
1058 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

MUVINE: Multi-Stage Virtual Network Embedding
in Cloud Data Centers Using Reinforcement

Learning-Based Predictions
Hiren Kumar Thakkar , Member, IEEE, Chinmaya Kumar Dehury ,

and Prasan Kumar Sahoo , Senior Member, IEEE

Abstract— The recent advances in virtualization technology
have enabled the sharing of computing and networking resources
of cloud data centers among multiple users. Virtual Network
Embedding (VNE) is highly important and is an integral part of
the cloud resource management. The lack of historical knowledge
on cloud functioning and inability to foresee the future resource
demand are two fundamental shortcomings of the traditional
VNE approaches. The consequence of those shortcomings is the
inefficient embedding of virtual resources on Substrate Nodes
(SNs). On the contrary, application of Artificial Intelligence (AI)
in VNE is still in the premature stage and needs further investiga-
tion. Considering the underlying complexity of VNE that includes
numerous parameters, intelligent solutions are required to utilize
the cloud resources efficiently via careful selection of appropri-
ate SNs for the VNE. In this paper, Reinforcement Learning
based prediction model is designed for the efficient Multi-stage
Virtual Network Embedding (MUVINE) among the cloud data
centers. The proposed MUVINE scheme is extensively simulated
and evaluated against the recent state-of-the-art schemes. The
simulation outcomes show that the proposed MUVINE scheme
consistently outperforms over the existing schemes and provides
the promising results.

Index Terms— Virtual network embedding, cloud computing,
artificial intelligence, reinforcement learning, virtual resource
allocation.

I. INTRODUCTION

THE cloud computing is a recent advancement in virtual-
ization technology that can dynamically provision infinite

computing resources to the end users on pay as you use basis.

Manuscript received April 15, 2019; revised January 23, 2020; accepted
January 28, 2020. Date of publication April 8, 2020; date of current version
May 21, 2020. This work was supported in part by the Ministry of Science and
Technology (MOST), Taiwan, under Grant 108-2221-E-182-050 and in part
by Chang Gung Medical Foundation, Taiwan, under Grant CMRPD 2J0141.
(Corresponding author: Prasan Kumar Sahoo.)

Hiren Kumar Thakkar was with the Department of Computer Science and
Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
He is now with the Department of Computer Science Engineering, Bennett
University, Greater Noida 201310, India (e-mail: hirenkumar.thakkar@
bennett.edu.in).

Chinmaya Kumar Dehury was with the Department of Computer Sci-
ence and Information Engineering, Chang Gung University, Taoyuan 33302,
Taiwan. He is now with the Mobile and Cloud Laboratory, Institute of
Computer Science, University of Tartu, 51009 Tartu, Estonia (e-mail: chin-
maya.dehury@ut.ee).

Prasan Kumar Sahoo is with the Department of Computer Science and
Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan,
and also with the Division of Colon and Rectal Surgery, Chang Gung Memo-
rial Hospital, Taoyuan 33305, Taiwan (e-mail: pksahoo@mail.cgu.edu.tw).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.2986663

The primary concern of any Cloud Service Provider (CSP)
is to ensure the quality of cloud services to the end users
with optimum computing resources that translate into the max-
imum profit. Accordingly, various heuristics-based, nature-
inspired learning-based, and Artificial Intelligence (AI) based
approaches are proposed for the efficient cloud resource man-
agement. The AI is one of the promising alternatives that
potentially aid in efficient cloud resource management. AI is
known as the machine demonstrated intelligence and it is
considered as a group of techniques designed to tackle the
application-specific problems such as prediction, classification,
recognition, visualization etc. Prominent AI techniques such
as Fuzzy Logic, Machine Learning (ML) and Deep Learn-
ing (DL) exist to deal with various problems in every walk of
our life. Among them, ML is typically used to process the text
and numeric dataset. Generally, ML techniques are broadly
classified into three categories such as supervised, unsuper-
vised, and reinforcement learning with primary objective to
let the machine extract, analyze, train, and build the prediction
models on the top of the training dataset. In supervised learn-
ing, machine learns from the supplied labels often called as the
observed true outcomes; whereas, in unsupervised learning,
the machine learns without the known outcomes. Contrary to
the supervised and unsupervised learning, the agent (machine)
learns in real-time from the environment to optimize the given
problem in reinforcement learning.

Although AI techniques help to build an efficient prediction
model, it poses numerous challenges as well. The foremost
challenge is to choose the right AI technique for a given
application, dataset type, size, and nature of the problem.
However, considering the robustness, the recent years have
witnessed a myriad growth of applications of AI gradually
replacing the traditional approaches with improved accuracy.
The home automation [1], self-driving car [2], cardiac signal
processing [3], automated cloud resource management [4]
are considered few of the potential applications that benefit
the most by AI. Among the aforementioned applications,
automated cloud resource management is considered as the
challenging one due to the underlying complexity.

On the other hand, cloud computing environment provides
the computing and storage resources to the users, which
encourages the users to execute the complex applications and
stores the raw data without concerning much about the storage
space [5]. The computing and storage as virtual resources are

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0003-1990-0431
https://orcid.org/0000-0003-3496-1195

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1059

provision to the end users by implementing the virtualization
technology atop the substrate resources [6]. Different service
models are used to provide the virtual resources such as the
Infrastructure as a Service (IaaS), Software as a Service (SaaS)
etc. In order to access the resources using IaaS model, users
need to send the request in the form of Virtual Network
(VN). Typically, each VN request may comprised of a number
of Virtual Machines (VMs) with the corresponding resource
configuration, and the network topology that defines the com-
munication among the VMs [7].

On receiving the VN request, CSP creates the required VMs
onto a set of suitably interconnected Substrate Nodes (SNs)
and establishes the communication links among the VMs.
The aforementioned process is called as a Virtual Network
Embedding (VNE). In general, VNE refers to the embedding
of the VMs and virtual links in a sequential or parallel manner.
However, the SN utilization is one of the major research issues
that needs to be addressed while embedding the VN. In the
past decade, different approaches are followed to efficiently
carry out the VNE process. In [7], graph theory is used as a
tool for the VNE. In [7], the VN request and the substrate
network are treaterd as graphs and the sub-graph from the
substrate network equivalent to that of the VN request is
obtained. In [8], Hidden Markov Model is used to model the
VNE problem. Ant colony optimization [9] and Particle swarm
optimization [10] are few of the machine learning methods that
are applied in the VNE process.

The machine learning approaches may use the historical
information of the incoming VN request, substrate network,
and the usage history. The VN request may includes the
resource demand of VMs. Each VM is further associated
with the priority value decided in accordance with the Ser-
vice Level Agreement (SLA), which indicates the importance
of the corresponding VM in resource allocation process.
Upon embedding the VN onto the SNs, the actual resource
usage information is obtained. On the other hand, historical
information regarding the SNs includes the amount of the
resources allocated to the VN request, actual resource usage
by the VMs, throughput of each SN, addition and removal
of the SNs at different time stamps. It is assumed that the
CSP is empowered with different software tools to collect
such historical information [11]. The historical information
also includes the type of VN requests accepted and rejected
under different cloud scenarios. Further, such labelled data
are useful in the embedding process to provision the suitable
SNs for each VN request type. The supervised ML algorithms
such as linear regression, support vector machine and Naive
Bayes can be considered as the suitable alternatives for the
aforementioned data. However, it is essential to design the ML
algorithms, which explore the cloud environment and exploit
the VM placement strategies for the real-time embedding of
VMs on SNs.

A. Motivation

The substrate resource utilization plays a major role in
embedding the VNs as it has the direct impact on the
acceptance ratio and revenue of the CSP. Here, the sub-
strate resource refers to as the CPU, memory, and network.

The utilization refers to as the percentage of the resources
utilized by the VMs out of the allocated. Usually, the exact
amount of resources is allocated to VMs and the virtual links
to fulfill the resource demand of the requested VNs. However,
our analysis of the historical dataset [11] reveals that resources
normally stay underutilized leading to the overall ineffective
resource utilization.

Furthermore, the workload distribution of substrate
resources to VNs plays an important part in cloud resource
management. Normally, it is preferable to have uniform sub-
strate resource allocation to VNs across the cloud. Fig. 1
illustrates the possible problem scenario that may arise under
the uneven workload distribution. Let CSP is comprised of
SN1 and SN2 with maximum CPU capacity of 14 and 12
units, respectively and the maximum memory capacity of
150 units each, as shown in Fig. 1(a). Let CSP receives VN
requests V N1, V N2, V N3, and V N4 with the CPU demand
of 5, 3, 5, and 2 units, respectively and memory demand of
20, 65, 13, and 83 units, respectively as shown in Fig. 1(a).
The CSP may embed VN requests in two different ways
depicted as Uneven distribution and Even distribution as
shown in Fig. 1(c). In case of Uneven distribution, CSP ends
up allocating 71.4% and 41.6% units of the CPU resources,
and 22% and 98.6% units of the memory resources of SN1

and SN2, respectively as shown in Fig. 1(c). However, in Even
distribution, the resources are evenly distributed among the
SNs. The benefit of Even distribution can be realized as shown
in Fig. 1(d). On the arrival of new virtual network request V N5

with CPU and memory demand of 5 and 36 units, respectively
as shown in Fig. 1(b), it becomes infeasible to embed the V N5

in case of Uneven distribution. On the contrary, V N5 can be
successfully embedded onto SN1 or SN2 in case of Even
distribution as shown in Fig. 1(d).

