
2578 IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

Towards Automatic and Fast Annotation of
Seismocardiogram Signals Using

Machine Learning
Hiren Kumar Thakkar , Member, IEEE, and Prasan Kumar Sahoo , Senior Member, IEEE

Abstract—The automatic annotation of Seismocardio-
gram (SCG) potentially aid to estimate various cardiac health
parameters continuously. However, the inter-subject variabil-
ity of SCG poses great difficulties to automate its accurate
annotation. The objective of the research is to design SCG
peak retrieval methods on the top of the ensemble features
extracted from the SCG morphology for the automatic anno-
tation of SCG signals. The annotation scheme is formulated
as a binary classification problem. Three binary classifiers
such as Naïve Bayes (NB), Support Vector Machine (SVM),
and Logistic Regression (LR) are employed for the annotation
and the results are compared with the recent state-of-the-art
schemes. The performance evaluation is carried out using
9000 SCG signals of 20 presumably healthy volunteers with no known serious cardiac abnormalities. The SCG signals are
acquired from the Physionet public repository “cebsdb”. The models are rigorously validated using metrics “Precision”,
“Recall”, and “F-measure” followed by 5-fold cross-validation. The experimental validation with recent state-of-the-art
solutions establishes the robustness of the proposed NB, SVM and LR with average annotation accuracy of 0.86, 0.925 and
0.935, respectively. The mean response time of proposed models is in the fraction of 1

10 sec, which establishes its
application for the real-time annotation.

Index Terms— Seismocardiogram (SCG), automatic annotation, cardiac health parameters (CHPs), non-invasive,
machine learning.

I. INTRODUCTION

THE recent advancements in the field of sensing tech-
nology have made it possible to obtain the ultra-low

vibrations from the chest surface produced by various cardiac
mechanical events [1], [2]. The seismocardiogram (SCG) is
one of the promising modalities that captures the cardiac
events in the form of mechanical vibrations [3]. In a healthy
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Fig. 1. Example annotation of SCG.

subject, each SCG cardiac cycle exhibits up to nine individual
mechanical events in the form of signal peaks as shown
in Fig. 1. The SCG peaks and corresponding mechanical
events [4] are described in Table I. The accurate annotation
of the aforementioned nine SCG peaks enables the non-
invasive detection of cardiac conditions such as early-stage
hemorrhage [5], heartbeat performance [6], and ischemia [7].

Nowadays, several Cardiac Health Parameters (CHPs)
are employed to foresee the early signs of Cardiovascular
Diseases (CVDs) such as Heart Rate Variability (HRV),
Pulse Transit Time (PTT), Respiratory Phases (RP), Stroke
Volume (SV), and Cardiac Time Intervals (CTIs). The Elec-
trocardiogram (ECG) signals are well studied and numerous
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TABLE I
THE SET OF IMPORTANT SCG PEAKS WITH CORRESPONDING

CARDIAC MECHANICAL ACTIVITIES

approaches are available, which can estimate the CHPs using
standalone ECG [8]. Recent studies show that Ballistocar-
diogram (BCG) and Seismocardiogram (SCG) are capable to
estimate the CHPs in a standalone manner. However, BCG
and SCG signals are not well studied and there is a lack of
consensus on various feature points. Therefore, BCG and SCG
are commonly used to estimate the CHPs in conjunction with
ECG, Echocardiography (Echo), photoplethysmogram (PPG),
etc., [9]. In the past few years, adequate progress is made
in the direction of standalone use of SCG to estimate the
CHPs such as estimation of CTIs [10], [11] and RP [12].
However, non-invasive and accurate estimation of other CHPs
using standalone SCG requires further investigation. The
non-invasive estimation of the aforementioned CHPs can
be accomplished by analyzing the SCG signals. However,
the estimation of CHPs from SCG requires an efficient
method to annotate the specific important peaks.

A. Motivation

Contrary to Electrocardiogram (ECG), the SCG morphology
is highly obscure and puzzling to comprehend. Typically,
SCG signals vary from one subject to another and from one
cardiac cycle to another. Moreover, body induced signal arti-
facts may contaminate SCG mechanical vibrations during the
retrieval, which makes it challenging to accurately locate the
desired peaks leading to the overall failure of the annotation.
As shown in Fig. 1, peaks such as {AO, RE} and {I M , IC}
exhibit the similar morphological amplitude, which makes it
more complicated to distinguish the peaks during automatic
annotation. Therefore, an efficient and responsive approach
is required to tackle the dynamic nature of SCG signals
for an automatic annotation. The fundamental shortcoming
of the existing approaches is their lack of adaptability to
tune the solution with the dynamic nature of error-prone
SCG signals. Hence, it is highly essential to design a robust
annotation scheme that learns the morphological behavior and
automatically distinguish the set of desired peaks to that of
undesired.

Rest of the paper is organized as follows. Section II
presents the related works. The methodology is described
in Section III. The Machine Learning (ML) classifiers
are described in Section IV. The experiment dataset and
performance metrics are described in Section V. The
results are reported in Section VI followed by discus-
sion in Section VII. The concluding remarks are made
in Section VIII.

II. RELATED WORKS

The ECG, BCG, and SCG signals are considered as
low-cost alternatives to monitor various cardiac health con-
ditions of patients. In the past, several researchers have
engaged ECG for the recognition of various cardiac health
conditions [13], [14]. However, ECG exhibits merely five
important peaks {P, Q, R, S, T }, which limits the in-depth
analysis of cardiac activities. Hence, competitive cardiac sig-
nals such as BCG and SCG are explored to complement the
ECG based cardiac health monitoring. However, a recent study
gives SCG an edge over BCG [15].

