M1 is embedded onto PS1. However, if the V M1
is embedded onto PS2, the remaining resource would be 5
units. It is obvious that the remaining resources cannot be
used in both embedding solutions to create any VM and
therefore remain idle. The latter solution is preferred to be
the better embedding solution as the remaining idle resource
is minimized.

Applying the above scenario onto VNE process, we use
the BestFit and Propagation Delay matrices. The notation
Dx(t) = [dx

ij(t)] is used to represent the BestFit matrix i
number of rows and j number of columns at time t. Rows
refer to as the PSs and the columns refer to as the VMs in
the VN. Hence, the dimension of the BestFit matrix would
depend on the number of VMs present in the VN at time
t and the number of PSs that are eligible and are selected
in the embedding process. Computing resource availability
of the PSs and computing resource demand of the VMs are
taken into account to construct the BestFit matrix. The value
dx

ij(t) is calculated by the following equation, which indicates
the difference between the resource requirement and resource
availability.

dx
ij(t) = Ax

i (t) − Rx
j (t), x ∈ {memory, CPU} (3)

All the negative values of Dx
ij(t) are then replaced with ∞

value, which indicates that the amount of resource available is
less than the resource requirement by the corresponding VM,
which is represented as follows.

dx
ij(t) =

{
∞, if dx

ij(t) ≤ 0

dx
ij(t), Otherwise

(4)

Similar to the BestFit matrix, a three-dimensional propaga-
tion delay matrix is used to embed the virtual links onto the
physical paths. Propagation delay is defined as the length of
time taken for a single data packet to reach at its destination
physical server. It is assumed that multiple paths exist between
any two physical servers. Let, h be the maximum number
of paths between any two physical servers and F k

ij be the

kth ≤ h path between PSs Pi and Pj . μk
ij(t) represents the

propagation delay of the kth path between PSs Pi and Pj

at time t. Considering different propagation delay values at
different time instances among all physical servers, the three-
dimensional propagation delay matrix PD(t) is constructed.

PD(t) = [pdijk(t)], 1 ≤ i, j ≤ |B| (5)

pdijk(t) =

{
∞, if i = j, ∀k

μk
ij(t), Otherwise

(6)

E. Fitness Values

A new feature called Local Fitness Value (LFV) is calculated
to quantify the suitability of a PS for a particular VM.
Similarly, Global Fitness Value (GFV) of the VN is calculated
by considering the local fitness value of each VMs, network
resource demand and availability of the virtual links and VMs,
respectively. The local fitness value of VM V t

j at time t is
calculated as below.

αj(t) =
m∑

i=1

κj
i (t) ∗

dx
ij(t)

Ax
i (t)

(7)

where, κj
i (t) is the boolean variable that represents if the

VM V t
j is embedded on PS Pi. Mathematically,

κj
i (t) =

{
1, if VM V t

j is embedded on PS Pi

0, Otherwise
(8)

In the calculation of LFV, only the computing resource
availability of type x and computing resource demand by the
VMs are considered. However, the GFV is calculated, which
includes the LFV of all the VMs, network resource availability
and demand of the VMs and PSs, respectively. Mathematically,

β(t) =
nt∑

j=1

αj(t) +
m∑

i=1

nt∑

j=1

κj
i (t) ∗

Na
i (t) − N r

j (t)
Na

i (t)
(9)

F. Objective Functions

The major objective of the proposed algorithm is to maxi-
mize the resource utilization by taking the local fitness values
and global fitness values into consideration. This also infers
the maximization of the acceptance rate. Resource utilization
mainly refers to as the utilization of the computing and
network resource. Equations 7 and 9 are used to formulate
the objective function mathematically as given below.

Objective:

Minimize

nt∑

j=1

min
1≤i≤m

κj
i (t)

(
dx

ij(t)
Ax

i (t)
+

Na
i (t) − N r

j (t)
Na

i (t)

)

(10)

Constraints:

Np∑

i=1

κj
i (t) = 1, ∀V t

j ∈ Nv
t (11)

∀Pi ∈ Np, �V t
j ∈ Nv

t , Ax
i (t) < Rx

j (t),
x ∈ {Memory, CPU} (12)

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1035

∀Lp
ij ∈ Ep, �Lv

mn(t) ∈ Ev
t , Na

ij(t) < N r
mn(t) (13)

∀Lp
ij ∈ Ep, �Lv

mn(t) ∈ Ev
t , and μk

ij(t) > Rg
mn(t) (14)

dx
ij(t) = Ax

i (t) − Rx
j (t) (15)

0 < dx
ij(t) (16)

0 < t ≤ Y (17)

Np �= φ, Ep �= φ, Nv
t �= φ, Ev

t �= φ (18)

∀Lv
ij ∈ Ev

t , N r
ij(t) > 0; ∀V t

j ∈ Nv
t , Rx

j (t) > 0 (19)

The objective function in Equation 10 depends on the
minimization of two key values, which needs to be minimized
for all the VMs. The first term focuses on the minimizing
the remaining computing resources. In other words, the VMs
are embedded onto the PSs, where the remaining computing
resource after embedding the current VM can be minimized.
Similarly, the second term emphasizes on the minimization of
the remaining network resource while embedding the virtual
links onto the physical paths. Constraint (11) ensures that
each VM is processed and is embedded onto exactly one PS.
Constraint (12) ensures that the computing resource demand of
each VM is valid and no VM exists in the current VN with the
computing resource demand more than the maximum resource
availability of same type at any PS.

Constraint (13) and Constraint (14) ensures the feasibility
of network resource allocation and satisfies the propagation
demand of each virtual link, respectively. According to Con-
straint (15), the resource demand of the VMs and resource
availability of the physical servers are considered for calcu-
lation of dx

ij(t). Additionally, Constraint (16) ensures that the
value of dx

ij(t) is greater than 0. Negative value indicates the
insufficient resource of the corresponding PS. According to
the Constraint (17), the current time t must not exceed the
value of total number of required time slots, Y at any time
instance.

IV. PROPOSED DYVINE ALGORITHM

In this section, a novel DYnamic VIrtual Network Embed-
ding (DYVINE) algorithm is proposed, which considers the
dynamic nature of the user’s VN. The dynamic nature is
referred to as the change in the structure and resource con-
figuration of the VMs and virtual links. The VN is embedded
in two stages: (a) initial placement of the VMs and virtual links
(b) dynamic placement of the VMs and virtual links. For the
initial placement of the VN, initial VN Embedding (iVNE)
algorithm is designed and is presented in Algorithm 1. For
dynamic placement of the VMs and virtual links, DYVINE
algorithm is presented in Algorithm 2.