It is assumed that at any given time, substrate node can host
multiple VMs of a VN. Under such circumstances, the VN
can be treated as a small graph upon embedding where each
vertex would represent the group of VMs hosted on each
SN, and the new virtual link represents the link between
the corresponding SNs. The advantage of such embedding
solution is that the network resource demand among VMs in
the same substrate node can be ignored as no physical link is
involved. However, the computing resources consumed for the
communication between the VMs on same SN are not ignored.
It is necessary to distribute the VMs of a VN in such a way that
the new network resource demand of the virtual links can be
minimized. Considering the aforementioned research issues,
our goals can be summarized as to design a reinforcement
learning based prediction models for multi-stage virtual net-
work embedding in cloud data center to identify and allocate
the suitable substrate nodes to VN requests for subsequent
improvement in the overall resource utilization.

The rest of the paper is organized as follows. Section II
describes the related works and the problem is formulated
in Section III. The Multi-stage Virtual Network Embed-
ding (MUVINE) scheme is described in Section IV fol-
lowed by the knowledge-based AI models in Section V. The
simulation setup and corresponding results are presented in
Section VI and concluding remarks are made in Section VII.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1060 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 1. A motivational example on computing resource utilization.

II. RELATED WORKS

In the recent past, a number of VNE schemes have been pro-
posed considering Data Center (DC) network topologies [12],
resource utilization [13], energy consumption [14], revenue
and profit [15], [16], and survivability of VN [17]. A brief
summary of the resource allocation schemes is presented
in [18]. The VNE schemes are structured in three broad
categories such as Heuristic-based, Nature-inspired learning-
based, and Reinforcement learning-based as discussed below.

A. Heuristic-Based

The minimization of a total number of required SNs subse-
quently improves the overall computing resource utilization.
In [7], a link-based virtual resource management algorithm is
proposed considering the substrate network parameters such as
the load, round trip time, and energy consumption. However,
it is observed that resource utilization can be optimized further
by analyzing the historical virtual network requests including
the actual resource usage, substrate resource availability, etc.
In [13], the degree of the nodes and their cluster coefficient
are used to find out the importance of the respective node
and thereby to find out the set of suitable substrate nodes
to embed the VN requests. Although the network topology is
taken into consideration for the VNE, the dependencies among
the VNs are not considered. This results in inefficient VNE
in terms of resource utilization. In [19], multiple VM clusters
are mapped in a federated cloud environment. The goal of the
[19] is to minimize the network latency with maximization

of acceptance ratio. However, authors in [19] overlook the
fact that geographically distributed cloud environment incurs
the extra cost in terms of time. In [20], location preference
of the users is considered to design the VNE algorithm. The
VNE problem is formulated as a graph bisection problem, and
VMs and the virtual links are mapped in an integrated manner.
In order to reduce the substrate server failure impact, VMs
are mapped onto separate substrate servers. However, such
mapping results in inefficient network resource utilization.

To provide full network bandwidth guarantee in case of mul-
tiple substrate network failure is a challenging issue in cloud
management. In [17], a survivable VNE algorithm is proposed
by formulating the optimal solution as a quadratic integer
program. However, the VNE scheme [17] often requires
network bandwidth in excess to that of the actual demand.
The excess resource requirement can further be minimized
by analyzing the actual network resource requirement, which
can be predicted by investigating the historical information.
In [21], an I-VNE algorithm is proposed considering the
link interference. The I-VNE algorithm embeds the VNs by
considering the temporal and the spatial network topology. The
primary advantage of I-VNE algorithm is VNs are embedded
with low interference. In [15], a Multi-commodity flow and
shortest-path approaches are followed to embed VNs onto
SNs with the objective to maximize the profit of infrastructure
provider. The proposed scheme [15] maps the VMs and the vir-
tual links without splitting the substrate path. However, future
resource demand and historical information are not considered,
which restricts the profit maximization up to certain extent.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1061

In [16], a policy-based VNE architecture is proposed that
follows network utility maximization approach and separates
the high-level goals from the mapping mechanisms of VM and
virtual links.

B. Nature-Inspired Learning-Based

The non-deterministic polynomial hard (NP-hard) character-
istic of a VNE problem has encouraged several researchers to
explore the nature-inspired learning-based algorithm. In [22],
a divide-and-conquer evolutionary algorithm (ODEA) is
designed for a large-scale VNE. Large VNs are decomposed
into overlapping sub-VNs followed by optimization of each
sub-VN using the sub-graph mapping procedure. The decom-
position of large VNs into sub-VNs makes the ODEA scalable.
However, it likely increases the network complexity of the
VNE solution, when multiple sub-VNs are embedded on SNs
across the network. Besides, the integration of sub-VNs is also
a challenging task and it further complicates the VNE solution.

In [10], a constructive particle swarm optimizer is designed
for the VNE (CPSO-VNE). In CPSO-VNE, the VNE process
carried out in a step-by-step mapping of each node along
with its adjacent virtual links. The CPSO-VNE uses adjacency
information to closely embed the virtual nodes in SN topology.
However, CPSO-VNE still uses the heuristic information to
guide the path information and search. In [23], a distributed
VNE system is designed with historical information and
meta-heuristic approaches. The particle swarm optimization
technique is used to improve the VNE optimization capacity.
However, the VNE scheme [23] fails to survive the phys-
ical failures such as node or link failure. In [9], a multi-
objective ant colony system (MOACS) algorithm is proposed
for VM placement in the cloud. The MOACS obtains a set of
non-dominated solutions that simultaneously minimize total
resource wastage and power consumption.

C. Reinforcement Learning-Based

More recently, Reinforcement Learning (RL) based VNE
is explored. In [24], RL-based VNE algorithm is proposed
considering the historical data of the virtual network
requests. However, only the resource capacity is considered
as a prominent feature for the analysis, which does not
ensure state-of-the-art improvement in results. In addition
to the resource capacity, features such as VNs arrival time,
execution time, resource demand, and the actual resource
usage play critical role in deciding the efficient VNE solution.
In [5], the RL-based framework is designed for adaptive
resource allocation and provisioning in multi-service cloud
environment. The RL-based framework [5] adapts to the
system changes such as service cost, resource capacity, and
resource demand and it performs well in a multi-service cloud
environment. However, it specifically focuses on resource
provisioning to satisfy the service level agreement (SLA) of
multiple clients.

Considering the underlying complexity of the cloud envi-
ronment, it is required to embed intelligence to predict the
consequences for the smooth functioning of cloud operations.
In [25], an intelligent cloud resource management architecture

is designed using deep reinforcement learning. The very pur-
pose of the proposed cloud resource management architecture
is to enable cloud to efficiently and automatically negotiate
the most suitable configuration derived from the underlying
complexity. In [26], a coordinated two-stages VNE algorithm
is designed using the RL. A pointer network is used to find
a node mapping policy and shortest path algorithm is used to
embed the links. The VNE algorithm of [26] mainly focuses
on the CPU and bandwidth as resources to optimize. However,
it is challenging to design an efficient VNE algorithm without
considering the memory as a resource. In [27], historical
network request data and policy-based RL is designed for
node mapping. The overall objective of policy-based RL [27]
is to maximize the revenue by embedding nodes and links
using convolutional neural network. Similarly, in [28], a deep
learning model is designed to predict the cloud workload for
the industry informatics. The workflow schedule is an integral
operation of any cloud computing environment. The primary
objective of workflow scheduling is to optimize the processing
cost and thereby enable the cloud to efficiently provide the
services to the end-user and at the same time remain profitable.
In [29], a Bat Algorithm is employed to efficiently schedule
the data-intensive workflow applications. Similarly, the self-
management of cloud resources is an important yet challenging
objective and needs further investigation. In [4], a dynamic,
decentralized, and coordinated neuro-fuzzy approach is pro-
posed to self-manage the substrate network resources.

III. PROBLEM FORMULATION

In this section, the mathematical formulation of the substrate
network and virtual network requests is presented. The brief
summary of notations used in the paper is presented in Table I.

A. Substrate Network

The typical cloud environment is comprised of a large
number of SNs often referred to as the physical machines.
It is assumed the SNs are connected through a switch-
centric network topology. The resources are divided into two
categories such as computing and network. The computing
resource refers to CPU and memory. The network of SNs is
denoted by Gs(Ns, Es), where Ns = {S1, S2, S3, . . . , Sm}
be the set of m SNs, and Es be the set of the substrate links.
Each SN is denoted as Si ∈ Ns, 1 ≤ i ≤ m. The maximum
computing resource capacity of type x ∈ {CPU, memory}
available at each Si is denoted by Cx

i ; whereas the remaining
computing resource availability is denoted as Ax

i . For example,
ACPU

5 indicates the remaining CPU resource availability of
the SN S5 ∈ Ns. Similarly, La

ij be the network bandwidth
availability of substrate link between Si and Sj . Using the
La

ij , the network bandwidth availability of the SN Si denoted
as La

i can be calculated as follows.

La
i = max

∀Sj∈Ns
{La

ij}, i �= j (1)

It is assumed that the SNs may be equipped with different
amount of resources. Hence, the Cx

i and Ax
j may differ for

any substrate nodes Si and Sj , i �= j. Let Ll
ij be the total

number of physical links in the shortest path between Si and

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1062 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

TABLE I

LIST OF NOTATIONS

Sj . A shortest path algorithm, such as Dijkstra’s algorithm,
can be used to find the shortest path with minimum number
of intermediate physical links.