Numerous SCG based applications are proposed to non-
invasively monitor stroke volume, heart rate variability, and
cardiac time intervals [16], [17]. To be specific, the afore-
mentioned conditions are directly or indirectly estimated from
the SCG important peaks. Hence, in the past few years, the
research focus is largely shifted on the automatic annotation
of specific SCG peaks without human involvement.

In [18], an approach to annotate SCG using high-frequency
precordial accelerations is presented. Various envelops are
designed using the source SCG signals to help annotate the
SCG in turn. However, the proposed method does not provide
a complete solution to successfully annotate all of the nine
desired SCG peaks. Instead, envelops are designed to help
annotate only two specific SCG peaks I M and IC .

In [11], an SCG peaks annotation (described as SCG fiducial
points delineation) method is introduced to non-invasively
estimate cardiac time intervals. Primarily three fiducial points
are annotated such as I M , AO, and AC by designing three
external envelopes from the source SCG itself. However, SCG
morphology is highly complex and varies from one subject to
another. Hence, it impacts the quality of envelope formation
and thereby affects the overall delineation accuracy. Besides,
the proposed method requires external envelope formation to
delineate fiducial points, which increases the complexity of the
solution. Moreover, only three fiducial points are delineated,
which limits the applicability of the approach.

In [19], a sliding template-based systolic and diastolic
peaks annotation method is proposed. The ensemble averaging
of Cardiac Cycles (CCs) is carried to minimize the signal
distortion. However, ensemble averaging may not help much
to improve peak detection accuracy beyond a certain limit.
The smoothen SCG may contain a set of potential candidate
SCG peaks with morphological characteristics to that of the
desired one. In the absence of a method that distinguishes the
desired and undesired SCG peaks from signal morphology, the
annotation process may end up annotating the wrong peaks,
which may reduce the accuracy of estimated systolic time
intervals.

In [20], an annotation method for gyroscope acquired SCG
is presented. An additional gyroscope recording based rota-
tional kinetic energy waveforms (RKEW) are employed for the
annotation of SCG peaks IM and AC. However, the RKEW
waveforms are derived from source SCG signals and hence the
quality of derived RKEW waveforms are strongly dependent
on the quality of underlying SCG signals.
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Fig. 2. Overview of SCG annotation framework.

In this paper, our goal is to design automatic annotation
models for the SCG signals with a two-fold focus on the
annotation accuracy and the response time. Further, the pro-
posed annotation models attempt to identify all of the nine
SCG peaks in Cardiac Cycles (CCs). Based on the goal, our
contributions can be described as follow.

• We have designed a machine learning-based novel SCG
annotation framework.

• We have designed three ensemble features extracted from
the morphological knowledge of SCG.

• We have designed an efficient preprocessing mechanism
comprised of zone formation and candidate peaks iden-
tification to help expedite the automatic annotation for
continuous cardiac monitoring.

• We have formulated an SCG annotation as a binary
classification problem and tackled by employing binary
classifiers.

III. METHODOLOGY

In this section, we describe the fast and automatic annotation
of the desired SCG peaks.

A. Overview of SCG Annotation Framework

The SCG annotation framework is broadly divided into
three phases namely the preprocessing, training, and testing as
shown in Fig. 2. During the training, classifiers are trained and
ensemble features are learned. Before testing, preprocessing
is carried out to identify candidate peaks. Finally, undesired
candidate peaks are located and filtered out using trained
classifiers in the testing phase. The detailed description of each
phase is provided in subsequent sections.

B. Ensemble Features Designing

Three features namely Amplitude, Time of appearance and
Count are derived from the morphological knowledge of SCG
as described follow.

1) Amplitude: It represents the intensity of cardiac mechan-
ical activity and takes +ve or −ve value. Each desired SCG
peak corresponds to a specific cardiac mechanical activity
and has a distinguishing amplitude behavior. For example,

AO and AC corresponds to high +ve and low +ve ampli-
tude, respectively. These morphological amplitude behaviors
of peaks serve as a better predictor to improve the annotation.
However, amplitude alone may not be sufficient to distinguish
between the desired and undesired SCG peaks, and therefore
other features are investigated.

2) Time of Appearance: In many instances, the amplitude
of peak goes beyond its expected range, which makes it chal-
lenging to correctly distinguish between the adjacent peaks.
For instance, a similar amplitude of MC and AO makes it
challenging for an algorithm to distinguish between them.
Therefore, a novel feature named Time of appearance is
designed. Unlike amplitude, the time of appearance of SCG
peaks is observed to be more consistent in the time domain.
Besides, peaks appear in predefined sequential order such as
MC followed by AS, I M followed by MC etc. The pseudo-
accurate nature of peaks in the time domain is tapped and used
as an additional measure to effectively identify the desired
peaks.

The Time of appearance for each peak is calculated as
follows. For AO, the Time of appearance is measured for
Q RS of the concurrent ECG cycle, which usually takes
the +ve value. For others, Time of appearance is measured for
AO. For example, peaks appearing before AO are assigned
with −ve value and those appearing after AO are assigned
with +ve value in each cycle.