Upon arrival of each VN request at the CSP, the iVNE algo-
rithm is invoked with resource requirement and the required
number of time slots Y as the input. iVNE algorithm also
requires the resource availability at each PS and physical
link. Following the initial embedding of the VNs, the current
embedding solution and the updated resource availability at
each PS are forwarded to the DYVINE algorithm as the input.
DYVINE algorithm remaps the VMs with the objective to
minimize the Local Fitness Value (LFV) and Global Fitness
Value (GFV). Upon execution of the DYVINE algorithm,

value of Y is checked in each time slot. If the value of Y
is greater than 0, the VN is checked if there is any change
in its structure or in the resource requirement of the VMs
or virtual links. It is assumed that the CSP is able to obtain
the information regarding any change in the VN. Based on
such information, the DYVINE is invoked again in order
to remap the existing VMs and virtual links or map the
new VMs or virtual links. Following the DYVINE algorithm,
the resource availability of the PSs and physical links are
updated. However, the current embedding solution remains
unchanged if no changes are made in the VNs. In the following
sub-sections, the details of the iVNE and DYVINE algorithms
are discussed.

A. Initial VN Embedding (iVNE)

In this section, the proposed iVNE algorithm is presented
in Algorithm 1. The resource configuration of VN is analyzed
in order to embed the VN onto the physical servers and
physical links. Before embedding, user must provide the total
number of time slots required to finish the execution of
the VN, denoted as Y . Since, the physical network is very
large in terms of number of physical servers and physical
links, it is essential to preprocess the physical network graph
Gp. Preprocessing is done by removing the physical servers
and physical links. The physical servers are removed from
the graph Gp, which cannot satisfy the network resource
requirement of any VM or virtual link. Mathematically,

Remove Pi, iff Na
i (t) ≤ max

∀V t
j ∈Nv

t

N r
j (t),

∀Pi ∈ Np, 1 ≤ j ≤ nt (20)

Similar to the removal process of the PS based on the
network resource as mentioned in Equation 20, the com-
puting resource availabilities of all PSs are checked and
are removed if the corresponding PS cannot host any VM.
Mathematically,

Remove Pi, iff Ax
i (t) ≤ min

∀V t
j ∈Nv

t

Rx
j (t), ∀Pi ∈ Np (21)

Similarly, the physical link Lp
ij is removed if the available

network bandwidth Na
ij is not enough to fulfill the bandwidth

demand N r
uv of any virtual link. Mathematically,

Remove Lp
ij , iff Na

ij(t) ≤ N r
uv(t), 1 ≤ i, j ≤ m,

i �= j, 1 ≤ u, v ≤ n, u �= v (22)

The resultant preprocessed graph is then stored as graph
Gp′

. In order to further reduce the search space or the size
of the physical network, a new set of physical servers is
formed based on the Equations 23 and 24. Let, B be the set of
physical servers, whose resource availability is more than the
maximum computing resource requirement among the VMs.
Mathematically,

B =

{
Pi|Ax

i (t) > max
∀V t

j ∈Nv
t

Rx
j ,

Na
j (t) > max

∀Vj∈Nv
N r

j (t), Pi ∈ Gp′
}

(23)

1036 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Let, B′ be the set of physical servers, whose resource
availability is more than the minimum computing resource
requirement among all the VMs. Mathematically,

B′ =

{
Pi|Ax

i (t) > min
∀V t

j ∈Nv
t

Rx
j (t),

Na
j (t) > max

∀V t
j ∈Nv

t

N r
j (t), Pi ∈ Gp′

}
(24)

The set B and B′ are sorted in ascending order based on
the availability of the computing resource. From the sorted
set, union operation is performed on |Nv

t | number of physical
servers from each of the sets B and B′. Hence, the resultant
set B contains maximum 2∗ |Nv

t | number of physical servers.
The iVNE algorithm is executed by receiving the dynamic

VN and physical network as inputs. The bandwidth require-
ment of each VM is calculated as given in Line 1 followed
by finding the maximum bandwidth requirement, as in Line 2.
The physical servers that cannot host any VMs are removed
and are stored in the set Np′

as in Line 5. A new set of PS
is formed by applying the Equation 23 and 24 on the set Np′

as in Line 10. BestFit matrix is constructed in Line 11–12.
Similarly, a three-dimensional propagation delay matrix is con-
structed as given in Line 13. Using the BestFit and propagation
delay matrix, the VMs and virtual links are embedded. The
embedding process starts by finding the minimum value in the
BestFit matrix as in Line 18. The VM in the corresponding
column is now embedded onto the PS in the corresponding
row as in Line 20. After each VM embedding, the iVNE
algorithm checks if any virtual link is not yet embedded,
whereas the attached two VMs are already embedded. Such
virtual links are embedded by finding a suitable path based on
the propagation delay value in the matrix PD(t) as given in
Line 23–26. Following the embedding of each VM and virtual
link, the resource availability of the PS and physical links are
updated as given in Line 29.

Theorem 1: The time complexity of iVNE algorithm with
nt number of VMs and m number of PSs at any time t is
O(m log m + n3

t).
Proof: Upon arrival of each VN at the CSP, iVNE

algorithm is invoked for the initial placement of the VMs
and virtual links. Calculation of bandwidth requirement of
each VM is given in Algorithm 1 in Line 1, followed by
searching the VMs with maximum bandwidth requirement,
which requires a running time of O(nt) as given in Line
2. Similarly, the running time of calculation of bandwidth
availability of each PS is O(m). In the worst case scenario, all
PS may fulfill the requirement of each VM and therefore no
PS is removed as given in Line 4. However, the running time
to check each PS’s resource availability is O(m). Presuming
that no PS is removed due to resource availability, the running
time of sorting the set of PS is O(m log m) as given in Line 6.
This can be achieved by using HEAPSORT . In order to
reduce the embedding time and PS search space, a new set B
is formed with the running time O(2nt). Since, the maximum
number of PSs in the set B is 2 ∗ nt, the running time
for constructing and updating the BestFit matrix is O(2nt ∗
nt) = O(2n2

t), which is given in Lines 11 and 12. Similarly,

Algorithm 1: Initial Virtual Network Embed-
ding (iVNE) Algorithm

Data: Dynamic VN :GV
t (NV

t , EV
t), Physical

network:GP (NP , EP)
1 Calculate bandwidth requirement of each

VM (Equation 2) ;
2 maxBWreq = max{N r

j (t)} ;
3 Calculate bandwidth availability at each PS

(Equation 1) ;
4 Np′

= Remove the PS using Equation 20 ;
5 Update the set Np′

using Equation 21 ;
6 Sort the set Np′

on computing resource availability ;
7 Form set B and B′ using Equation 23 and 24,

respectively ;
8 B = Extract |Nv

t | number of PSs from set B ;
9 B′ = Extract |Nv

t | number of PSs from set B′ ;
10 B = B ∪ B′ ;
11 Construct BestFit matrix Dx

t using Equation 3 ;
12 Update the Dx

t using Equation 4 ;
13 Construct Propagation Delay matrix PD using

Equation 5 ;
14 TG(tv, te) = Temporary empty graph; tv = {} be the

empty set of vertex; te = {} be the empty edges set ;
15 totUnMappedV Ms = |Nv

t | ;
16 while totUnMappedV Ms > 0 do
17 Initialize i = 0, j = 0 ;
18 Find i and j, such that dx

ij(t) in the matrix Dx(t)
is minimum ;