B. Virtual Network

It is assumed that the cloud users send the request in the
form of a virtual network (VN) represented as an undirected
weighted graph denoted as Gv(Nv, Ev). Each Gv(Nv, Ev)
is comprised of a set of n number of VMs denoted as
Nv = {V1, V2, V3,, Vn} and a set of virtual links Ev.

Each VM, denoted by Vj , 1 ≤ j ≤ n, is associated with
computing resource demand parameter denoted by Dx

j . Here,
x ∈ {CPU, memory} represents the computing resource
type. Similar to the VM resource demand, each virtual link
between VM Vi and Vj is associated with network band-
width demand denoted by Ld

ij . Based on the value of Ld
ij ,

the network bandwidth demand of a particular VM Vi can be
calculated as follows:

Ld
i =

�
∀Vj∈Nv

Ld
ij (2)

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1063

Let Ll
ij(L

d
u1u2

) be the number of physical links in the
shortest path between SN Si and Sj provided that this shortest
path fulfills the bandwidth demand of virtual link between
virtual node Vu1 and Vu2 . The VNs are assumed to be static in
nature. This infers that the resource demand and the structure
of the VNs do not change upon the embedding. The end
time of the virtual network is unknown. Hence CSP has no
information regarding the time duration the computing and
network resources need to be reserved for each VN. The
boolean variable κj

i is used to indicate if Vj is assigned to
substrate node Si. Mathematically,

κj
i =

�
1 if Vj is assigned to substrate node Si

0 Otherwise
(3)

C. VN Classes and Priority

The incoming requests are classified into three different
classes based on the delay sensitiveness: Class 1, Class 2,
and Class 3. The class αj , 1 ≤ j ≤ n of any Vj is decided by
the user, whereas the class α of any Gv(Nv, Ev) is decided
by the CSP based on the classes of each Vj ∈ Gv(Nv, Ev).
VMs in Class 1, Class 2, and Class 3 are said to be highly,
moderately, and less delay sensitive, respectively. CSP strictly
follows the resource demand of VMs in Class 1; whereas it
is not mandatory for the CSP to strictly fulfill the resource
demand of the VMs in Class 3.

Based on the value of α, the priority of the VN is derived,
which is denoted by β. Mathematically,

β =

⎧⎪⎨⎪⎩
1 if α = Class 3, less delay sensitive VN

2 if α = Class 2, moderately delay sensitive VN

3 if α = Class 1, highly delay sensitive VN

(4)

During the substrate resource allocation, VNs with higher
priority value such as β = 3, are given higher preference.
On the contrary, VNs with less priority value are given less
importance in the resource allocation process.

D. Objective Function

Considering the above scenario, the main objective of our
proposed MUVINE scheme is to maximize the mean percent-
age of the resource utilization based on the predictions through
the reinforcement learning. The resource maximization must
be done along with the maximization of the acceptance rate.
Here, the acceptance rate refers to as the percentage of the
VNs that are accepted without violating the SLA and resource
demands out of the total requested VNs. Mathematically,
the objective function can be written as shown in Eq. 5.

maximize Z =

⎡⎣ �
∀x∈{CPU,memory}

�
∀Si∈Ns

�
∀Vj∈Nv

κj
i

m

∗

ωx ∗
Cx

i −Ax
i + Dx

j

Cx
i

�⎤⎦
+

⎡⎣ �
∀Si1 ,Si2∈Ns

�
∀Vu1 ,Vu2∈Nv

ωn ∗ κu1
i1
∗ κu2

i2

Ll
i1i2

(Ld
u1u2

)

⎤⎦
(5)

Constraints:
m�

i=1

κj
i = 1, ∀Vj ∈ Nv (6)

∀Si ∈ Ns, �Vj ∈ Nv, Dx
j ≥ Ax

i , Ld
j ≥ La

i ,

x ∈ {CPU, memory} (7)

if κj
i = 1, 0 < Dx

j < Ax
i and 0 < Ld

j < La
i (8)

ωn +
�

x∈{CPU,memory}
ωx = 1 (9)

The objective function shown in Eq. 5 is of two folds,
where the first part primarily focuses on maximization of
server resources (CPU, memory) utilization and the second
part focuses on minimizing the number of physical links used.
To minimize the number of physical links, it is encouraged to
embed the VMs on the nearby SNs. For this, the Dijkstra
algorithm is used to find the shortest path between two SNs.
By minimizing the number of physical links, a small amount of
network resource is saved for each VN request, which helps
increasing the acceptance rate. The obtained solution of the
above objective function must satisfy the constraints as shown
in Eq. 6 - 9. The constraints are described as follows.

• The constraint shown in Eq. 6 ensures each VM is embed-
ded exactly onto one SN. This implies that no splitting
will be done with the VM. Further, it does not guarantee
how many number of VMs from one VN request will be
embedded onto a single SN.

• The constraint shown in Eq. 7 ensures that VN request
is not comprised of any VM with the resource demand
greater than the resource availability on any of the SN.
To be specific, there exists at least one SN for each
VM that fulfills the resource demand.

• The constraint shown in Eq. 8 refers to embedding the
VM onto the SN where the resource demand is less
than the resource availability, which also indicates that
a positive resource demand value is associated with all
VMs and virtual links.

• ωx and ωn are the constants introduced to assign a
preference value to different types of resources such as
CPU, memory, and network bandwidth. Constraint as
shown in Eq. 9 ensures that the sum of all the constants
is 1.

IV. THE MULTI-STAGE VIRTUAL NETWORK

EMBEDDING (MUVINE) SCHEME

In this section, the MUVINE scheme is described, which
is designed on the top of the reinforcement learning based
predictions. It is assumed that the CSP (agent) learns by
exploring the existing resources of the cloud data centers
(environment). The purpose of exploration is to learn series
of actions from the cloud environmental and ascertain an
optimum action that maximizes the total cumulative reward of
the CSP. The typical cloud environment dataset is described
in detail as follow.

A. Cloud Environment Dataset

Let m be the number of SNs with heterogeneous computa-
tion and network capacity in a cloud data center. Let multiple

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1064 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

applications arrive at the CSP in the form of VNs, which in
turn be represented as the set of interconnected VMs. It is
to be noted that each VN may have different graph structure
and two VNs with the same graph structure may have VMs
with different resource requirement. The historical information
is comprised of the set of features and labels. The features
represent the parameters of VNs, VMs, and SNs.

1) VM Feature set: Let Gv(Nv, Ev) is comprised of n
VMs. Without losing the generality, Let Vj ∈ Gv(Nv, Ev)
contains set of user-specific computational capacity parameters
such as CPU and memory demand of the Vj represented
as DCPU

j and Dmemory
j , respectively. Besides, each Vj ∈

Gv(Nv, Ev) also contains the user-specific parameters such
as class of the Vj , priority of Vj represented as αj and βj ,
respectively. In addition to the user-specific parameters, CSP
also records parameters such as start time of Vj represented
as φj , end time of Vj represented as χj , actual resource
consumption of type x by Vj represented as rCx

j , where
x ∈ {CPU, Memory}.

2) VN Feature set: Similar to Vj , the Gv(Nv, Ev) is also
associated with user-specific parameters and CSP recorded
parameters. The user-specific parameters associated with
Gv(Nv, Ev) are aggregate CPU demand represented as
Φ, aggregate memory demand represented as Ψ, class of
Gv(Nv, Ev) represented as α, priority of Gv(Nv, Ev) rep-
resented as β. The CSP recorded parameters associated with
VN Gv(Nv, Ev) are start time of Gv(Nv, Ev) represented as
φv , end time of Gv(Nv, Ev) represented as χv, actual resource
consumption of type x by VN Gv(Nv, Ev) represented as
rCx

v , where x ∈ {CPU, Memory}.
3) SN Feature set: At any given time in the cloud,

the SNs represented as Si, 1 ≤ i ≤ m may contain
available resource of type x represented as Ax

i , where x ∈
{CPU, memory, network}. Moreover, the CSP also records
and maintain the available clock rate represented as ACr

i .
The aforementioned set of parameters are referred to as

the aggregate set of features recorded by CSP for each
VN execution and together constitute it as a historical
dataset.

B. Multi-Stage Prediction Architecture

The multi-stage prediction architecture for VNE is presented
in Fig. 2. A binary ML classifier followed by Maximum Like-
lihood Classifier (MLC) and iterative reinforcement learning
are employed to select the set of most appropriate SNs to
embed the VN requests. The prediction architecture can be
described as follows.

In the first stage, the acceptability of the VN request into
the cloud data center is evaluated. A binary ML classifier is
designed to classify VN requests into “accepted” or “rejected”.
The binary classifier is built and trained on the top of the
historical dataset of VNs comprised of features as described
in Section IV-A.2 and an observed binary value of label � ∈
{accepted, rejected}. It is to note that the label � is CSP
assigned and it is based on the actual outcomes observed for
the completed VN requests. Using the aforementioned binary
classifier, each real-time VN request is classified. For each

Fig. 2. Multi-stage prediction architecture.

“accepted” VNs, the system enters into the second stage of
the prediction.