3) Count: When two or more peaks have similar ampli-
tude and are very close to each other in the time domain,
it becomes challenging for the automatic annotation models
to pick the desired one based on the Amplitude and the
Time of appearance. Hence, the third feature namely Count
is incorporated to complement their limitations. The Count
is defined as the number of Upslopes and Downslopes away
a particular SCG peak from AO. As reported in [21], SCG
peaks are separated by a certain number of Upslopes and
Downslopes. For example, I M is one Downslope away from
MC , and AO is one Upslope away from I M as shown in
Fig. 1. Learning the representative value of Count for all
peaks with respect to AO may help to distinguish peaks
successfully that are very close to each other and have similar
amplitude.

The ensemble features’ extraction and their corresponding
representative value estimation is carried out over the ensemble
average of K = 12 training cardiac cycles. Here, K = 12 is
obtained experimentally, which gives better results.

C. Preprocessing of SCG Signals

In preprocessing, each SCG cycle is divided into three
zones to reduce the search area. Subsequently, distinctive
properties described in Table II are employed to expedite the
identification of potential candidate peaks.

1) Zones Formation: The SCG cycle can be partitioned into
three zones concerning ECG as shown in Fig. 3. The zones
are formulated by comparing the morphology of SCG to that
of the concurrent ECG. In a healthy subject, the Wiggers
diagram [22] along with the recent studies [11], [19] confirm
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TABLE II
SCG PEAKS WITH DISTINCTIVE CHARACTERISTICS

Fig. 3. The zones formation and candidate peaks identification.

that the cardiac electrical and mechanical events take place
in a well-defined sequence that appear concurrently in ECG
and SCG, respectively. In the systolic profile of ECG, i.e., the
onset of Q RS to offset of T , the ventricle pressure rapidly
increases and then decreases after attaining the maximum level
leading to the cardiac mechanical activities such as MC , AO,
I M , IC , and RE in SCG. Therefore, Zone 2 is formulated
concerning the systolic profile of ECG. Similarly, Zone 1 and
Zone 3 are formulated concerning the diastolic profile of ECG,
i.e., offset of T to the onset of Q RS. The diastolic profile
initiates the closure of the Aortic valve (AC) and concludes
with the opening of Mitral valve (MO) represented as Zone
3 followed by the atrial systole, i.e., offset of P to the onset
of Q RS in ECG represented as Zone 1.

Three knowledge-based representative rules are formulated
to form zones as summarized in Table II. The representative
rules are defined as follows.

Representative rule-1: Align the ECG time duration
between offset of P wave and onset of Q RS to the concurrent
SCG to form Zone1 for the discovery of AS.

Representative rule-2: Align the ECG time duration
between onset of Q RS and onset of T wave to the con-
current SCG to form Zone2 for the discovery of MC , I M ,
IC , and RE .

Representative rule-3: Align the ECG time duration
between offset of T wave and onset of subsequent cycle’s P
wave to the concurrent SCG to form Zone3 for the discovery
of AC , M O, and RF .

2) Identification of Candidate Peaks: In each zone, maxima
and minima are located as potential candidate peaks. However,

only the subset of potential candidate peaks are chosen as can-
didate peaks using the distinctive properties as summarized in
Table II. For example, as shown in Fig. 3, AS has a distinctive
property of being maxima represented as max_peak. Hence,
only the set of maxima are considered as candidate peaks of
AS in Zone1 as shown in Fig. 3. Similar process is followed
for the Zone2 and Zone3. The process of choosing the subset
of candidate peaks out of the set of potential candidate peaks
further accelerates the annotation process by reducing the
search space.

IV. MACHINE LEARNING CLASSIFIERS

The SCG signals from the real subjects vary from one
subject to another, which make it challenging to annotate
the desired peaks. Therefore machine learning classifiers are
employed to capture the morphological changes in signals and
to generalize the signal behavior.

A. Classifiers Selection

Since our primary objective is to perform the automatic
annotation in a real-time and continuous manner, complex
classifiers may not serve the purpose. Classifier such as Arti-
ficial Neural Networks (ANN) requires greater computational
power as well as time to tune several parameters. On the
contrary, the decision tree, boosted tree, and random forest
classifiers require optimum splitting rules with the size of
output tree as minimum as possible, which is challenging
to accomplish in a time-efficient manner given the fluctua-
tions in input SCG. Besides, classifiers such as K-Nearest
Neighbors (KNN), ANN, and decision tree are not a good
fit to analyze time-series data such as SCG and are prone
to overfitting. The KNN, ANN, and decision tree are more
flexible and therefore are subject to high variance leading
to cause major fluctuations in the prediction model with the
changes in input training data.

The NB, SVM, and LR are exclusively chosen as they
are less computer-intensive and highly robust against the
overfitting, which makes them suitable to apply for real-
time monitoring. The NB and LR have low variance and
prediction models built on top of them are more tolerant with
the underlying change in input training data. Besides, NB,
SVM, and LR require only a few parameters to tune, which
is ideal for quick learning and annotation.