19 if VM V t
j is NOT embedded onto any PS then

20 Embed VM V t
j on PS Pi ;

21 tv = tv ∪ V t
j ;

22 ∀V t
k ∈ tv, if (Lv

jk(t) = 1, Lv
jk(t) ∈ Ev

t),
te = te ∪ Lv

jk(t) ;
23 foreach virtual link Lv

jk(t) ∈ te

24 s = PS on which V t
k is embedded ;

25 min∀r{pdisr(t) ∈ PD(t)} ;
26 embed Lv

jk(t) on path F r
is ;

27 Update the value of Na
is(t) ;

28 totUnMappedV Ms = totUnMappedV Ms − 1
;

29 Update the resource availability of PS Pi and Ps

;
30 else
31 Repeat from the Step 18 ;
32 end
33 end

construction of the propagation delay matrix would require
a running time of O(2nt ∗ 2nt ∗ h) = O(4hn2

t). Here, it is
assumed that all PSs have a maximum of h number of physical
paths. The while loop given in Lines 16-33 repeat for nt

number of times. Further, to find minimum value in BestFit
matrix and corresponding value of i and j requires a running
time of O(2n2

t) as given in Line 18. Hence, the running
time for embedding all VMs and adjacent virtual links can

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1037

be derived as O(nt ∗ 2n2
t) = O(2n3

t). The total running of
iVNE algorithm can be concluded as follows.

O(nt) + O(m log m) + O(4hn2
t) + O(2n3

t)

Since, the number of paths between any two PSs is constant,
the time complexity of the iVNE algorithm at time t can be
rewritten as O(m log m + 2n3

t) = O(m log m + n3
t).

B. Dynamic VN Embedding

Following the initial placement or embedding of the VMs
onto the physical network, we propose the DYVINE algorithm
that remaps the VMs and the virtual links with the objective
to improve the resource utilization.

The DYVINE algorithm is executed by calculating the
LFV and GFV of all VMs and VNs, respectively, as given
in Lines 1-2. StopCond is used as a conditional variable
that indicates when to stop the algorithm execution. In each
iteration, StopCond variable is set to TRUE assuming that
this is the last iteration where no further minimization of β
is possible, as given in Line 5. However, due to migration
of at least one valid VM, StopCond variable is reset to be
FALSE, as given in Line 19.

In each while loop as given in Line 4, each VM V t
j is

examined with all PSs as follows. At first, it is assumed that
the VM is migrated to a PS p as presented in Line 8. If any
other VM tv ∈ Nv

t is already embedded onto the same PS p,
the current VM and VM tv are treated as one VM, i.e., tv1.
The new resource requirement Rx

tv1(t) of tv1 is calculated as
the sum of the resource requirements of the VM tv and V t

j ,
which is given in Line 11. Mathematically,

Rx
tv1(t) = Rx

j (t) + Rx
tv(t) (25)

Similarly, the network resource requirement N r
tv1(t) of VM

tv1 is calculated by subtracting the network resource require-
ment of the virtual link from the sum of the total network
resource requirement of both VMs as given in Line 11.
Mathematically,

N r
tv1(t) =

(
N r

j (t) + N r
tv(t)

) −
(
2 ∗ N r

(j tv1)(t)
)

(26)

Following the calculation of new resource demand, the LFV
and GFV of the VMs and VNs are calculated as given in Line
12. If the newly calculated GFV value nb is less than the
previous GFV value β, the current VM migration is considered
as a valid and better embedding solution. However, if the
newly calculated GFV value nb is greater than the previous
GFV value β, the current VM migration is discarded or
canceled. The situation may also arise that no VM from the
set of VMs Nv

t is embedded onto the current PS p as given
in the else case in Line 13. In such case, only the new LFV
and GFV is calculated as given in Line 14.

Upon embedding the VMs and virtual links onto its opti-
mized PS, the DYVINE algorithm waits for the current time
slot to finish. The remaining required time slot Y is decre-
mented by 1 unit at the beginning of each time slot as given
in Line 23. It also checks if any VM or the virtual link is added
to the current VN as given in Line 24. If a new VM is added,
the set of VM Nv

t at current time t must have more number

Algorithm 2: DYnamic VIrtual Network Embed-
ding (DYVINE) Algorithm

Data: Dynamic VN :GV
t (NV

t , EV
t); Physical

network:GP (NP , EP); Remaining required
time slots Y

1 Calculate LFV of all VMs using Equation 7 ;
2 Calculate GFV of VN at time t, β(t) using Equation 9

;
3 StopCond = FALSE ;
4 while StopCond = FALSE do
5 StopCond = TRUE ;
6 foreach VM V t

j ∈ Nv
t

7 foreach PS p
8 Migrate V t

j to PS p ;
9 if another VM tv ∈ Nv

t is embedded to PS p
10 Treat tv and V t

j as one VM tv1 ;
11 Calculate the new values of Rx

tv1(t) and
N r

tv1(t) using Equation 25 and 26, respectively ;
12 Calculate LFV of tv1, αtv1(t) and GFV of

VN, nb ;
13 else
14 Calculate LFV of tv, αtv(t) and GFV of

VN nb ;
15 if β(t) < nb
16 Undo the last VM migration in Line 8 ;
17 else
18 Consider current solution as valid. ;
19 StopCond = FALSE ;
20 end
21 while Y > 0 do
22 Wait for current time slot to finish ;
23 Y = Y − 1 ;
24 if |Nv

t | > |Nv
t−1| OR |Ev

t | > |Ev
t−1| then

25 Reconstruct GV
t and Invoke Algorithm 1 and

embed only new VMs and virtual links ;
26 Repeat the steps from Line 1 ;
27 end
28 if |Nv

t | < |Nv
t−1| OR |Ev

t | < |Ev
t−1| then

29 Release the corresponding resources ;
30 end
31 if ∀V t

j , Rx
j (t) �= Rx

j (t − 1) OR N r
j (t) �= N r

j (t − 1)
then

32 Repeat the steps from Line 1 ;
33 end
34 end

of VMs than the set of VMs at time t − 1, Nv
t−1. Similarly,

if a new virtual link is added to the existing VN at time t,
the number of links in set Ev

t at time t must contain more
number of links than in the set Ev

t−1. If the VN is changed
by adding new VMs or virtual links, the VN graph Gv

t is
reconstructed. The new VN graph is further forwarded to the
iVNE function as presented in Algorithm 1. The new VMs
and virtual links are only embedded onto the PSs using the
BestFit and propagation delay matrix, as given in Line 25.
The existing VMs and virtual links are not embedded again.

1038 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

The output of the iVNE algorithm is then used by the DYVINE
algorithm and the steps given in Line 1 are repeated.