For each accepted VN, the type of each member VM is
predicted. In particular, for a given Gv(Nv, Ev), each Vj ∈
Gv(Nv, Ev), 1 ≤ Vj ≤ n is classified into three categories
defined as “CPU intensive”, “GPU intensive”, and “memory
intensive” based on the VM configuration and its resource
analysis. From the historical VM dataset comprised of features
described in IV-A.1, a multi-class (three) classifier is trained
to estimate the VM type. It is to note that VM requests often
arrive with partial information such as CPU and Memory
demand represented as Dx

j , where x ∈ {CPU, Memory},
VM class αj , VM priority βj . The aforementioned para-
meters are together called the core VM features. However,
certain information may not be made available at the time of
VN request arrival and need to be estimated such as end time
of VM χj , actual CPU consumption, actual memory consump-
tion together denoted as rCx

j , where x ∈ {CPU, memory}
etc. Such features are referred to as the derived features.
The regression analysis is performed to estimate the most
appropriate value of derived features based on the available
core features. The core features and derived features together
constitute the “aggregate feature set”.

Upon the classification of each Vj ∈ Gv(Nv, Ev), 1 ≤
Vj ≤ n into the predefined VM type, an iterative reinforcement
learning is applied for the embedding. Using the Substrate
network environment, which represents the current state of
the cloud data center, iterative reinforcement learning predicts
the most appropriate SNs with sufficient resource availability
to embed the VMs in a manner that balances the resource
utilization across the cloud data center. Usually, a huge number
of parameters are required to optimize on a real-time basis to
efficiently manage the cloud data center resources. Since the
cloud data center resource configuration dynamically changes
with each VN request embedding, it becomes challenging to
predict the resource availability on real-time basis for the
embedding of incoming new VN requests. Among the RL
approaches, Q-learning and SARSA (State-Action-Reward-
State-Action) are highly relevant to address the VNE problem.
The Q-learning being an off-policy method follows the greedy
approach and takes the action, i.e., the selection of the suitable
SNs to embed the VMs based on the maximum reward that it
can achieve in the current state. However, a greedy approach
can lead to the local optimum VNE rather than the global

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1065

optimum one. Hence, an on-policy RL method SARSA is
adopted. Throughout the paper, the actions are referred to as
the VNE in the context of the RL. In SARSA, the policy is
continuously updated based on the actions it takes. Contrary
to the Q-learning, SARSA effectively balances between the
exploration and exploitation of the given environment to learn
the optimum policy decision.

C. Features and Predictors

The features and predictors are integral parts of any
ML-based algorithm. In this paper, we define two types of
features called as core and derived features with respect to
VNE in a cloud data center. Often it is considered that the
features available at the time of training an ML algorithm,
the same set of features are assumed available at the time of
testing. However, in many practical applications, it is not the
case and the value of a few features are not made available
until the execution of the process is concluded. In the context
of the VNE, the parameters such as end time of VN and
VM, actual resource utilization of VN and VM, are few of
the parameters that are not available beforehand and therefore
supervised ML algorithms are difficult to apply. In order
to tackle the aforementioned problem of feature availability,
training is performed in two sequential steps. In the first step,
the core features are used and an estimated value of the rest
of the derived features are predicted for a given VN request.
Later, using the combined set of core and derived features also
known as the aggregate set of the features, an ML classifier is
trained to obtain the results. The definition of core and derived
features is described as follow.

• Core feature set: The set of primary features available
at the time of VN and VM request.

• Derived feature set: The set of features, which are not
available at the time of VN and VM request, but are
derived from the set of core features.

The predictors are commonly known as the set of labels
that the algorithm predicts for the given test sample. For the
VN feature set, the predictor is a binary value representing the
notion “accepted” and “rejected”. For the aggregate feature
set of VM, the predictor is the multi-class label representing
the class “CPU intensive”, “GPU intensive”, and “memory
intensive”.

V. KNOWLEDGE-BASED MODEL DESIGNING

In this section, we design knowledge-based models for
efficient VNE.

A. Binary VN Classifier

In this section, we design a supervised support vector
binary classifier to classify the VN requests into “accepted”
or “rejected” using the historical VN dataset. The sup-
port vector machine (SVM) is a simple yet robust super-
vised non-probabilistic binary classifier. The objective of
SVM is to find a unique maximum margin hyperplane in a
multi-dimensional space that maximizees the margin between

two classes and efficiently distinguishes VN request into
“accepted” and “rejected”. Given the labelled training dataset
of VN requests, the SVM generates an optimal hyperplane
that categorize the new VN request. On the top of the
historical VN dataset, the proposed support vector binary
classifier is trained and a representative ζ − 1 dimensional
hyperplane is constructed in such a way that with respect to
the support vectors in class “accepted” and “rejected”, the
maximum-margin hyperplane is derived. Here, ζ represents
the number of features in VN dataset. Let us assume that
the
 represents the VN dataset comprised of linearly sep-
arable labeled training samples. For simplicity, we redefine
VN Gv(Nv, Ev) as V Nv. The
 can be represented as
follow,
 = {(V N1, l1), (V N2, l2), . . . , (V Nk, lk)}, where
k represents the total number of samples in
 and k > 0.
It is to note that V Ni ∈
, i = {1, 2, . . . , k} represents
ith training VN request comprised of ζ dimensional feature
vector V Nf . The li ∈
, i = {1, 2, . . . , k} represents the
output class label of ith training sample assigned by CSP. Let
us say li = 1 represents the output class label “accepted”
and li = −1 represents the output class label “rejected”. The
ultimate goal of the proposed binary classifier is to derive
an optimum hyperplane that partitions the training data set

into subsets “accepted” and “rejected”. The subset “accepted[[
can be defined as
+1 = {V Ni ∈
|li = +1}, and the
subset “rejected” can be represented as
−1 = {V Ni ∈

|li = −1}, where
+1 ∩
−1 = null. The li = +1
and li = −1 represent the class “accepted” and “rejected”,
respectively.

For simplicity, let us represent ℵw,c(
) as a linear classifier.
The ℵw,c(
) can be defined as shown in Eq. 10.

ℵw,c(
) = wT × V Nf + c, ∀V Ni ∈
 (10)

Here, ℵw,c(
) represents a classification hyperplane, V Nf

represents ζ-dimensional feature-rule vector corresponding to
V Ni, w represents the ζ-dimensional weight vector associated
with feature-rule vector V Nf , and c represents the bias. The
ζ-dimensional weight vector w is a learning vector, which is
learned by the classifier from the training dataset
.

Three hyper-planes are defined for the classification pur-
pose. The optimized classification hyperplane is represented as
ℵw,c(
) = wT×V Nf +c = 0. The hyperplane for the nearest
data point also known as support vector in class “accepted”
(li = +1) can be represented as ℵw,c(
) = wT ×V Nf + c =
+1, and the hyperplane for the nearest support vector in
class “rejected” (li = −1) can be represented as ℵw,c(
) =
wT × V Nf + c = −1. The distance between hyperplane

ℵw,c(
) = +1 and ℵw,c(
) = −1 can be defined as
2
||w||

and is maximized under the constraint li(wT×V Nf + c) ≥ 1,
for each V Ni ∈
.

In many instances, it is likely that the historical training
dataset may not be linearly separable. To tackle such situa-
tions, the SVM is extended to include the hinge loss function
max(0, 1− li(wT ×V Nf + c)). In this case, the optimization
problem can be defined as shown in Eq. 11, where λ decides
the margin size and at the same time λ ensures that the sample

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1066 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

V Ni ∈
 lies in the correct class.

min

�
1
m

m�
i=1

max(0, 1− li(wT × V Nf + c))
�

+ λ||w||2
�

,

where m = number of samples (11)

Upon the completion of support vector classifier training,
the derived hyperplane is employed to classify the unseen
VN test set
Te. The VN request V Ni ∈
Te that classifies
into class “accepted” (+1) is considered as eligible.

B. Radial Basis Regressors (RBR)

The “accepted” VNs are further analyzed to build the
aggregate feature set of VMs comprised of core features and
derived features. Let D be the historical VM dataset of N data
points represented as (xn, yn1, yn2,…ynk), n = {1, 2, .., N}.
Each data point (xn, yn1, yn2, . . . ynk) ∈ D represents a unique
historical sample of training dataset. Here, xn represents the
core feature set of nth sample, and yn1, yn2, . . . ynk represents
the observed output value of k derived features in nth training
sample. For the estimation of yn1, yn2, . . . ynk, the regression
approach is adopted. Instead of estimating all of the k derived
features in a single regression model, k individual regres-
sion models are designed to estimate each individual derived
feature. Considering the non-linearity nature of the training
dataset D, instead of employing linear regression, radial basis
function is applied.

The radial basis regressors (RBR) model can be described
as follow. Let Θ(x) be the RBR model trained on the dataset
D and defined as follow.

Θ(x) =
N�

n=1

wn × exp
�− γ
x− xn
2

�
(12)

Here, Θ(x) is considered influenced by each training
data sample (xn, yn1, yn2, . . . ynk), n = {1, 2, ..} based
on the euclidean distance formally defined as
x − xn
.
In order to smoothen out the distance parameter
x − xn
,
the Θ(x) model is embedded with the Gaussian basis function
exp

� − γ
x − xn
2
�
. The γ is an influential factor. The

RBR problem can be transformed into a learning problem to
estimate the value of wn, ∀n = {1, 2, . . . , N} in such a way
that for each test sample (xm, ymi), the Θ(x) = ymi. The
learning problem can be formally defined as follow.

The learning problem is reduced to find the w1, w2, . . . , wN

for Eq. 12 based on the D in such a way that the Error
is minimized (i.e., E = 0). In other words, the objective
of the learning problem is to obtain Θ(xn) = ymi, ∀n =
{1, 2, . . . , N} as defined in Eq. 13.