B. Naïve Bayes (NB) Classifier

Let SCG Ps = {AS, MC, I M, IC, RE, AC, M O, RF } be
the set of desired SCG peaks. For any x ∈ SCG Ps, let us
assume that n candidate peaks are identified represented as
C Px = {cp1

x , cp2
x , . . . , cpn

x }. The objective is to classify each
cpi

x ∈ C Px into either of two classes Ck, k ∈ {1, 2}, where C1
and C2 represents the class selected and rejected, respectively.
For each cpi

x , a feature vector Fi
x = {Ci

x , T i
x , Ai

x} is prepared
as shown in Table III. Here, Ci

x , T i
x , and Ai

x represents the
feature Count, Time of appearance, and Amplitude of i th

candidate peak of the desired SCG peak x , respectively. Using
Fi

x , the conditional probabilities p(C1|Fi
x) and p(C2|Fi

x) can
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TABLE III
SCG FEATURE NOTATIONS

be modelled as shown in Eq. 1.

p(Ck |Fi
x)= p(Ck |Ci

x , T i
x , Ai

x ), k ∈ {1, 2}, i ∈ {1, 2, . . . , n}
(1)

The Ci
x , T i

x and Ai
x are conditionally independent to each

other. Hence, we can rewrite Eq. 1 as shown in Eq. 2.

p(Ck |Ci
x , T i

x , Ai
x) ∝ p(Ck) × p(Ci

x |Ck) × p(T i
x |Ck)

× p(Ai
x |Ck) (2)

Here, p(Ci
x |Ck), p(T i

x |Ck) and p(Ai
x |Ck) represents the

probability of Ci
x , T i

x , and Ai
x for a given class Ck ,

respectively.
The μk,Cx , μk,Tx , and μk,Ax are mean of features Count,

Time of appearance, and Amplitude for a given SCG peak x
and class Ck , respectively. Similarly, σ 2

k,Cx
, σ 2

k,Tx
, and σ 2

k,Ax
are the standard variance of Count, Time of appearance and
Amplitude for a given SCG peak x and class Ck , respec-
tively. The mean {μk,Cx , μk,Tx , μk,Ax } and standard variance
{σ 2

k,Cx
, σ 2

k,Tx
, σ 2

k,Ax
} are the learning parameters estimated

from the training samples of class Ck .
A binary Naïve Bayes classifier can be constructed on

the top of the model by incorporating Maximum a Posteri-
ori (MAP) decision rule. The classifier function assigns a class
label ŷ = Ck for k ∈ {1, 2} as shown in Eq. 3.

ŷ = argmax
k∈{1,2}

p(Ck)

|Fi
x |∏

j=1

p( f j |Ck), where f j ∈ {Ci
x , T i

x , Ai
x}

(3)

The candidate peaks have equal probability to be selected
as well as rejected. Hence, prior probability distribu-
tion is assumed equiprobable with p(C1) = p(C2) =

1
# o f classes = 0.5.

x = max

(
p(C1|cp1

x), p(C1|cp2
x), . . . , p(C1|cpn

x )

)
(4)

If more than one candidate peaks are classified as selected
with class label ŷ = C1, the cpi

x with Maximum Likelihood
Probability (MLP) for class C1 (e.g., selected) is chosen as
the desired SCG peak x as shown in Eq. 4.

C. Support Vector Classifier

In this section, supervised non-probabilistic binary classifier
is designed to classify the candidate peaks into class selected
or rejected. For each SCG peak x ∈ SCG Ps, the SVM
is trained to construct the classification hyperplane. Let
us say for any SCG peak x ∈ SCG Ps, there are m

linearly separable labelled training samples in data set
Zx = {(z1

x , y1
x ), (z

2
x , y2

x ), . . . , (zm
x , ym

x )}, where m > 0. Here,
zi

x ∈ Zx is i th training peak of desired SCG peak x consisting
of feature vector Fi

x = {Ci
x , T i

x , Ai
x}, and yi

x ∈ Zx is the
class label for i th training peak of desired SCG peak x .
The yi

x = +1 and yi
x = −1 represents class selected and

rejected, respectively. The objective is to derive an optimum
classification hyperplane that partitions the Zx into two
subsets, 1). The subset selected represented as Z+1

x = {zi
x ∈

Zx |yi
x = +1}, and 2). The subset rejected represented as

Z−1
x = {zi

x ∈ Zx |yi
x = −1}, where Z+1

x ∩ Z−1
x = null.

The linear SVM classifier represented by �w,b(zi
x ) can be

defined as shown in Eq. 5.

�w,b(z
i
x ) = wT Fi

x + b, ∀zi
x ∈ Zx (5)

Here, �w,b(zi
x ) is a classification hyperplane, w is a weight

vector, and b is a bias. The w is a learning vector, which is
trained using the Zx .

For the binary classification, three hyper-planes are defined,
1). The optimum hyperplane �w,b(zi

x) = wT Fi
x + b = 0.

2). The hyperplane for the class selected (yi
x = +1) repre-

sented as �w,b(zi
x) = wT Fi

x +b = +1, and 3). The hyperplane
for the class rejected (yi

x = −1) represented as �w,b(zi
x ) =

wT Fi
x + b = −1. The distance between �w,b(zi

x ) = +1 and

�w,b(zi
x) = −1 is defined as

2

||w|| and it is maximized under

the constraint yi
x(w

T Fi
x + b) ≥ 1, for each zi

x ∈ Zx .
For the non-linearly separable training samples, the SVM

is extended to include the hinge loss function max(0, 1 −
yi

x(w
T Fi

x + b)). In this case, the optimization problem can
be defined as shown in Eq. 6, where λ decides the margin
size and at the same time λ ensures that the sample zi

x ∈ Zx

lies in the correct class.

min

([
1

m

m∑
i=1

max(0, 1 − yi
x(w

T Fi
x + b))

]
+ λ||w||2

)
,

where m = number of samples (6)

The trained SVM is used to classify the C Px =
{cp1

x, cp2
x , . . . , cpn

x }. The candidate peak cpi
x ∈ C Px that

classifies into class selected (+1) is considered as a desired
SCG peak x . If more than one candidate peaks are classified
into class selected, the one with maximum distance from
�w,b(zi

x) = 0 is considered, as it has the least generalization
error.