However, the structure of the VN can be changed by
removing the VMs or the virtual links. As presented in Line
28, it checks if any VM is removed by comparing the number
of elements in the set Nv

t at time t and set Nv
t−1 at time

t − 1. Nv
t > Nv

t−1 indicates the removal of at least one
VM from the VN. Similarly, Ev

t > Ev
t−1 indicates the removal

of at least one virtual link from the VN. Upon removal of a
VM or virtual link, the corresponding computing resource and
the network resource are released. The resource configuration
of VN is checked as given in Line 31 by comparing the
computing resource demand Rx

j (t) at time t and Rx
j (t− 1) at

time t−1. Similarly, the network resource demand is checked
by comparing the value of N r

j (t) at time t and the value of
N r

j (t− 1) at time t− 1. If the resource configure is changed,
the DYVINE algorithm invokes itself with the new computing
and network resource demands. This process is continued
until the remaining required time slot Y is not equal to 0.
In other words, the DYVINE algorithm runs for Y number of
time slots. For the sake of better understanding, the DYVINE
algorithm is explained with an example in Section IV-C.

Lemma 1: The total service time for any VN with Y number
of required time slots can be calculated as

γ = Y ∗ (ω2 + Δt) + ω1 (27)

where, Δt is the duration of each time slot. ω1 is the
required duration to embed the VN upon its arrival and ω2

is the duration to update the embedding solution in DYVINE
algorithm due to change in the number of VNs.

Proof: DYVINE algorithm assumes that the duration
of each time slot is uniform and upon arrival of any VN,
the initial VNE requires less time than the duration of each
time slot. Mathematically,

ω1 < Δt (28)

In order to make the proposed VNE scheme feasible and cost
effective, the following relation must hold

ω2 < Δt, (29)

which indicates that DYVINE should ensure that the re-
embedding the VN must require less time than the time
length of each time slot, Δt. Considering the relation given
in Equation 28 and 29, the total embedding time can be
calculated as the ω1 + (Y ∗ ω2).

The total time length required for each VN to finish its
execution can be calculated as Y ∗ Δt. The service time,
γ, represents the time required to embed the VN upon its
arrival, the re-embedding time in each time slot and the total
execution time. It is assumed that during re-embedding the
VN in each time slot, the execution of the VN needs to be
suspended. Under such circumstances, the total service time
can be calculated as the sum of total execution time and the
total embedding time. Mathematically,

γ = (Y ∗ Δt) + ω1 + (Y ∗ ω2)
= Y ∗ (ω2 + Δt) + ω1 (30)

Theorem 2: Maximizing the resource utilization maximizes
the acceptance ratio.

Proof: Acceptance ratio refers to as the ratio between the
number of VN requests being accepted and the total number
of VN requests received by the CSP. Here, resource utilization
refers to as the utilization of available resources by creating
heterogeneous VMs for the users. Creating heterogeneous
VMs onto the PS leads to obvious resource fragmentation.
Minimizing the amount of fragmented resource allows the
CSP to create more number of VMs. For example, let’s
assume, CSP received a VM request with 7 units of resource
requirement. The VM cannot be created if the 7 units of
resources are distributed over multiple PSs. However, the VM
can be created, if the same amount of resource is available on
single PS. Inspire from such scenario, we are using BestFit
matrix to find a suitable PS for each VM with the objective
to minimize remaining resource availability. In other words,
we are emphasizing on minimizing the fragmented resource,
which enables the CSP to create more number of VMs. This
infers the maximization of acceptance ratio.

Theorem 3: Proposed VNE algorithm gives near optimal
result for the VN due to optimal placement of each corre-
sponding VM.

Proof: The objective of the proposed DYVINE algo-
rithm is to maximize the resource utilization. It follows the
greedy approach for embedding the VMs and virtual links.
The embedding process starts with embedding each VM and
adjacent virtual links. For each VM, DYVINE selects the
optimal physical server in terms of resource utilization by
considering the resource requirement of the VM and resource
availability of the PS by using the BestFit matrix, where
the remaining resource is minimum. The same procedure is
followed to find the next best VM-PS pair. Further, DYVINE
also makes locally optimal selection of physical links for each
virtual links as given in Algorithm 1. With the intention to
make the embedding solution more efficient in terms of the
resource utilization, the resource availability of the selected
PSs is further compared with the resource demand of the
VMs as given in Algorithm 2. The intention of making
locally optimal selection of PSs and physical links for each
VM and virtual link is to find the global optimal solution
for the entire virtual network. In doing so, DYVINE may
not provide the optimal solution to the classical NP-hard
VNE problem. However, this greedy algorithm can produce a
near-optimal solution, which is established in the performance
evaluation.

Theorem 4: The time complexity of DYVINE algorithm with
nt number of VMs and m number of PSs at time t is O(n3

t).
Proof: The DYVINE algorithm is executed by calculating

the LFV of all VMs as given in Line 1, which requires
the running time of O(nt). Following this, the running time
of calculation of GFV of the VN at time t is constant.
Minimization of β(t) has the time complexity of O(2nt − 1),
which continues for nt number of times. Hence, the time
complexity of foreach loop can be written as O(2n2

t). After
each movement of a VM, the steps from the Line 6 are
repeated. Hence, the algorithm would stop its execution only
when the LFVs of all the VMs are checked. This requires

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1039

Fig. 3. Example of DYVINE: VN and list of PSs. (a) Example of VN graph
(b) VMs with resource demand (c) Selected list of PSs.

Fig. 4. Example of BestFit matrix.

another nt number of calculations. As a result, the total time
complexity of the DYVINE algorithm can be concluded as
O(2n2

t ∗ nt) = O(n3
t).

C. Example of DYVINE

For the sake of better understanding, let us take an example
as given in Figures 3–5. As shown in Figure 3(a), a VN graph
consists of nt = 4 VMs, i.e., V 1, V 2, V 3 and V 4 with the
initial resource requirement of 43 units, 49 units, 24 units,
and 35 units, respectively. In Figure 3(b), the network resource
requirement of VM V 1, V 2, V 3, and V 4 are 8 units, 7 units,
8 units, and 9 units, respectively, which are calculated using
Equation 2. Similarly, let the physical network consists of
hundreds of PSs. However, not all the PSs are eligible to
host all the VMs. Hence, based on the Equations 20 – 22,
the ineligible PSs and physical paths are removed. Further to
reduce the embedding time, Equation 23 and 24 are applied
onto the set of PS and only a maximum of 2 ∗nt = 2 ∗ 4 = 8
number of PSs are selected as given in the Figure 3(c).

Each selected PS has enough network resource to satisfy the
network resource demand of any VM. Based on the resource
availability and resource requirement of all VMs, the BestFit
matrix is constructed using the Equation 3. In the example
given in 4, the first cell value is calculated by subtracting the
resource demand of VM V 1 from the resource availability of
PS P5, which is −18. Similarly, the cell value that corresponds
to the VM V 4 and PS P8 is calculated as −7. The negative
cell values are modified and are replaced with ∞. In the given
example, the first cell value is changed to ∞ from −18. The
∞ value represents that the VM cannot be embedded onto the
corresponding PS.