N�
m=1

wm × exp
�− γ
xn − xm
2

�
= ymi (13)

The Eq. 13 can be expanded as shown in Eq. 14.⎡⎢⎢⎣
exp

�− γ
x1 − x1
2
�

. . . exp
�− γ
x1 − xN
2

�
exp

�− γ
x2 − x1
2
�

. . . exp
�− γ
x2 − xN
2

�
.

exp
�− γ
xN − x1
2

�
. . . exp

�− γ
xN − xN
2
�
⎤⎥⎥⎦

� �� �
Φ

×

⎡⎢⎢⎣
w1

w2

. . .
wN

⎤⎥⎥⎦
� �� �

w

=

⎡⎢⎢⎣
ym1

ym2

. . .
ymN

⎤⎥⎥⎦
� �� �

y

(14)

The exact interpolation or solution may exist if Φ is invert-
ible. In other words, if Φ is invertible, the w can be determined
as w = Φ−1 × y. By solving the Eq. 13, the estimated value
of derived features are obtained.

C. Maximum Likelihood Classifier (MLC)

Upon obtaining the “aggregate feature set” of incoming
VMs, the same are classified into one of the three categories
“CPU intensive”, “GPU intensive”, and “Memory-intensive”.
Let ς be the aggregate feature set of VM. It is to note
that the historical VM training dataset ϑtr is comprised of
“aggregate feature set” along with output label describing the
category of the VMs. The supervised Maximum Likelihood
Classifier (MLC) is designed based on the features. Let
cLi

j be the class label of Vj ∈ Gv(Nv, Ev). Here, cLi=1
j ,

cLi=2
j , and cLi=3

j represents the Vj of type “CPU intensive”,
“GPU intensive”, and “Memory-intensive”, respectively. The
historical VM dataset is considered as a training dataset to
learn the feature value for each VM category.

For each incoming Vj ∈ Gv(Nv, Ev), the corresponding
aggregate features ς are obtained using RBR model described
in Section V-B. Using ς , the likelihood probability of class
cLi=1

j , cLi=2
j , and cLi=3

j is calculated using conditional
probability. The conditional probability of cLi=1

j , cLi=2
j , and

cLi=3
j can be represented as p(cLi=1

j |ς), p(cLi=1
j |ς), and

p(cLi=1
j |ς). For a given aggregate features ς of an incoming

VM Vj ∈ Gv(Nv, Ev), the conditional probability of class
cLi=1

j , cLi=2
j , and cLi=3

j can be calculated as shown in Eq. 15.

p(cLi
j |ς) = p(cLi

j |ς1, ς2, . . . , ςp), i ∈ {1, 2, 3} (15)

Here, p represents the number of features. The feature-rules
ς1, ς2,…, ςp are assumed conditionally independent to each
other. In the presence of conditional independence, Eq. 15 can
be rewritten as shown in Eq. 16.

p(cLi
j|ς1, ς2, . . . , ςp) ∝ p(cLi

j, ς
1, ς2, . . . , ςp) (16)

Further, Eq. 16 can be expanded as shown in Eq. 17.

p(cLi
j|ς1, ς2, . . . , ςp) ∝ p(cLi

j)× p(ς1|cLi
j)× p(ς2|cLi

j)

× . . .× p(ςp|cLi
j) (17)

Here, p(ςk|cLi
j), k = {1, 2, . . . , p} represents the probabil-

ity of obtaining feature ςk for a given class cLi
j . The p(ςk|cLi

j)
can be calculated as shown in Eq. 18.

p(ςk|cLi
j) =

1�
2πσ2

k

exp

−(ςk − μk)2

2σ2
k

�
(18)

The μk represents the mean value of feature ςk for class
cLi

j . Similarly, σ2
k represents the standard variance of feature

ςk for class cLi
j . The mean μk and standard variance σ2

k are
the learning parameters and they can be estimated from the
training set samples of class cLi

j .

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1067

Once the conditional probability model is designed, a Max-
imum Likelihood Classifier (MLC) is constructed on the top
of the model by incorporating Maximum a Posteriori (MAP)
decision rule. The classifier function assigns a class label�y = cLi

j for i ∈ {1, 2, 3} as shown in Eq. 19.

�y = argmax
i∈{1,2,3}

p(cLi
j)

|ς|�
k=1

p(ςk|cLi
j)} (19)

It is likely that an incoming VM Vj ∈ Gv(Nv, Ev) classi-
fied into class cLi=1

j , cLi=2
j , and cLi=3

j with equal probability.
p(cLi=1

j) = p(cLi=2
j) = p(cLi=3

j) = 1
of classes = 1

3 =
0.33.

D. Iterative Reinforcement Learning

The Reinforcement Learning (RL) is a powerful tool of
artificial intelligence, where the system often called as an
agent gradually trains itself to act in a manner that yields
the incremental reward by means of interacting with the given
environment. The RL differs from the established notion of
supervised machine learning, where the system learns under
the supervision of labelled samples. The RL agent learns in
real-time from the given state of the environment to improve
the overall outcome. The RL problem is usually considered
as a set of sub-optimal actions that together form a Markov
Decision Process (MDP). The RL has to walk a tight rope
by balancing a trade-off between the exploitation and explo-
ration of the environment. In order to maintain the system
performance, the RL agent explores the environment (Cloud
data centers) and learns about the existing utilized resources.
Subsequently, RL agent exploits the environment to determine
the effective action (VNE) that results into positive rewards.
To be specific, the RL agent simultaneously explores the
environment and exploits the alternative actions that gradually
yields the incremental rewards in subsequent actions. The
powerful feature of RL is that the learning process looks to
achieve a global optimum solution instead of looking for the
immediate sub-optimum solution.

Let us consider that RL agent is at the specific state st

of a cloud environment. The agent takes action at based on
the learning, and in response, the cloud environment provides
certain reward rt and changes to the new state st. Let us denote
the aforementioned process as < st, at, rt, st >. In the context
of the proposed VNE in the cloud environment, the action is
defined as the selection of SNs for the given configuration
of the incoming VMs and the reward is the quality of the
embedding. In VNE, the above described process contin-
ues and takes finite number of sequences of states, actions
and rewards. The entire MDP process can be described as
{< s0, a0, r0, s1 >, . . . , < st, at, rt, st+1 >, . . . , < sn, an,
rn, sn+1 >}.

Here, < st, at, rt, st+1 > describe the tth instance of the
action taken by the RL agent, where st represents the tth

state of the cloud environment, at represents the tth action
taken by the RL agent, rt represents the tth reward provided
by the environment, and st+1 represents the next (t + 1)th

state of the environment. The State-action-reward-state-action

Fig. 3. The example calculation of environment reward.

(SARSA) algorithm is applied to learn the aforementioned
Markov decision process. The goal is to update the policy,
which is referred to as the optimum state-action value function
Q(st, at) based on the action taken by the SARSA agent in a
cloud environment as shown in Eq. 20.

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)]
(20)

Here, Q(st, at) represents the value function for the state
st and action at. The α ∈ [0, 1] represents the learning rate
and γ ∈ [0, 1] represents the discount factor. Eq. 20 represents
the possible reward received in the subsequent step for taking
action at in state st along with the discounted future reward
received in the state st+1 for action at+1. In order to maximize
the objective function defined in Eq. 5, the SARSA agent
learns and takes the actions in a manner that maximizes the
rewards from the environment. The reward calculation can
be described as follow. Upon the classification of VM type,
SARSA agent selects the set of SNs that not only satisfy
the resource requirement of the VMs in a given VN request
but at the same time schedule them onto the appropriate SN
type. For example, the CPU intensive VM must be scheduled
onto the CPU rich SN along with satisfying the other resource
requirements. Based on the action referred to as the VNE by
the RL agent, a unique value between −1 to +1 is assigned
by the cloud environment indicating the reward to the action.
The more the positive reward the better the action was taken
by the SARSA agent. The reward is calculated as follow. First,
the reward is equally distributed between resource requirement
satisfaction and type selection. To be specific, to satisfy the
VM type, the agent receives a +0.5 reward. Similarly, for
satisfying the resource requirement irrespective of the type,
the +0.5 reward is awarded. Again, the +0.5 resource reward
is equally divided among each resource type such as CPU,
memory, and network. If any one of the resource requirements
is not satisfied −0.17 reward is awarded. The example of
rewards under different conditions is illustrated in Fig. 3.

The reward R of VN (Gv(Nv, Ev)) can be formally defined
as follow.

R(Gv(Nv, Ev)) =
�

Vj∈Gv(Nv,Ev)

�
x∈{CPU,Memory,Network}

×R(x)×H (21)

Here, R represents the individual reward received on
resource type x, and H represents the decision variable. The
H takes either −1 or +1 value. The H can be defined formally

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1068 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

TABLE II

THE SIMULATION SETUP FOR SUBSTRATE NODES (SNS)

TABLE III

THE SIMULATION SETUP FOR VIRTUAL NETWORKS (VNS)

as follow.

H =

�
1 Ax

i = Dx
i

−1 Ax
i �= Dx

i

The R(x) can take value either 0 or 0.17.