D. Logistic Regression (LR) Classifier

Let us assume that for an SCG peak x ∈ SCG Ps, the set
Zx = {zi

x |i = 1, 2, . . . , k} with k training data samples
is available, where zi

x ∈ Zx is an i th training data sam-
ple. Each training sample zi

x is comprised of feature vector
Fi

x = {Ci
x , T i

x , Ai
x}. A logistic linear function L(zi

x ) can be
defined as shown in Eq. 7.

L(zi
x ) = β0 + (β1 × Ci

x ) + (β2 × T i
x ) + (β3 × Ai

x)

= βT × Fi
x , ∀zi

x ∈ Zx (7)
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Here, β0, β1, β2 and β3 are the classifier-specific learning
parameters.

σ(L(zi
x )) = σ(βT Fi

x ) = 1

1 + ex p−(βT Fi
x )

(8)

Let us consider that there are n test data samples (i.e.,
candidate peaks) for an SCG peak x , which is represented as
C Px = {cp1

x , cp2
x , . . . , cpn

x }. For each candidate peak cpi
x ∈

C Px , the trained logistic regression model defined in Eq. 8 is
used to predict the likelihood of cpi

x to be classified in class
selected as defined in Eq. 9.

p(selected|cpi
x) = σ(L(cpi

x)) = σ(βT Fi
x )

= 1

1 + ex p−(β0+β1Ci
x+β2T i

x +β3 Ai
x )

(9)

Out of the n candidate peaks, the one with maximum
likelihood to be classified in a class selected is chosen as
desired SCG peak x as shown in Eq. 10.

x = max

(
p(selected|cp1

x), p(selected|cp2
x), ..,

p(selected|cpn
x)

)
(10)

V. DATASET AND PERFORMANCE METRICS

A. Dataset Description

The combined measurement of ECG and SCG of twenty
subjects is obtained from the Physionet public repository
“cebsdb” [23], [24]. The subjects are presumably healthy
volunteers with no serious cardiac abnormalities. The signals
were acquired using a Biopac MP36 data acquisition sys-
tem (Santa Barbara, CA, USA) and a triaxial accelerometer
(LIS344ALH, ST Microelectronics) with bandwidth between
0.5 Hz and 100 Hz. The ECG measurement was carried out
using electrodes with foam tape and sticky gel (3M Red Dot
2560). The sampling rate was 5 kHz. During the entire data
acquisition process, the subjects were asked to be very still in
a supine position on a comfortable conventional single bed and
awake. For the analysis, dorso-ventral (i.e., z-axis) component
of the 3-D SCG signal is used with positive polarity [25].
The demographic information of the subjects is presented in
Table IV. The mean age of the subjects is 24.45 years. Out
of 20 subjects, 12 are male and 8 are female.

The selection of the inertial sensor such as triaxial
accelerometer (LIS344ALH) plays a significant role in overall
system performance. Factors such as accelerometer range, sen-
sitivity, noise density, surface area, number of axes of inertial
sensor plays an important role in deciding the signal qual-
ity and subsequently the system performance. For instance,
vibrations beyond the sensing range, i.e., maximum allowed
amplitude get distorted and is clipped in output. Similarly,
low sensitivity accelerometers unable to capture the ultra-low
heart induced vibrations. Therefore, accelerometers need to
be chosen carefully to acquire the quality signals. Although,
there is no well defined minimum requirements available in
the literature for accelerometer selection, the standards such
as sensitivity up to 0.164 μs/μg, measurement range of ±2g

TABLE IV
SCG DATASET DESCRIPTION

to ±6g, and a noise density below 6.5 μg/
√

H z are proven to
provide high quality signals with a resolution of up to 9 bits.

A unique Cardiac Cycle Quality Index (CC QI ) between
0 and 1 is derived as defined in Eq. 11 depending on
the difficulty in annotation and the number of successfully
annotated peaks.

CC QI =T S × # of success f ully annotated SCG Peaks

T otal # of SCG Peaks
(11)

The T S is a triviality score assigned by expert annotators.
The T S = 1 indicates the easy annotation and clear morphol-
ogy; whereas T S = 0 indicates the challenging annotation and
complex morphology. Finally, the CCs with Average Cardiac
Cycle Quality Index (i.e., Avg_CC QI ) more than 0.5 are
considered for the experiment. The Avg_CC QI is defined
in Eq. 12.

Avg_CC QI =
∑n

i=1 CC QIi

n
(12)

The n represents the number of expert annotators. In our
experiment, n = 2 expert annotators are involved to validate
any SCG peak and conflicts are resolved with the opinion of
the third expert annotator. The quality of expert annotation is
ensured using the inter-annotator kappa coefficient (κ) [26].
The annotation process concludes κ = 0.73 ∈ (0.6, 0.8),
which indicates a substantial agreement.

The summary of training, testing, and validation data set
is as follows. Total 9000 CCs are randomly chosen from
20 subjects, i.e., 450 CCs per subject for the experimental
purpose. Out of 9000 CCs, 6000 CCs are randomly chosen
from 14 random subjects, i.e., 8 male and 6 female for the
training and rest 3000 CCs, i.e., 4 males and 2 females are
held out for the testing purpose. It is to be noted that the
testing CCs are used for the model evaluation purpose only
and are not involved in the training. 5-fold cross-validation
is performed in our experiment and the set of 9000 CCs is
randomly divided into five subsets of 1800 CCs each. In each
fold, one subset of 1800 CCs is considered for the evaluation
purpose and the rest four subsets that comprise 7200 CCs are
used for the model training. The accuracy evaluation results
are obtained based on the performance of the models on the
validation data set of 1800 CCs.