The propagation delay matrix is constructed using Equa-
tion 5 as presented in Figure 5(a). In this example, it is
assumed that a maximum of three number of paths exist

Fig. 5. Example of DYVINE. (a) Propagation delay matrix (b) Output of
iVNE and DYVINE algorithm.

between each pair of PSs. For clear understanding of the
proposed algorithm, random propagation delay values are used
in the given example. For example, the three paths between
PS P5 and P6 have propagation delay of 0.73, 0.8, and 0.26
units, respectively.

According to Algorithm 1, the first minimum value is
searched in BestFit matrix. The cell value that corresponds
to the VM V 3 and PS P5 is the minimum value. Hence,
VM V 3 is embedded first onto the PS P5 as the remain-
ing corresponding value is minimum. The minimum value
indicates that the embedding of VM V 3 onto the PS P5
will leave the minimum left-over resource. After making the
decision to embed the VM V 3 onto the PS P5, the next
minimum value is searched. However, for further search of the
next minimum value, the same PS is not considered. Hence,
the values in the row that corresponds to the PS P5 are
discarded. The VM V 2 is now embedded onto the PS P15
as the corresponding cell value is minimum. After embedding
two VMs, it is now observed that one virtual link with both
adjacent already-embedded VMs needs to be embedded. In the
given example, the virtual link between the VM V 3 and V 4
needs to be embedded. In order to embed the virtual link,
the propagation delay matrix is used to find the physical path
with minimum propagation delay value. The propagation delay
of the path μ1 between the PS P5 and P15 is 0.09 unit,
which is the minimum value among other two paths. Hence,
the path μ1 between the PS P5 and P15 is used to embed
the virtual link between the VM V 3 and V 2. The process
of searching the next minimum value in the BestFit matrix is
repeated and the VM V 1 is embedded onto the PS P16. Upon
embedding the VM V 1, the virtual link between V 1 and V 2 is
embedded. The same procedures are followed to embed other
VMs and virtual links.

The output of iVNE algorithm is shown in Figure 5(b). This
output is now used as the input to the DYVINE algorithm.
The DYVINE algorithm is executed with the calculation of
the value of LFV (αj) of each VM using Equation 7. Here,
the LFV of VM V 1 that is embedded onto the PS P16 is
α1 = 0.28, which is calculated by 60−43

60 . Similarly, LFVs of
VM V 2, V 3, and V 4 are calculated as α2 = 0.02, α3 = 0.04,
and α4 = 0.53, respectively. Following the calculation of LFV
of each VMs, the GFV of the VN (β) is calculated using
Equation 9. In the given example as shown in Figure 5(b),
the value of β is calculated as 3.61. The objective of the
Algorithm 2 is to minimize the value of β. For this, every

1040 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Fig. 6. Comparison in terms of computing resource utilization. (a) CPU resource utilization (b) Memory resource utilization.

VM is examined. For example, the VM V 3 is migrated to
the PS P17. By such migration, both VMs can be combined
logically and is treated as one VM, V 34. As both VMs are
on one PS, the network bandwidth requirement between the
VM V 3 and V 4 can now be ignored. Hence, the new network
bandwidth requirement of the VM V 3 is N r

3 = 3 units and
VM V 4 is N r

4 = 4 units after combining both VMs. The
new LFV of VM V 34 is calculated as 75−(24+35)

75 = 0.21.
Considering the value of LFV of each VMs and new network
resource demand of VMs, the new β value of the entire
VN is calculated as 2.60. The new β value is smaller than
the previous β value of 3.61. Hence, the current embedding
solution is considered as efficient one. The same procedure of
migrating the VM is followed in order to further minimize the
value of β. However, in this example, no further movement is
possible, which can minimize the value of β and the current
solution is considered as the final one at current time instance.

V. PERFORMANCE EVALUATION

In this section, the performance evaluation of the pro-
posed VNE algorithm is presented. EAD-VNE [10] and
DVNMA [11] VNE algorithms are considered to com-
pare with our work. The EAD-VNE algorithm presents a
VN embedding mechanism considering the fluctuation in the
resource demand of the VMs and virtual links with the
objective to optimize the energy consumption leading to max-
imization of the revenue generation. The DVNMA algorithm
addresses the issue of embedding the dynamic VNs with the
objective to minimize the embedding cost.

A. Simulation Setup

The cloud environment is equipped with 128 numbers of
heterogeneous physical servers. The resource availability at
each PS is distributed randomly in the range between 15 GB
and 40GB of memory and the number of CPUs ranges
between 8 units and 32 units of CPUs. The Fat-Tree net-
work topology is used for the communication purpose among
the PSs. The available bandwidth resource of each physical
path is randomly distributed from 50Mbps through 1 Gbps.
The propagation delay of each physical path is represented as
milliseconds (ms), which ranges from 0.01ms through 5 ms.

On constructing the VN request, the number of VMs ranges
from 2 through 10 VMs. The arrival and lifetime of the VNs
follow the Poisson and exponential distribution, respectively.
The mean arrival rate of the VNs is 5 per 100 time units. The
lifetime of a VN (Y) is referred to as the total number of
time slots required to finish its execution, which is 100 time
units. The virtual links are created among the VMs with the
connectivity probability of 0.7. The link connectivity proba-
bility can be used to calculate the total number of virtual links
present in the VN. For each virtual link, the propagation delay
ranges from 0.1ms and 2.5 ms. The random distribution of
the bandwidth ranges between 100 Kbps through 500 Kbps,
which is used as the unit of network bandwidth resource of
the VNs. The computing resource requirement of the VMs is
randomly distributed ranging from 500MB through 4 GB of
memory and 1 unit through 4 units of CPUs.

B. Simulation Results

The proposed algorithm is compared with EAD-VNE [10]
and DVNMA [11] algorithms in order to evaluate its perfor-
mance. With a constant of 8 number of VMs in each VN,
the average resource utilization using all the three algorithms
is compared as shown in Figure 6. Resource utilization is
calculated in percentage, which refers to as the percentage
of the total resource allocated to the VNs. The average CPU
resource utilization of all the active PSs is presented in Figure
6(a). It is observed that the proposed DYVINE algorithm
outperforms over other two VNE algorithms in terms of CPU
resource utilization. The average CPU utilization is increased
to more than 80% from 36%, when the number of VNs are
increased to 1000 from 100. The CPU resource utilization
in case of EAD-VNE and DVNMA algorithm is less than
80%, when the number of VNs is 1000. The major reason
behind such efficient CPU utilization is due to its ability
to embed the VMs in a compact manner using the BestFit
approach. It exploits the opportunity to embed multiple VMs
onto the PS, where the remaining CPU resource can be
minimized. As a result, the CPU utilization is minimized.
Similarly, as presented in Figure 6(b), the memory utilization
of the proposed DYVINE algorithm is 32% and 85%, when the
number of VNs is 100 and 1000, respectively. By observing
both Figures 6(a) and 6(b), it is concluded that the proposed

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1041

Fig. 7. Comparison in terms of network resource utilization.

