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Abstract: Crowding in city public transportation systems is a primary issue that causes delay in
the mobility of passengers. Moreover, scheduled and unscheduled events in a city lead to excess
crowding situations at the metro or bus stations. The Internet of Things (IoT) devices could be used
for data collection, which are related to crowding situations in a smart city. The fog computing data
centers located in different zones of a smart city can process and analyze the collected data to assist
the passengers how to commute smoothly with minimum waiting time in the crowded situation.
In this paper, Q-learning based passengers assistance system is designed to assist the commuters in
finding less crowded bus and metro stations to avoid long queues of waiting. The traffic congestion
and crowded situation data are processed in the fog computing data centers. From our experimental
results, it is found that our proposed method can achieve higher reward values, which can be used to
minimize the passengers’ waiting time with minimum computational delay as compared to the cloud
computing platform.

Keywords: reinforcement learning; Q-learning; fog computing; smart city; crowd management

1. Introduction

The world’s population is moving towards urbanization. According to the United Nations
Organization, the inhabitants in cities have increased to 68% of the world’s population in 2018 [1].
Transportation system plays a vital role in this modern cites to address the primary issues of user mobility
in and around city. Each local body organizes and maintains multiple modes of transportation in a city,
which is considered as the public transportation. The transportation systems such as monorail, metro,
and buses are the major components for passengers communication. The numbers of vehicles in public
transport are increasing drastically to assist the growing number of passengers, where traffic congestion [2],
traffic accidents, air pollution [3], energy consumption and overcrowding are inevitable. For instance,
according to Taipei city Department of Transportation, Taiwan, the increase in density of pedestrian
population [4] near the public transportation stations leads to mass crowding alongside increase in the
number of vehicles leads to traffic congestions and road accidents [5]. The traffic congestion indicates that
large vehicular density drastically increases the heat, forming urban hot zones in cities [6,7]. Therefore,
the governments take steps to make hassle free transportation by embedding smart, sophisticated and
reliable systems, which can be used in assisting passengers and encouraging private vehicle users to
utilize the well organized public transportation system.

The smart city utilizes digital technology to build sustainable infrastructure for convenient and
comfortable lifestyle of the people [8] with intelligent transport system. The smart transportation
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consists of smart public transport vehicles and smart mobile devices, where the Internet of Things (IoT)
devices like camera sensor, motion sensor and card reading Radio Frequency Identification (RFID)
sensors are embedded in smart environment to monitor flow of the passengers. The GPS is embedded
in buses to get real-time location information by the passengers and smart card reader assists in
keeping track of the number of available seats. In smart transportation systems, numerous varieties
of data are generated from smart IoT and mobile devices. The generated IoT data are conventionally
processed in cloud platform. However, the issue of processing and computation latency is inevitable
due to high transmission and computational delay. Therefore, a fog computing environment is used
for data processing and to assist passengers, where the fog node data centers could be deployed in
distributed computing environment closer to the end user’s location. These fog nodes enable IoT
data computation with low-latency as compared to the conventional centralized cloud computing [9]
platform. The fog computing nodes are hosted with intelligent algorithms to analyze the user’s request
based on the input IoT data from various locations of a smart city.

Artificial Intelligence (AI) is an advanced technology that enables us to extract meaningful
information from the generated data by various IoT devices. The various Machine Learning methods
such as Supervised, Unsupervised and Reinforcement Learning enable the system to learn from
the generated data. In Supervised Learning algorithms, the labelled data are fed to the system for
learning and predicting purposes, whereas Unsupervised Learning learns from the inherent structure
of the input data without any labelling. In both learning algorithms, historical data are essential to
build the models and predict the outputs. However, in real-time learning environment like smart
transportation, model should learn directly from the environment to predict the next step of action.
For example, Reinforcement Learning (RL) performs consistently to assist the optimal decisions for
smart transportation in real-time environment. The RL algorithm is built on dynamic programming
that rewards and penalize the agent based on the real-time actions, where agent learns how to behave
in the environment to obtain the maximum reward. The RL based Q-learning algorithm will be a
better approach to assist the passengers in smart transportation system, which is used by most of the
research works in minimizing the waiting time.