VI. PERFORMANCE EVALUATION AND RESULTS

In the current section, the performance of the proposed
MUVINE scheme is evaluated using the light-weight Java-
based discrete event simulator, which is used to generate
the substrate network and virtual network requests. Various
distribution functions are implemented such as Poisson distri-
bution to simulate the VN request arrival, random distribution
to distribute the resources to virtual nodes, virtual links,
and substrate network, etc. The performance of the proposed
binary VN classifier is compared with the recent admission
control algorithm RNN_VNE [30]. The simulation parameters
for the SNs, VNs, and VMs are listed in Table II, Table III,
and Table IV, respectively.

A. Simulation Setup

In this section, the simulation setup for SNs, VNs, and
VMs is described in detail. The simulation configuration
for the Substrate and Virtual Networks with their resource
configuration is taken to suit this small scale simulation
environment and for better understanding of the performance
evaluation results. However, simulation configuraiton can be
extended without any further modification to the simulation

TABLE IV

THE SIMULATION SETUP FOR VIRTUAL MACHINES (VMS)

environment. Similar simulation configurations were used in
our previous works LVRM [7] and DYVINE [31] in order to
rigorously evaluate the VNE embedding schemes. During the
simulation, one service provider is considered equipped with
100 SNs connected through links that are generated randomly.
For the random links generation, a probability value is set to
0.6, which also acts as the connectivity probability of two
SNs. Random distribution is used to allocate the resources to
SNs. A randomized function is used to assign the available
number of CPUs capacities to each SN ranging from 16 to
32 CPUs. Similarly, the storage and memory capacity are
randomly distributed in between 500 GB through 1000 GB,
and 20000 MB and 50000 MB, respectively. The available
bandwidth between the pairs of SNs is randomly distributed
between 1000 Bps and 10000 Bps. The Bps refers to Bytes
per second.

In order to generate VN requests, each VN is equipped with
VMs in the range of 2 to 10. It is assumed that VN request
arrival follows the Poisson distribution with the mean of 5
requests per one hundred time units, and the lifetime of
each request follows the exponential distribution with an
average lifetime of five hundred time units. It is to note
that in a few cases the unexpired lifetime of requests is also
considered. The maximum number of virtual links for each
request is 45. The number of virtual links is decided by the
link probability of 0.6, which also represents the connectivity
probability of two VMs. The resource demand for each request
is randomly distributed. The number of CPUs demand ranges
from 1 through 4. Similarly, the virtual links range from
100 Bps through 500 Bps. The required storage and memory
for each VM range from 500 GB to 1000 GB, and 8000 MB
to 10000 MB, respectively. The aforementioned simulation

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1069

Fig. 4. The comparison of average prediction accuracy (in percentage) with respect to (a). number of VN requests, and (b). time (in hours).

setup is repeated several times to ensure sufficient variations
in the number of VN requests arrival, types of VN request
arrival, amount of resource allocations to VMs etc. A t−test
is performed on simulation generated dataset to determine the
significant difference between random samples. The P < 0.05
is obtained, which indicates the statistical significance of the
simulation dataset.

In the proposed MUVINE scheme, the Scikit-learn [32]
open source machine learning library is used to implement
the supervised prediction algorithms such as SVM, RBF,
and MLC; whereas the implementation of RL is carried out
using the TensorFlow software library [33]. In the proposed
MUVINE scheme, the SVM, RBF, and MLC are trained on
the 66% samples randomly selected from the simulated dataset
called as training dataset. On the other hand, the same predic-
tion algorithms are evaluated on remaining 33% of samples
also called as testing dataset. The training dataset is comprised
of samples that include the features and corresponding real
labels. For instance, MUVINE scheme implements the SVM
to accept or reject the VN request. Here, each training sample
of SVM is comprised of values for VN features described
in Section IV-A.2 along with a unique label of “accept” or
“reject”. On the contrary, each test sample is comprised of only
values for the VN features and corresponding label is predicted
by the SVM. Typically, a loss function is employed to evaluate
the performance of supervised algorithms by measuring the
distance between the real and predicted label. Contrary to
the supervised learning, RL has features without real label of
the samples. To be specific, RL does not have dataset, but it
works on the given environment. In the current VNE problem,
the RL agent works on the cloud environment that includes the
VM type, SN type, CPU and memory demand of each VM,
available CPU, memory, and bandwidth of each SN etc. The
RL explores the states and exploits the all possible actions to
predict the most suitable action (i.e., VNE embedding) that
results in the improved performance of an evaluation metric
also called as reward as defined in Eq. 21. Considering the
aforementioned simulation setup, the simulation results are
obtained as follows.

B. Simulation Results
The simulation of MUVINE scheme is carried out in three

stages. Each prediction stage is simulated independently and
the simulation results are reported. The simulation results
followed by the discussions for each prediction stage are
reported as follow.

1) VN Selection Accuracy: Upon VN request arrival,
the user-defined and CSP-defined parameters are ana-
lyzed using the proposed binary SVM classifier denoted
as MUVINE_SVM to predict the acceptability of a
VN request. For the detailed evaluation, the predictability of
MUVINE_SVM is analyzed multi-faceted across the time-
domain and across the VN request arrival etc. The prediction
outcome of MUVINE_SVM is then compared with the recent
Recurrent Neural Network (RNN) based cloud admission
control algorithm denoted as RNN_VNE [30].

Fig. 4(a) shows the average prediction accuracy (in percent-
age) of MUVINE_SVM for different number of VN requests.
The 5000 test samples are evaluated at the interval of 500 VN
requests and corresponding observed prediction accuracy is
reported. As shown in Fig. 4(a), the average prediction
accuracy (in percentage) of the proposed MUVINE_SVM is
consistent and as high as 84%. Contrary to the RNN_VNE,
the MUVINE_SVM achieves average prediction accuracy
improvement of 8%.

Fig. 4(b) shows the effectiveness of the MUVINE_SVM
with respect to the time. The performance of MUVINE_SVM
is evaluated for the 24 hours duration and later compared with
the RNN_VNE [30]. As shown in Fig. 4(b), MUVINE_SVM
consistently outputs improved prediction accuracy irrespective
of the VN requests’ arrival time. The MUVINE_SVM is
robust against the highly fluctuating nature of VN workload
arrival. Similar to our previous observation, the proposed
MUVINE_SVM shows at least 8.8% higher average prediction
accuracy to that of RNN_VNE [30] in the time domain.

For the detailed and extensive performance evaluation,
the MUVINE_SVM is simultaneously evaluated against
VN request arrival time and number of VN requests together.
Fig. 5 shows the outcome of the MUVINE_SVM and

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1070 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 5. The prediction accuracy of VN requests.

RNN_SVM. As shown in Fig. 5, the performance of
MUVINE_SVM is consistent and it achieves higher predic-
tion accuracy irrespective of the number of VN requests
and their arrival time. The MUVINE_SVM outperforms
RNN_VNE [30] with as much as 6.8% higher prediction
accuracy across the VN request arrival time and number of
VN requests. The possible explanations of SVM outperform-
ing over RNN_VNE are as follow. The MUVINE_SVM is
implemented on the top of the carefully selected performance
centric VN features discussed in IV-A.2, which has empow-
ered the MUVINE_SVM to better distinguish the acceptability
of an incoming VN request as compared to the RNN_VNE
[30]. Contrary to RNN_VNE, the MUVINE_SVM scales
relatively well to the high dimensional data with numerous
features, which makes it more suitable to deal with numerous
VN requests of cloud environment. When the underlying
training and test data can be separated with the hyperplane,
the SVM provides a robust outcome with relatively less
training and testing time. Considering the VN admission deci-
sion as the first stage of the proposed Multi-stage MUVINE
scheme, the possible delay leads to the overall delay in VNE.
Therefore, the VN predictor is designed with the simpler yet
robust alternative to RNN.

2) VM Classification Accuracy: Upon acceptance of the
new VN request, the proposed MUVINE scheme predicts the
“end time” and “resource utilization” of the corresponding
VMs. The “end time” and “resource utilization” are the derived
features as discussed in Section IV-C. The core and derived
features are further used in order to classify the VMs into
3 different categories. The performance of the second stage
VM class prediction is presented in Fig. 6. Fig. 6(a) shows
the accuracy of the prediction of CPU intensive VM class
by comparing the prediction result with that of the actual
VM class. The information of actual VM class is obtained
from the CSP post-execution of VN request. The x-axis
in Fig. 6(a) represents the total number of VMs ranging from
1000 to 15000; whereas the y-axis represents the percentage
of the CPU intensive VMs. The analysis of the simulation
dataset reveals that nearly 30% to 40% VMs are the CPU
intensive VMs and the rest are either memory intensive or
GPU intensive. The simulation result of Fig. 6(a) shows that
the prediction result is quite close to the actual one. From 1000

VMs, it is predicted that approximately 35% i.e. 350 VMs
belong to CPU intensive class with an error of approximately
7%. However, the prediction result marginally improves with
the increase in the number of VMs from 1000 to 15000.
The prediction result shows that approximately 34% VMs are
classified as CPU intensive with an error of around 2%, which
shows the improved classification accuracy.

On the line of the prediction result of CPU intensive VMs,
Fig. 6(b) shows the performance for the memory-intensive
VMs. The ground truth from the simulation result reveals that
the actual number of memory-intensive VMs ranges between
40% to 48%, which is slighly higher than that of the CPU
intensive VMs in the simulation data. However, the prediction
error ranges between 7% and 3%. Out of 1000 VMs, nearly
41.5% of the VMs are predicted memory intensive in contrast
to 44% actual memory-intensive VMs. Similarly, in the case of
15000 VMs, 42% of the VMs are predicted memory intensive
VMs; whereas the number of actual memory-intensive VMs is
45.5%. Similar prediction result is observed in the prediction
of GPU intensive VMs as in Fig. 6(c). The ground truth
from the simulation result reveals that the percentage of the
actual GPU intensive VMs ranges between 15% and 19%.
However, predicted percentage of the GPU intensive VMs
ranges between 13.5% and 18% with a maximum error 6%
and minimum error 1.5%.