DYVINE algorithm gives efficient result as compared to the
EAD-VNE and DVNMA algorithms in terms of resource
utilization.

The performance of the proposed algorithm is compared
with other two algorithms in terms of network resource utiliza-
tion, as shown in Figure 7. The network resource utilization
refers to as the percentage of the total amount of network
resource is being allocated to the VNs. In case of DYVINE,
the amount of network resource utilization increases from
approximately less than 30% to nearly 50%, when the number
of VNs increases from 100 to 1000 with an average of 8
VMs per VN. The link connectivity probability in each VN is
kept constant at 0.7. For 100 VNs, the network utilization
of EAD-VNE and DVNME algorithm lie in the range of 35%
and 40%. However, the utilization increases to more than 50%,
when the number of VNs increases to 1000. The lower network
resource utilization in case of DYVINE algorithm is due to
the placement of multiple VMs of same VN onto the single
PS, due to which the resource demands of the corresponding
virtual links are ignored.

The acceptance rate of the CSP has direct impact on the
generated revenue. Higher acceptance rate refers to as the
maximum number of VNs being accepted by the CSP with
constant number of total PSs. In Figure 8, the acceptance
rate is more than 99%, when the number of VNs is 100.
However, the acceptance rate decreases when the number of
VNs increases. It is observed that the acceptance rate in case of
proposed DYVINE algorithm is approximately 40%, when the
number of VNs increases to 1000, whereas the acceptance rate
is below 34% and 32% in case of EAD-VNE and DVNMA
algorithms, respectively for 1000 number of VNs.

In order to verify the efficiency in terms of network resource
usage of the proposed VNE algorithm, the data regarding
the network resource demand are obtained and the amount
of average network resource allocated to the VNs is simu-
lated as shown in Figure 11. For 100 VNs with a mean of
3964 Kbps of network resource demand per VN, an average
of 3600Kbps of actual network resource is allocated to each
VN, which saves approximately 10% of the network resource.
This efficiency is achieved due to the embedding of multiple
VMs from the same VN onto the single PS. As a result,

Fig. 8. Acceptance rate (in %).

the demands of the corresponding virtual links are ignored and
are not embedded onto any physical path. The similar trend is
observed even when the number of VNs is increased to 1000,
where the average network resource demand is 5147 Kbps and
an average of 4800 Kbps of network resource is allocated.
This saves approximately 7% of the total network resource.
This efficiency plays a major role in increasing the acceptance
rate.

As discussed in Section V-A, the embedding time refers to
as the total time taken by the VNE algorithm to embed the
current VNs. In this work, the embedding time includes the
time taken by the VNE algorithm to examine the changes made
in the structure and configuration of the VNs, re-embedding
the existing VMs and virtual links according to the BestFit
approach, embedding the new VMs and virtual links etc. The
embedding time in case of all three algorithms are depicted in
Figure 9. It is observed that all three VNE algorithms take
approximately 10 − 20ms to embed 200 number of VNs.
However, the efficiency of the proposed algorithm is observed
when the number of VNs increases to 1000. To embed 1000
number of VNs with a constant of 8 number of VMs in each
VN, the proposed DYVINE algorithm takes approximately
50ms, which is 85ms and 78ms in case of EAD-VNE and
DVNMA algorithms, respectively. The major reason behind
such less embedding time is due to the involvement of very
less number of PSs. In the proposed algorithm, only maximum
of 2nt numbers of PSs are chosen to embed the current VN at
any time instance t. As a result, DYVINE algorithm gives the
desired result in very less time.

Figure 10 represents the relationship between the size of
each VN, the number of PSs that are used in the set B in
Algorithm 1, and the resource utilization. Here, the impact
of VN size and length of set B or number of PSs onto
the utilization of CPU and memory resources are studied as
depicted in Figures 10(a) and 10(b), respectively. As discussed
earlier, the resource utilization is referred to as the percentage
of total amount of resource allocated to all the VNs. The
number of VNs is kept constant at 500. The VN size nt

at any time instance t varies from 2 VMs through 10 VMs.
The number of PSs varies from 2nt through 8nt PSs. The
resource utilization slightly decreases when more number of
PSs is considered as given in Line 10 of Algorithm 1. The

1042 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Fig. 9. Average embedding time (in milliseconds).

Fig. 10. Computing resource utilization with variable VN size and number
of PSs. (a) CPU resource utilization (b) Memory resource utilization.

CPU utilization is approximately 36%, when the VN size is
2 VMs and only 2nt = 4 number of PSs are considered. With
constant VN size, the resource utilization slightly decreases
to 32%, when the number of PSs increases to 8nt = 16.
Similarly, the CPU utilization decreases from approximately
68% to 60%, when the number of PSs increases from 2nt = 4
to 8nt = 16 with constant VN size of 10 VMs.

The similar trend is also observed in case of memory
utilization as shown in Figure 10(b). The memory resource
utilization is approximately 32%, when the VN size is 2VMs
and 2nt = 4 number of PSs are considered. However, the
utilization of memory decreases to 27%, when more number
of PSs are considered in embedding the process with same
VN size of 2 VMs. On the other hand, it is found that the
memory resource utilization increases from 27% to 54% with
constant 8nt number of PSs, when the VN size increases
from 2 to 10 VMs, as presented in Figure 10(b). The similar
trend is also observed in case of CPU utilization, as shown in
Figure 10(a).

The impact of VN size and number of PSs parameters are
also analyzed on the acceptance rate of the proposed DYVINE
algorithm, as shown in Figure 12. The acceptance rate is
99%, when the VN size nt is 2 VMs and the number of
PSs is 2nt = 4. As more numbers of PS are considered in
the embedding process, a VN is more likely to be accepted
by the DYVINE algorithm. Acceptance rate decreases in two
scenarios, when the VN size increases or less number of PSs
are chosen in the DYVINE algorithm.

From the above simulation results, it is observed that
increasing the number of PSs gives more efficient result in

Fig. 11. Network resource usage.

Fig. 12. Acceptance rate with variable VN size and number of PSs.

terms of resource utilization and acceptance rate. However,
this may give inefficient result in terms of embedding time as
presented in Figure 13. The number of VNs is kept constant
at 500. The proposed DYVINE algorithm takes approximately
13ms to embed 500 VNs with VN size of 2 VMs, when
the number of PSs is 8nt = 16. However, the embedding
time can be reduced to approximately only 8ms by reducing
the number of PSs to 2nt = 4. This improvement can be
realized when the VN size increases from 2 to 10 VMs. The
time taken to embed 500 VNs with nt = 10 VMs is 32ms,
when the number of PSs is only 2nt = 20. This embedding
time increases to 43ms, when the number of PSs increases to
8nt = 80. From the above figure, it is observed that increase
in the number of PSs, i.e., the length of set B as given in
Line 10 of Algorithm 1 gives better result in terms of resource
utilization and acceptance with the cost of higher embedding
time.