The outcome of the expert annotation is summarized
in Table V. For each SCG peak x ∈ SCG Ps =
{AS, MC, I M, IC, RE, AC, M O, RF }, the Table V shows
the number of training CCs with valid annotation of a respec-
tive peak by both expert annotators. It is to note that not
all 6000 CCs contain all of the nine important SCG peaks.
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TABLE V
NUMBER OF TRAINING CARDIAC CYCLES (CCS) PER PEAK

The absence of any important peak in a CC justifies the
presence of external signal artifacts. For each SCG peak
x ∈ SCG Ps, the proposed classifiers are trained and the
features are estimated using training CCs.

B. Performance Metrics

The performance metrics such as Precision, Recall, and
F-measure are employed for the quantitative accuracy eval-
uation. For the qualitative accuracy evaluation, Time Differ-
ence Error (TDE) and Time Difference Root Mean Square
Error (TDRMSE) are considered as defined in Eq. 13 and 14,
respectively.

T DE = |T imestampRSCG P − T imestampSSCG P | (13)

T DRM SE =
√√√√ 1

q

q∑
j=1

(T DE j
x )2, x ∈ SCG Ps (14)

The TDE represents the T imestamp difference between the
RSCG P and the corresponding SSCG P . For each SCG peak x ∈
SCG Ps, the TDRMSE represents the average TDE over the q
CCs under consideration. The accuracy assessment of various
cardiac time intervals such as ST , DT , P E P and LV ET
is performed by measuring the mean time interval difference
between the expert and automatic estimation across q CCs as
defined in Eq. 15.

MeanError(CT I y) =
∑q

j=1 |T y, j
Expert − T y, j

Auto|
q

,

where, y ∈ {ST, DT, P E P, LV ET } (15)

The T y, j
Expert and T y, j

Auto are expert and automatic time
interval of yth cardiac time interval observed in j th CC,
respectively. To evaluate the applicability of proposed models
for real-time and continuous monitoring, Mean Response
Time (MeanRT) is calculated across q CCs as defined
in Eq. 16.

Mean RT m =
∑q

j=1 |T m, j
T erminat ion − T m, j

I nit iat ion |
q

,

where, m ∈ {N B, SV M, L R} (16)

The T m, j
T erminat ion and T m, j

I nit iat ion represents the termination
time and initiation time of the annotation process, respectively
for j th CC and mth annotation model.

VI. RESULTS

The proposed models are trained on the training data set
and are validated using a 5-fold cross-validation across the
quantitative and qualitative performance metrics as discussed
in Section V-B. On the contrary, the unbiased performance
evaluation of the proposed model is provided by employing the
test data set to validate the testing using the same quantitative
and qualitative performance metrics.

TABLE VI
COMMONLY APPEARING VALUE OF FEATURES WITH RESPECT TO AO

Fig. 4. The # of CCs with all of the nine SCG peaks (SCGPs).

A. Results of Expert Annotation

The results of the expert annotation are summarized in
Table VI. The mean value of Count, Time of appearance, and
Amplitude is derived from the training CCs.

As shown in Table VI, AS with Count = −4 indicates that
AS normally appears four slopes (Upslopes and Downslopes)
before the appearance of AO. The RF with Count = 18
indicates that RF is expected to appear eighteen slopes
after the appearance of AO. Similarly, Time of appearance
is obtained. For example, IC appears on an average
0.049 ± 0.0031 sec after the appearance of AO. Finally,
the Amplitude −24.26 ± 1.77 of IC represents the mean
amplitude observed for the expert annotation.

The training and testing CCs are separately annotated by
expert annotators to locate the set of nine desired SCG peaks.

In Fig. 4a, the x − axis shows the six sets of 1000 training
CCs, and y − axis shows the number of CCs exhibiting all of
the nine SCG peaks. Similarly, Fig. 4b shows the outcome of
the test set using the six sets of 500 CCs each. From Fig. 4, it is
clear that significant number of training as well as testing CCs
contain all of the nine SCG peaks and there is a consistency
across the sets. Fig. 5 presents the extended outcome of Fig. 4a
for each desired SCG peak.

B. Results of Proposed Classifiers

The proposed classifiers are implemented using a scikit-
learn machine learning library [27]. Fig. 6 shows the annota-
tion results of NB, SVM, and LR represented as N B_SSCG Ps ,
SV M_SSCG Ps , and L R_SSCG Ps with respect to expert anno-
tation outcome RSCG Ps . The comparison of each desired SCG
peak is carried out across six sets of 500 test CCs each. For
each SCG peak, the set of RSCG Ps and SSCG Ps are plotted
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Fig. 5. Outcome of expert annotation representing the number of CCs with relevant SCG peak RSCGP (a) AS, (b) MC, (c) IM, (d) AO, (e) IC, (f) RE,
(g) AC, (h) MO, and (i) RF with respect to six sets of 1000 training CCs each.