The noticeable performance of the proposed multi-class
Maximum Likelihood Classifier (MLC) can be explained as
follows. The proposed MLC is trained on the aggregate
features instead of the core one. The inclusion of the derived
features makes the underlying aggregate feature set more
robust, which empowers the MLC to look for the complex rela-
tionship among the VM types and their corresponding feature
values. It is to be noted that the proposed MLC independently
calculates the likelihood of features for a given VM type.
The MLC performs well due to its inherent assumption of
conditional independence among the features, which is highly
relevant in the cloud environment. For instance, CPU, memory,
and GPU intensive VMs have resource requirement that are
very specific to the CPU, memory, and GPU, respectively.
Therefore, the concerned features dominate more and have
least direct relation with other features. The MLC takes the
advantage of this cloud property and efficiently predicts the
VM classes. The simple to implement yet robust MLC is cho-
sen, considering the requirement of the real-time classification
of VMs in the cloud.

3) VNE Evaluation: Upon classifying the VMs,
the proposed MUVINE_RL selects the suitable SNs for
the embedding purpose. The resource utilization is one of
the foremost parameters to evaluate the performance of VNE.
The better the resource utilization, the better the VNE. Here,
two types of resources are considered for the evaluation
such as CPU and Memory. The performance evaluation of
MUVINE_RL is carried out with respect to the time domain
and number of VMs requests arrival. The performance of
the MUVINE_RL is compared with the two traditional
state-of-the-art techniques such as Game_Alloc [8] and
LVRM [7], and three AI-based techniques such as Auto_RP
[6], RL_VNE [24], and RNN_VNE [30].

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1071

Fig. 6. The performance of Maximum Likelihood Classifier (MLC) for (a). CPU intensive VM class prediction, (b). Memory intensive VM class prediction,
(c). GPU intensive VM class prediction.

Fig. 7. The comparison of average resource utilization (in percentage) with respect to time domain for (a). CPU, (b). Memory.

Fig. 7(a) and Fig. 7(b) shows the percentage average CPU
and memory utilization (in percentage) with respect to the
time domain, respectively. With each passing hour, the per-
formance of each VNE scheme is monitored and the CPU

and memory utilization are recorded. From Fig. 7(a) and
Fig. 7(b), it is clear that all VNE schemes are consistent
and they maintain the amount of average CPU and memory
utilization in the time domain. However, the average CPU

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1072 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 8. The comparison of average resource utilization (in percentage) with respect to requests for (a). CPU, (b). Memory.

and memory utilization of the Game_Alloc [8], LVRM [7],
Auto_RP [6], RL_VNE [24], and RNN_VNE [30] is less
as compared to that of MUVINE_RL. The percentage of
average utilization of Game_Alloc [8], LVRM [7], Auto_RP
[6], RL_VNE [24], RNN_VNE [30], and MUVINE_RL is
83.3%, 85.0%, 79.7%, 76.8%, 85.3%, and 87.6%, respectively.
Besides, the MUVINE_RL achieves improved consistency
with standard deviation in CPU utilization as low as 2.93 com-
pared to that of 3.7, 3.5, 3.56, 3.8, and 3.1 of Game_Alloc [8],
LVRM [7], Auto_RP [6], and RL_VNE [24], RNN_VNE [30],
respectively.

In addition to the time domain evaluation, the VNE should
be robust enough to sustain the performance under the varying
workload. For that purpose, the existing and proposed schemes
are evaluated under the different number of VM requests
arrival to know the percentage average CPU and memory
utilization. Fig. 8(a) and Fig. 8(b) shows the performance
comparison of Game_Alloc [8], LVRM [7], Auto_RP [6],
RL_VNE [24], and the MUVINE_RL with average CPU and
memory utilization, respectively. The RNN_VNE [30] scheme
is evaluated for only CPU utilization as it does not focus on the
memory aspect. It is to note that contrary to the performance
under the time domain, with the increase in the number of
VM requests arrival, the percentage average resource utiliza-
tion decreases gradually for each scheme. With compared
to the state-of-the-art existing techniques, the MUVINE_RL
improves mean resource utilization by 4.91%.

The improved performance of MUVINE_RL over other
schemes can be explained as follows. The primary advantage
of MUVINE_RL is its multi-stage prediction model. The
improved learning-based admission control of VN requests
in the first stage reduces the resource management burden
of the CSP and enables the CSP to preserve the resources
for the eligible VN requests only. Besides, the maximum
likelihood classifier-based VM type prediction in the second
stage helps MUVINE_RL to choose the most suitable SNs and
subsequently improves the cloud resource utilization. In the
absence of VM classification, the MUVINE_RL may end
up allocating improper substrate resources to VMs, which
may further under-utilize or over-utilize the available substrate

Fig. 9. Percentage of computing resource demand allocated.

resources resulting in the inadequate resource utilization. For
example, embedding of CPU intensive VMs onto memory
intensive SNs and vice versa greatly influences the cloud
resource functioning with reduced overall resource utiliza-
tion. Although, Auto_RP [6], RL_VNE [24], and RNN_VNE
[30] are AI-based schemes, they mainly suffer due to the
inclusion of not so important features followed by inadequate
information of VM type. This leads to the scenario that
the traditional schemes such as Game_Alloc [8], LVRM [7]
shows the marginal improvement in the performance over the
AI-based schemes. The MUVINE_RL is supported in a three-
fold manner from the careful feature selections followed by
the prediction of derived features and classification of VMs
into respective categories. This leads to the improvement in
the overall embedding of VMs and marginally improves the
performance in terms of average CPU and memory utilization.

It is observed that the requests are unable to use cent
percent of the total resource allocated to them. In the proposed
MUVINE scheme, the amount of resource allocated is greater
than or equal to the amount of resource required by the request.
As a result, resource utilization is less, which refers to the

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

THAKKAR et al.: MUVINE IN CLOUD DCs USING RL-BASED PREDICTIONS 1073

Fig. 10. Execution time and throughput of proposed scheme.

ratio of resource allocated and the amount of resource being
used. The MUVINE_RL investigate this issue and allocate
the resource according to resource usage prediction. Fig. 9
shows the comparison result of the MUVINE_RL with two
recent traditional VNE schemes. The x-axis and the y-axis
in Fig. 9 represent the number of requests and the percentage
of computing resource demand allocated, respectively. Here
requests refer to the virtual network and computing resource
refers to the CPU resource and memory resource. Both the tra-
ditional VNE schemes allocate exactly the same amount of the
resource requested by the VNs. However, the MUVINE_RL
allocates less amount of resources than the demand. For 500
requests a total of 95.3% of the total resource demand is
allocated to the requests. However, as the number of requests
increases to 5000 a total of 98.8% of the requested resource
are allocated to the VNs.

The performance of the MUVINE_RL is evaluated in terms
of the total execution time and the throughput, as shown
in Fig. 10(a) and 10(b), respectively. The total execution time,
which is measured in milliseconds (ms), is observed when the
total number of requests increases from 500 to 5000. It is
observed that the MUVINE_RL takes total execution time
of approximately 75 ms to process 500 requests. However,
the execution time increases very rapidly to approximately
400 ms when the number of requests is doubled. This rapid
increase is due to the randomness of the number of VMs in
each request. From the investigation, it is found that the aver-
age number of VMs in the first 500 requests is 3.7, whereas the
average number of VMs in the next 500 requests only is 7.67.
The total execution time to process 5000 requests is observed
to be 3750 ms, as shown in Fig. 10(a). Similarly, to evaluate
the performance of the MUVINE_RL, the throughput is also
observed as shown in Fig. 10(b). The throughput is observed
in percentage (in y-axis) with the varied arrival rate of the
requests (in x-axis). Throughput refers to the percentage of
the total requests that are processed in a single time unit.
Arrival rate indicated the number of requests arrived per unit
time. The throughput decreases when the arrival increases. The
throughput of the MUVINE_RL is 96% when the arrival rate
is 2 requests per unit time. However, the throughput decreases

to approximately 88% when the arrival rate increases to 10
requests per unit time, as shown in Fig. 10(b).

VII. CONCLUSION

In this paper, we deal with the real-time virtual network
embedding problem. Accordingly, Reinforcement Learning
based prediction models are designed for the Multi-stage
Virtual Network Embedding (MUVINE) in cloud data centers.
Using the historical supervised data, the acceptability of real-
time incoming VNs is ascertained using binary supervised
classifier followed by identification of the type of each indi-
vidual VM. The information of VM type is used by designing
a SARSA reinforcement learning agent that improves the
cloud resource utilization by embedding the VMs onto the
suitable SNs. The binary VN classifier acts as an admission
control and it significantly improves the cloud performance
by rejecting infeasible requests and forwards only those with
higher probability to be accepted. The Radial Basis Regressor
(RBR) model is designed to predict the derived features. The
entire MUVINE scheme is designed in such a way that each
prediction stage contributes towards identifying the appropri-
ate substrate resources for the given virtual resource demand.
Each stage of the prediction model is extensively simulated
and is evaluated to compare the results with similar state-of-
the-art traditional and AI-based approaches. The simulation
results clearly demonstrate the superiority of our proposed
prediction model over others with consistent outcome across
the time domain and number of virtual requests. However, for
further verification and improvement, we strive to implement
the proposed model in the real cloud environment, which will
be part of our future work.