Figure 14 shows the comparison of the proposed DYVINE
algorithm with the optimal solution in terms of CPU, memory
and network resource utilization. The comparison is done to
demonstrate how close the proposed DYVINE algorithm to
the optimal solution is. The optimal results are obtained from
a small scale simulation environment, where the number of
physical servers is 25 and the number VMs per VN ranges
between 2 and 6. For each VN, the minimum link connectivity
probability is set to be 0.7. The simulation results are obtained
for a minimum of 10 VNs and a maximum of 100 VNs. For
each VN, all possible embedding solutions are compared to
find the optimal solution.

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1043

Fig. 13. Embedding time with variable VN size and number of PSs.

Fig. 14. Comparison of DYVINE with the optimal resource utilization.
(a) CPU resource utilization. (b) Memory resource utilization. (c) Network
resource utilization.

Figure 14(a) shows the comparison of CPU utilization of the
optimal solution and the solution obtained from the DYVINE
algorithm. With the given small scale simulation environment,
the CPU utilization is 36%, when the number of VN is 10.
The utilization increases to 82%, when the number of VNs
increases to 100. On the other hand, the utilization increases
from 42% to 89%, when the number of VNs increases from 10
to 100. The utilization is more in case of optimal solution as
the VMs are placed in an optimal manner and more number
of VNs are accepted for the resource allocation. Similar to
the CPU utilization, Figure 14(b) shows the comparison of
optimal solution and the proposed algorithm in terms of
average memory utilization. The memory utilization increases
from 40% to 87%, when the number of VNs increases from 10
to 100. On the other hand, the memory utilization is 32% in
case of DYVINE, when the number of VNs is 10. However,
the utilization value increases to 85%, when the number of
VNs increases to 100.

The proposed algorithm is compared with the optimal
solution in terms of network resource utilization as shown
in Figure 14(c). In the proposed algorithm, multiple VMs
from the same VN share same physical server. As a result,
the allocated amount of network resource is less than the
required amount of network resource. However, it is observed
from the comparison results as shown in Figure 14(c) that
network utilization can further be minimized. The network
resource utilization increases from 28% to 48% and from 25%
to 44.5%, when the number of VNs increases from 10 to 100
with minimum virtual link connectivity probability of 0.7 in
case of DYVINE and optimal solution, respectively.

The main aspect of the proposed algorithm is its ability to
handle the dynamic resource demand of the virtual networks.
Figure 15 shows the relation of average number of VN modi-
fication requests per unit time with different parameters such

Fig. 15. Effect of dynamic VN modification requests on other parameters.
(a) Embedding time (in milliseconds) (b) Number of VN modification requests
accepted or rejected. (c) Resource utilization.

as embedding time, number of requests accepted or rejected
and resource utilization. In Figure 15(a), X-axis represents the
average number of requests coming to the CSP to change the
existing VNs. For this, the number of existing VNs is kept
constant at 1000. In other words, 1000 number of VNs are
currently running in the cloud platform. For those currently
running VNs, CSP may expect a large number of requests to
modify the VN structure or the resource configuration of the
VMs and virtual links. The request can be divided into three
categories as (a) request to add new VM, (b) request to modify
the resource demand of the existing VMs, and (c) request to
modify the network bandwidth demand of the virtual links.

Figure 15(a) shows the simulation results of embedding
time of certain number of VN modification requests of the
above mentioned three categories. The embedding time in
Y-axis is calculated in milliseconds, whereas the average
number of the requests per unit time ranges from 50 and 500. It
is observed that the proposed algorithm requires approximately
125 milliseconds to process 50 number of VN modification
requests in order to add new VM onto the existing VNs.
Adding new VM onto the existing VN also includes the
addition of new virtual link(s). As a result, the embedding time
to add a new VM is expensive as compared to the processing of
other types of VN modification requests. The time required to
process the requests to update the VM resource demand and
virtual link network resource demand is approximately 115
and 95 milliseconds, respectively. However, the embedding
time increases to approximately 230 milliseconds, when the
average number of requests to add new VM increases to
500. On the other hand, the embedding time increases to
approximately 200 and 180 milliseconds, when the number
of requests to update the resource demand of the VMs and
virtual links increases to 500 each, respectively as shown in
Figure 15(a).

Similarly, Figure 15(b) shows the number of requests to
modify the VN being accepted or rejected. The X-axis indi-
cates the average number of VN modification requests per
unit time. The VN modification requests could be the request
to add new VNs or modify the resource demand of VMs
and the virtual links. Y-axis represents the average number of
such requests being accepted or rejected. The average value in
Y-axis is obtained by simulating the algorithm for multiple
times. It is observed that an average of 90 number of VN mod-
ification requests from a total of 100 requests are accepted
and 10 number of requests are rejected. However, when the
average number of VN modification requests increases to 500,

1044 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

an average of 340 number of different types of VN modifica-
tion requests are accepted and are processed. The requests to
modify the VN would be rejected only if no enough resource
is found. The effect of VN modification request on resource
utilization is also shown in Figure 15(c). This observation can
be compared with the CPU and memory utilization as shown
in Figure 14(a) and 14(b), respectively. It is observed that
the resource utilization slightly decreases when the number
of VN modification requests increases. The CPU utilization
is 33.4%, when an average of 10 VN modification requests
arrive per unit time, which is approximately 3% less in normal
scenario as shown in Figure 14(a). Similarly, the memory
utilization is 85%, less than the resource utilization under
normal circumstances as shown in Figure 14(b), when the
number of VN modification requests is 100 per unit time.

VI. CONCLUSIONS

The problem of embedding virtual network, whose structure
and resource demand or configuration can change over time
is studied in this work. An efficient DYnamic VIrtual Net-
work Embedding (DYVINE) algorithm is proposed taking the
dynamic nature of the virtual networks into account. In this
work, dynamic nature refers to as the change in resource
configuration or demand of the VMs and virtual links and
changes in the network topology or the structure of the VNs.
The VMs and virtual links are embedded based on the BestFit
approach. Two fitness values LFV and GFV of the VMs
and entire VNs, respectively are formulated to embed the
VMs. Each VM mapping is followed by the mapping of
the adjacent virtual links. The propagation delay parameter
is considered while embedding the virtual links onto the
physical paths. Furthermore, the proposed algorithm exploits
the opportunity to embed the VMs in a more compact manner
with the objective to minimize the fitness values. As a result,
the resource utilization and acceptance rate are maximized.
Besides, we have evaluated the proposed algorithm by com-
paring with the existing approaches. As the part of our future
work, we would like to focus on extending the current work
by taking other parameters into account, which can improve
the QoS and maximize the revenue for the CSP. The proposed
algorithm does not consider the requests generated from the
edge computing platforms as such requests are associated
with the parameters and constraints that are different from the
associated parameters and constraints of the cloud computing.
However, we will focus on extending the proposed DYVINE
algorithm in future considering the computing environment,
which can integrate both edge and cloud computing.