Fig. 6. Comparison of Selected SCG Peaks SSCGPs of Naïve Bayes (NB_SSCGPs), Support Vector Machine (SVM_SSCGPs), and Logistic
Regression (LR_SSCGPs) with SSCGPs of Env_SCG, Sliding_SCG, baseline, and with Relevant SCG peaks RSCGPs of expert annotation for
(a) AS, (b) MC, (c) IM, (d) AO, (e) IC, (f) RE, (g) AC, (h) MO, and (i) RF with respect to six sets of 500 testing CCs each.

across sets of 500 CCs each. The outcome trend reveals that
proposed classifiers consistently follows the performance of
the expert annotation. It is evident from Fig. 6 that similar to
training CCs, AO is successfully annotated in most test CCs
by the automatic and expert annotation.

The outcomes of proposed classifiers are also com-
pared with the state-of-the-art recent annotation schemes
Env_SCG [11], and Sliding_SCG [19] along with the
baseline approach. The Env_SCG [11] is an envelope based
scheme and focuses to annotate I M , AO, and AC; whereas
Sliding_SCG is sliding window based scheme and focuses to
annotate AO and AC . The proposed models are also compared
with the baseline annotation model. From Fig. 6, it is clear
that Env_SCG [11] performs marginally better compared
to Sliding_SCG [19], baseline and proposed N B_SSCG Ps .

In addition, Fig. 6 shows that the performance of LR is
marginally better as compared to NB and SVM. For each SCG
peak, LR has successfully identified and annotated more num-
ber of desired SCG peaks as compared to that of NB and SVM.

1) Results of Quantitative Accuracy Evaluation: The quan-
titative accuracy evaluation results are shown in Fig. 7 for
NB, SVM, and LR for Precision, Recall, and F-measure.
The results obtained for testing datasets are considered as
input to calculate quantitative performance metrics. The results
are compared with Env_SCG [11], Sliding_SCG [19], and
baseline. From Fig. 7, it is clear that for the test dataset
of 3000 CCs, LR outperforms over SVM and NB together
with Env_SCG [11], Sliding_SCG [19], and baseline with
respect to Precision and F-measure. It is also clear that with
the increase in the number of testing CCs, the quantitative

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:41:47 UTC from IEEE Xplore.  Restrictions apply. 



2586 IEEE SENSORS JOURNAL, VOL. 20, NO. 5, MARCH 1, 2020

Fig. 7. Accuracy outcome comparison of proposed ML classifiers, NB, SVM, and LR with Env_SCG, Sliding_SCG, and baseline with respect to
Precision, Recall and F-Measure for the testing dataset.

TABLE VII
COMMONLY APPEARING VALUE OF FEATURES WITH RESPECT TO AO

accuracy decreases marginally for all annotation schemes. It is
to note that F-measure is a single value performance indicator
and is a combined representation of Precision and Recall. The
average accuracy of NB, SVM, and LR is 0.86, 0.925, and
0.935, respectively with respect to F-measure. Compared to the
external envelopes employed in Env_SCG [11], the proposed
classifiers benefit from the zone formation, which results
in better estimation of the probable search area for vari-
ous peaks. Moreover, we consider the distinctive properties,
which minimizes the search process and thereby reduces the
instances of the wrong annotation between closely appeared
morphologically similar peaks. To be specific, contrary to
Env_SCG [11], the proposed classifiers are better equipped
with pre-processing and have a more accurate and concise
search area.

Further, the performance reliability of the models is ensured
using the 5-fold cross-validation. The results of 5-fold cross-
validation are reported in Table VII. The 5-fold cross-
validation results establish the robustness of the proposed
models. The accuracy evaluation results of the 5-fold cross-
validation are more reliable as they are obtained based on
the extensive evaluation of the models on a different subset
of unseen test cycles in each fold. On the line of our earlier
results reported in Fig 6 and 7, the 5-fold cross-validation
confirms the superiority of LR over others. Besides, it is also
confirmed that the NB shows consistently poor performance
during 5-fold cross-validation.

2) Results of Qualitative Accuracy Evaluation: The
quantitative accuracy evaluation results establish that
binary classifiers are well suit to tackle the time-series
unobtrusive SCG annotations.

The qualitative accuracy evaluation results of the proposed
annotation models are obtained using performance metrics

Fig. 8. Accuracy evaluation results with respect to Time Difference
Error (TDE) for the test dataset.

Fig. 9. Accuracy evaluation results with respect to the Time Difference
Root Mean Square Error (TDRMSE) for the testing dataset.

such as TDE and TDRMSE as presented in Fig. 8 and Fig. 9,
respectively. For each desired SCG peak, Fig. 8 presents the
box plot to show three resultant outcomes such as median
TDE (in ms), maximum TDE, and minimum TDE between
the proposed and expert annotation approaches. From Fig. 8,
it is clear that I M has the least median TDE and RF has
the maximum TDE. Moreover, in Fig. 6, it is also clear that
although AO has marginally more median TDE, the difference
between its maximum and minimum TDE is least among oth-
ers. The possible explanation of improved qualitative accuracy
results of AO lies in its convenient retrieval by experts as
well as proposed annotation classifiers as shown in Fig. 6.
For the robust accuracy evaluation, in addition to the Time
Difference Error (TDE), the Time Difference Root Mean
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Fig. 10. Accuracy evaluation results of Cardiac Time Intervals with
respect to MeanError for the test dataset.

Fig. 11. The responsiveness evaluation results with respect to the Mean
Response Time (MeanRT) for the testing dataset.

Square Error (TDRMSE) is also calculated for each desired
SCG peak as shown in Fig. 9. From Fig. 9, it can be observed
that MC and AO has the maximum and minimum TDRMSE,
respectively.