REFERENCES

[1] D. Zhang, S. Li, M. Sun, and Z. O’Neill, “An optimal and learning-
based demand response and home energy management system,” IEEE
Trans. Smart Grid, vol. 7, no. 4, pp. 1790–1801, Jul. 2016.

[2] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” 2016,
arXiv:1610.03295. [Online]. Available: http://arxiv.org/abs/1610.03295

[3] H. K. Thakkar and P. K. Sahoo, “Towards automatic and fast annotation
of seismocardiogram signals using machine learning,” IEEE Sensors J.,
vol. 20, no. 5, pp. 2578–2589, Mar. 2020.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

1074 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

[4] R. Mijumbi, J.-L. Gorricho, J. Serrat, M. Shen, K. Xu, and K. Yang,
“A neuro-fuzzy approach to self-management of virtual network
resources,” Expert Syst. Appl., vol. 42, no. 3, pp. 1376–1390, Feb. 2015.

[5] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G. Min,
“Adaptive resource allocation and provisioning in multi-service cloud
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1,
pp. 31–42, Jan. 2018.

[6] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic
resource provisioning approach for service-based cloud applications:
A hybrid approach,” Future Gener. Comput. Syst., vol. 78, pp. 191–210,
Jan. 2018.

[7] P. K. Sahoo, C. K. Dehury, and B. Veeravalli, “LVRM: On the design
of efficient link based virtual resource management algorithm for
cloud platforms,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4,
pp. 887–900, Apr. 2018.

[8] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect information
dynamic Stackelberg game based resource allocation using hidden
Markov for cloud computing,” IEEE Trans. Services Comput., vol. 11,
no. 1, pp. 78–89, Jan. 2018.

[9] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1230–1242,
Dec. 2013.

[10] A. Song, W.-N. Chen, T. Gu, H. Zhang, and J. Zhang, “A construc-
tive particle swarm optimizer for virtual network embedding,” IEEE
Trans. Netw. Sci. Eng., early access, Aug. 2, 2019, doi: 10.1109/TNSE.
2019.2932781.

[11] M. Alam, K. A. Shakil, and S. Sethi, “Analysis and clustering of
workload in Google cluster trace based on resource usage,” in Proc.
IEEE Int. Conf. Comput. Sci. Eng. (CSE) IEEE Int. Conf. Embedded
Ubiquitous Comput. (EUC) 15th Int. Symp. Distrib. Comput. Appl. Bus.
Eng. (DCABES), Paris, France, 2016, pp. 740–747.

[12] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center net-
working (DCN): Infrastructure and operations,” IEEE Commun. Surveys
Tuts., vol. 19, no. 1, pp. 640–656, 1st Quart., 2017.

[13] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
the degree and clustering coefficient information,” IEEE Access, vol. 4,
pp. 8572–8580, 2016.

[14] C. K. Pyoung and S. J. Baek, “Joint load balancing and energy saving
algorithm for virtual network embedding in infrastructure providers,”
Comput. Commun., vol. 121, pp. 1–18, May 2018.

[15] S. Haeri and L. Trajkovic, “Virtual network embedding via Monte
Carlo tree search,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 510–521,
Feb. 2018.

[16] F. Esposito, I. Matta, and Y. Wang, “VINEA: An architecture for vir-
tual network embedding policy programmability,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 11, pp. 3381–3396, Nov. 2016.

[17] N. Shahriar et al., “Virtual network survivability through joint spare
capacity allocation and embedding,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 502–518, Mar. 2018.

[18] J. Zhang, H. Huang, and X. Wang, “Resource provision algorithms in
cloud computing: A survey,” J. Netw. Comput. Appl., vol. 64, pp. 23–42,
Apr. 2016.

[19] A. Aral and T. Ovatman, “Network-aware embedding of virtual machine
clusters onto federated cloud infrastructure,” J. Syst. Softw., vol. 120,
pp. 89–104, Oct. 2016.

[20] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding LC-VNE algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, no. 6,
pp. 3648–3661, Dec. 2016.

[21] L. Yin, Z. Chen, L. Qiu, and Y. Wen, “Interference based virtual network
embedding,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

[22] A. Song, W.-N. Chen, Y.-J. Gong, X. Luo, and J. Zhang, “A divide-and-
conquer evolutionary algorithm for large-scale virtual network embed-
ding,” IEEE Trans. Evol. Comput., early access, Sep. 29 2019, doi:
10.1109/TEVC.2019.2941824.

[23] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang, “Dis-
tributed virtual network embedding system with historical archives and
set-based particle swarm optimization,” IEEE Trans. Syst., Man, Cybern.
Syst., early access, Jan. 3, 2019, doi: 10.1109/TSMC.2018.2884523.

[24] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing,
vol. 284, pp. 1–9, Apr. 2018.

[25] Y. Zhang, J. Yao, and H. Guan, “Intelligent cloud resource management
with deep reinforcement learning,” IEEE Cloud Comput., vol. 4, no. 6,
pp. 60–69, Nov. 2017.

[26] C. Wang, F. Zheng, S. Peng, Z. Tian, Y. Guo, and Y. Yuan, “A coor-
dinated two-stages virtual network embedding algorithm based on rein-
forcement learning,” in Proc. 7th Int. Conf. Adv. Cloud Big Data (CBD),
Sep. 2019, pp. 43–48.

[27] H. Yao, B. Zhang, P. Zhang, S. Wu, C. Jiang, and S. Guo, “RDAM:
A reinforcement learning based dynamic attribute matrix representation
for virtual network embedding,” IEEE Trans. Emerg. Topics Comput.,
early access, Sep. 20, 2018, doi: 10.1109/TETC.2018.2871549.

[28] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep
learning model to predict cloud workload for industry informatics,” IEEE
Trans. Ind. Informat., vol. 14, no. 7, pp. 3170–3178, Jul. 2018.

[29] S. Sagnika, S. Bilgaiyan, and B. S. P. Mishra, “Workflow scheduling
in cloud computing environment using bat algorithm,” in Proc. 1st
Int. Conf. Smart Syst., Innov. Comput. Singapore: Springer, 2018,
pp. 149–163.

[30] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, “Boost
online virtual network embedding: Using neural networks for admission
control,” in Proc. 12th Int. Conf. Netw. Service Manage. (CNSM),
Oct. 2016, pp. 10–18.

[31] C. K. Dehury and P. K. Sahoo, “DYVINE: Fitness-based dynamic virtual
network embedding in cloud computing,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1029–1045, May 2019.

[32] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[33] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous distributed systems,” 2016, arXiv:1603.04467. [Online].
Available: http://arxiv.org/abs/1603.04467

Hiren Kumar Thakkar (Member, IEEE) received
the B.E. degree in computer science from the
A. D. Patel Institute of Technology, India, in 2009,
the M.Tech. degree in computer science and engi-
neering from IIIT Bhubaneswar in 2012, and the
Ph.D. degree from the Department of Electrical
Engineering, Division of Computer Science and
Information Engineering, Chang Gung University,
Taiwan, in 2018. He worked as a Postdoctoral
Research Fellow at Motor Behavioral Research Lab-
oratory, Healthy Aging Research Center, Chang

Gung University, Taiwan, in 2018. He is currently working as an Assistant
Professor with the Department of Computer Science Engineering, Bennett
University, India. His research interests include the areas of bio-medical
big data analysis, cloud resource management, prediction, optimization, and
applied machine learning.

Chinmaya Kumar Dehury received the B.C.A.
degree from Sambalpur University, India,
in June 2009 and the M.C.A. degree from Biju
Pattnaik University, India, in June 2013. He is
currently pursuing the Ph.D. degree with the
Department of Computer Science and Information
Engineering, Chang Gung University, Taiwan. His
research interests include scheduling, resource
management, and fault tolerance problems of cloud
computing.

Prasan Kumar Sahoo (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in physics and
the M.Sc. degree in mathematics from Utkal Uni-
versity, India, in 1987 and 1994, respectively,
the M.Tech. degree in computer science from IIT
Kharagpur, India, in 2000, the Ph.D. degree in
mathematics from Utkal University in 2002, and
the Ph.D. degree in computer science and infor-
mation engineering from National Central Univer-
sity, Taiwan, in 2009. He has been an Adjunct
Researcher with the Division of Colon and Rectal

Surgery, Chang Gung Memorial Hospital, Taiwan, since 2018. He is currently
a Professor with the Department of Computer Science and Information
Engineering, Chang Gung University, Taiwan. His current research interests
include artificial intelligence, big data analytic, cloud computing, and the
Internet of Things (IoT). He was the Program Committee Member of the
several IEEE and ACM conferences. He is an Editorial Board Member of
the International Journal of Vehicle Information and Communication Systems
(IJVIC).

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 01,2020 at 13:46:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TEVC.2019.2941824
http://dx.doi.org/10.1109/TSMC.2018.2884523
http://dx.doi.org/10.1109/TETC.2018.2871549
http://dx.doi.org/10.1109/TNSE.2019.2932781
http://dx.doi.org/10.1109/TNSE.2019.2932781

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