REFERENCES

[1] H. Shen and L. Chen, “Distributed autonomous virtual resource manage-
ment in datacenters using finite-Markov decision process,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3836–3849, Dec. 2017.

[2] C. Beşiktaş, D. Gözüpek, A. Ulaş, and E. Lokman, “Secure virtual net-
work embedding with flexible bandwidth-based revenue maximization,”
Comput. Netw., vol. 121, pp. 89–99, Jul. 2017.

[3] I. Fajjari, N. Aitsaadi, B. Dab, and G. Pujolle, “Novel adaptive virtual
network embedding algorithm for cloud’s private backbone network,”
Comput. Commun., vol. 84, pp. 12–24, Jun. 2016.

[4] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center net-
working (DCN): Infrastructure and operations,” IEEE Commun. Surveys
Tuts., vol. 19, no. 1, pp. 640–656, 1st Quart., 2016.

[5] N. Shahriar et al., “Virtual network survivability through joint spare
capacity allocation and embedding,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 502–518, Mar. 2018.

[6] P. K. Sahoo, C. K. Dehury, and B. Veeravalli, “LVRM: On the design
of efficient link based virtual resource management algorithm for
cloud platforms,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4,
pp. 887–900, Apr. 2018.

[7] O. Soualah, N. Aitsaadi, and I. Fajjari, “A novel reactive survivable
virtual network embedding scheme based on game theory,” IEEE Trans.
Netw. Service Manage., vol. 14, no. 3, pp. 569–585, Sep. 2017.

[8] H. Cao, Y. Zhu, L. Yang, and G. Zheng, “A efficient mapping algorithm
with novel node-ranking approach for embedding virtual networks,”
IEEE Access, vol. 5, pp. 22054–22066, 2017.

[9] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and
multiple topology attributes-based embedding algorithm for single-
domain virtual network embedding,” IEEE Internet Things J., vol. 5,
no. 1, pp. 108–120, Feb. 2018.

[10] Z. Zhang, S. Su, J. Zhang, K. Shuang, and P. Xu, “Energy aware
virtual network embedding with dynamic demands: Online and offline,”
Comput. Netw., vol. 93, pp. 448–459, Dec. 2015.

[11] G. Sun, H. Yu, V. Anand, and L. Li, “A cost efficient framework and
algorithm for embedding dynamic virtual network requests,” Future
Gener. Comput. Syst., vol. 29, no. 5, pp. 1265–1277, Jul. 2013.

[12] F. Yan, T. T. Lee, and W. Hu, “Congestion-aware embedding of hetero-
geneous bandwidth virtual data centers with hose model abstraction,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 806–819, Apr. 2017.

[13] T. M. Nam, N. H. Thanh, H. T. Hieu, N. T. Manh, N. Van Huynh,
and H. D. Tuan, “Joint network embedding and server consolidation
for energy–efficient dynamic data center virtualization,” Comput. Netw.,
vol. 125, pp. 76–89, Oct. 2017.

[14] T. Wang and M. Hamdi, “Presto: Towards efficient online virtual network
embedding in virtualized cloud data centers,” Comput. Netw., vol. 106,
pp. 196–208, Sep. 2016.

[15] N. Ogino, T. Kitahara, S. Arakawa, and M. Murata, “Virtual network
embedding with multiple priority classes sharing substrate resources,”
Comput. Netw., vol. 112, pp. 52–66, Jan. 2017.

[16] C. Yu, Q. Lian, D. Zhang, and C. Wu, “PAME: Evolutionary membrane
computing for virtual network embedding,” J. Parallel Distrib. Comput-
ing, vol. 111, pp. 136–151, 2018.

[17] C. K. Pyoung and S. J. Baek, “Joint load balancing and energy saving
algorithm for virtual network embedding in infrastructure providers,”
Comput. Commun., vol. 121, pp. 1–18, May 2018.

[18] Z. Xu, W. Liang, and Q. Xia, “Efficient embedding of virtual networks
to distributed clouds via exploring periodic resource demands,” IEEE
Trans. Cloud Comput., vol. 6, no. 3, pp. 694–707, Jul./Sep. 2018.

[19] L. Yu, H. Shen, Z. Cai, L. Liu, and C. Pu, “Towards bandwidth
guarantee for virtual clusters under demand uncertainty in multi-tenant
clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 450–465,
Feb. 2018.

[20] Y. Liang and S. Zhang, “Embedding parallelizable virtual networks,”
Comput. Commun., vol. 102, pp. 47–57, Apr. 2017.

[21] S. Haeri and L. Trajković, “Virtual network embedding via monte
Carlo tree search,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 510–521,
Feb. 2018.

[22] X. Hesselbach, J. R. Amazonas, S. Villanueva, and J. F. Botero,
“Coordinated node and link mapping VNE using a new paths algebra
strategy,” J. Netw. Comput. Appl., vol. 69, pp. 14–26, Jul. 2016.

[23] A. Aral and T. Ovatman, “Network-aware embedding of virtual machine
clusters onto federated cloud infrastructure,” J. Syst. Softw., vol. 120,
pp. 89–104, Oct. 2016.

[24] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G. Min,
“Adaptive resource allocation and provisioning in multi-service cloud
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1,
pp. 31–42, Jan. 2018.

[25] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing,
vol. 284, pp. 1–9, Apr. 2018.

[26] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding LC-VNE algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, no. 6,
pp. 3648–3661, Dec. 2016.

[27] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
the degree and clustering coefficient information,” IEEE Access, vol. 4,
pp. 8572–8580, 2016.

[28] L. Yin, Z. Chen, L. Qiu, and Y. Wen, “Interference based virtual network
embedding,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

DEHURY AND SAHOO: FITNESS-BASED DYVINE IN CLOUD COMPUTING 1045

Chinmaya Kumar Dehury received the B.C.A.
degree from Sambalpur University, India, in 2009,
the M.C.A. degree from Biju Patnaik University,
India, in 2013, and the Ph.D. degree in computer
science and information engineering from Chang
Gung University, Taiwan, in 2019. His research
interests are in scheduling, resource management,
and fault tolerance problems of cloud computing.

Prasan Kumar Sahoo (SM’16) received the
B.Sc. degree (Hons.) in physics and the M.Sc.
degree in mathematics from Utkal University, India,
in 1987 and 1994, respectively, the M.Tech. degree
in computer science from IIT Kharagpur, India,
in 2000, the Ph.D. degree in mathematics from Utkal
University in 2002, and the Ph.D. degree in computer
science and information engineering from National
Central University, Taiwan, in 2009. He has been
an Adjunct Researcher with the Division of Colon
and Rectal Surgery, Chang Gung Memorial Hospital,

Taiwan, since 2018. He is currently a Professor with the Department of
Computer Science and Information Engineering, Chang Gung University,
Taiwan. His current research interests include artificial intelligence, big data
analytic, cloud computing, and the Internet of Things (IoT). He is an Editorial
Board Member of the International Journal of Vehicle Information and
Communication Systems (IJVIC). He was the Program Committee Member
of several IEEE and ACM conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