3) Results of Cardiac Time Intervals Estimation: Apart from
the qualitative accuracy evaluation of the desired SCG peaks,
the accuracy assessment of Cardiac Time Intervals (CTIs), one
of the important aspects of Cardiac Health Parameters (CHPs)
is also performed. The CTIs such as ST , DT , P E P , and
LV ET are estimated for MeanError ± SD as shown in
Fig. 10. It is clear from Fig. 10 that the MeanError between
the manual and proposed classifier is insignificant, which
shows the efficient estimation of CTIs. Moreover, Fig. 10
shows that MeanError in the estimation of the systolic time
interval is less as compared to that of the diastolic time
interval.

4) Results of Classifier Responsiveness: In addition to the
quantitative and qualitative accuracy evaluations, the proposed
annotation models are also evaluated to know their responsive-
ness for model learning and classification of each peak in a
CC as shown in Fig. 11. As it can be seen in Fig. 11, among
the aforementioned proposed annotation models, NB takes the
least amount of time to learn as well as classify the desired
SCG peaks. On the contrary, the SVM and LR takes the
maximum amount of classification and model learning time,
respectively.

VII. DISCUSSION

The performance of expert annotation is not uniform across
the SCG peaks. As shown in Fig. 5, it is observed that I M ,
AO, IC , and RE are successfully annotated in significant
number of training CCs compared to AS, MC , AC , M O,
and RF . The potential explanation for the successful annota-
tion of AO in most training CCs is its distinctive property
of high +ve amplitude as shown in Fig. 1, which makes
it easy for the expert annotators to identify and annotate
it. On the contrary, peaks AS, MC , AC , M O, and RF
usually exhibit low amplitude with similar morphological
characteristics to that of other closely appearing candidate
peaks as shown in Fig. 1, which makes them more difficult
to annotate.

The annotation results shown in Fig. 6 indicates that the
proposed binary classifiers consistently follows the annota-
tion trend of expert annotation. Based on the results, it is
argued that binary classifiers are the suitable alternative to
address the SCG annotation problem. The results of Fig. 7
justifies our claim. The limited performance improvement
of the conventional approaches can be explained as follow.
The Env_SCG [11] generates external envelopes to mask
the SCG signals and locate the I M , AO, and AC . This
helps Env_SCG [11] to improve the accuracy of annotation.
However, Env_SCG [11] considers the fixed window size,
which saturates the accuracy improvement. On the contrary,
Sliding_SCG [19] dynamically adjust the window size and
outperforms basline and proposed N B_SSCG Ps . However,
Sliding_SCG [19] lacks the method to locate the probable
search area for the identification of peaks. The results of
Fig. 7 show that the proposed classifier L R_SSCG Ps consis-
tently outperforms the Env_SCG [11], Sliding_SCG [19],
and baseline. Moreover, the results of SV M_SSCG Ps are
comparable to the Env_SCG [11] and Sliding_SCG [19].

The significant advantage of the proposed approach is
the process of zone formation, which eliminates the need
for a fixed-size sliding window as required by conventional
approaches. The zones are formed following a simple process
of ECG alignment, which results in significant improvement of
the accuracy with negligible overhead. Besides, the proposed
approach has derived distinctive properties that help to reduce
the search area, which subsequently improves the chances
of accurate peak annotation. Different from conventional
approaches, the proposed approach continuously learns the
morphological characteristics of signals to dynamically tune
the features, which help annotate fluctuating SCG signals
across the cardiac cycles.

The potentials reason for the marginal decrease in the
performance of NB and SVM is as follows. The NB is a
probabilistic classifier and mainly suffers due to its inherent
assumption of conditional independence among the features.
On the contrary, in many instances, SVM tends to wrongly
classify peaks near to classification hyperplane due to external
noise induce input signals. It is to note that the proposed
classifiers consistently perform better and provide satisfactory
results with respect to the expert annotation.
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The fundamental reason for having the least Mean
Response Time (MeanRT) for NB is its linear time estimation
for Maximum-likelihood training. It is to be noted that the
machine learning-based annotation models learning is a one
time process, following which classification can be performed
repeatedly for each SCG peak. Once the annotation models
are trained, the time to classify the peaks is observed in
the the fraction of 1

10 of a second, which implies that all
of the annotation models are fast enough to be considered for
the real-time monitoring and continuous estimation of CHPs
from the unobtrusive SCG signals.

VIII. CONCLUSION AND FUTURE WORK

In this paper, automatic annotation of SCG signals is
explored for the application in real-time cardiac health-
care monitoring. Unlike previous studies, the proposed study
employs machine learning models to automate the annotation
over the traditional approaches. The annotation process is
expedited by formulating the knowledge-based representative
rules and distinctive properties derived from the SCG morphol-
ogy. Besides, ensemble features are designed for the robust
identification of the desired SCG peaks. The experimental
results reveal that annotation accuracy noticeably improves
over recent state-of-the-art alternatives. However, there are
a few limitations. The proposed SCG annotation scheme is
dependent on the concurrent ECG signals and the classifiers
are built on the top of three simple features to make the system
suitable for real-time monitoring. Only the selected classifiers
are chosen for the annotation to avoid computational complex-
ity. However, we argue that the annotation accuracy can be
further improved in two ways. 1). By incorporating the more
complex features based on the signal morphology and beat-to-
beat correlation. 2). By employing computationally expensive
machine learning algorithms such as recurrent neural networks
etc. In the future, we starve to design computationally inexpen-
sive yet robust learning models that annotate the SCG without
the need for concurrent ECG signals. Further, we intend to
extend our work by experimenting with the inclusion of the
complex features.
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