Motivation and Goals

Day-by-day crowding in smart cities is unpredictable due to scheduled and unscheduled events
such as concerts hosted by popular stars, unpredictable protests, terrorist attacks, and so on. In order
to reach the destination smoothly in a smart city, the passengers normally use applications like Google
Maps and social media to find the information about less crowded routes, and transportation systems.
The cloud based Google Maps can give information regarding traffic congestion and suggests better
route to the users. However, for the passengers commuting through public transportation ignore the
context in cities. The passengers can know the bus or metro arrival schedule in smart city transportation
system, but do not know the information regarding the density of the crowd and number of passengers
waiting at a station. Recently released Google Maps [10] has new features for predicting crowded
bus and train stations that currently cover only 200 cities. These features have been developed using
crowd-sourcing data, which are sent by users voluntarily, where users have asked about the seat
availability. However, in reality the crowded public transportation can be affected by internal and
external factors. The internal factor includes the inflow and outflow of passengers from the connected
train and neighboring bus stations. External factor includes the scheduled and unscheduled events
around the stations such as concerts, unpredictable protests, and so on. The external factors are
unpredictable conditions and the historical data are also not enough for predicting the crowded
situation. Therefore, in this paper, a Reinforcement Learning based passengers assistance system is
designed that can be used by the commuters under the situation of crowded public transportation
in the fog enabled smart city by utilizing the data from the IoT devices in real time to minimize the
waiting time of the passengers. Based on these motivations, the goals of this work are summarized
as follows.
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• To assist the passengers in finding less crowded and most suitable transportation points at a
particular instant of time.

• To minimize the waiting and traveling time of the passengers by maximizing the reward in the
proposed RL model.

• To minimize the service time and data transmission latency in the fog computing environment.

The paper is organized as follows. Related works are presented in Section 2, the system model
of the paper is given in Section 3. The Reinforcement Learning model is described in Section 4.
Performance evaluation is made in Section 5 followed by the concluding remarks in Section 6.

2. Related Works

In this section, we described several related works, which are related to different technologies used
in solving public transportation issues in smart city. Those technologies are Wireless Sensor Networks
(WSNs), Internet of Things (IoT), Fog Computing, and Artificial Intelligence (AI). The growth in
urbanization needs an IoT based public traffic management system to predict traffic congestion,
passenger mobility and crowd monitoring in public transportation system. In Wireless Sensor
Networks, large numbers of sensors generate huge volume and varieties of data that can be utilized to
develop suitable applications in smart cities. The authors have analyzed recent scientific developments
that exploit open source electronic boards to create IoT and smart city applications [11]. Moreover,
huge volumes of data are generated from the network devices will directly affect the quality of service of
the users utilizing the network services. The authors have proposed a load balancing mechanism based
on Software Defined Wireless Sensor Network (SDWSN) to address the requirements of adaptability
and high flexibility of the services [12]. Furthermore, the authors in [13] proposed cloud assisted deep
learning based processing to utilize the mobile audio data generated in smart city and classify the
noisy area. However, the cloud based processing does not consider the context of noise from real-time
environment such as public events in the smart cities. Moreover, the events organized in and around
the cities usher bulk crowds to a single destination, where an emergency situation leads to a stampede
as in 1990 in Mecca and German love parade disasters in 2010. The authors [14] have utilized the
mobile application data and Amazon Web Services (AWS) for context awareness and guide people to
nearest exit points. However, the IoT data analysis in conventional cloud environment causes a delay
in computation.

Internet of Things (IoT) enabled public transportation plays a vital role in reducing the traffic
congestions by moving large number of commuters to various destination in and around the smart
city. However, there are significant issues that need to be addressed such as overcrowding at the
commuting stations, heterogeneous IoT data analysis in the real-time smart transportation system for
passenger assistance. Since, accidents on the roads are unpredictable events due to lack of adequate
surveillance and risk perception, the authors [15] have designed a prediction model to predict the
crash injury severity. The designed model is based on the Support Vector Machine (SVM) algorithm for
decision making during accidents. Moreover, in autonomous smart cars the emergency situation needs
a priority based decision making. Similar issue is addressed in [16] with flexible parameter setting
system, considering constrains from different IoT systems on a vehicle and built an inference based
earliest deadline scheduling mechanism i.e., Fair Emergency First (FEF) algorithm. On the other hand,
the authors in [17] have collected CCTV image data from the Singapore Public Transportation Company
and have analyzed the data using a CNN based model to classify the crowd density in individual
train cabins and to identify the vacant cabins and avoid overcrowding in a single cabin near to the
escalators in the boarding trains. However, the computation and communication infrastructure cost
for supporting the deployed monitoring and display system leads to higher service costs. Thus leads
to a one of the prevailing issue in deciding suitable computational environments to a vastly generating
IoT devices data. Furthermore, the authors in [18] adapted a fog based queuing model approach to
optimize data transmission, delay, energy and cost for mobile devices, through which computational
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resources are allocated at near edge fog computing environment based on the number of requests and
fog node resource availability.

The prevailing fog computing is embedded into the smart transportation system to enhance the
computation of the monitoring infrastructure near to the edge devices alongside the centralized cloud
environment. For instance, the authors in [19] have proposed a fog based cost-effective crime detection
assistance application, where the video data are analyzed on the fog computing platform to assist the
security application. Fog enabled public vehicles play a vital role in smart city for near edge computing
and real-time data analysis. In [20], authors proposed a distributed public vehicle scheduling system
that integrates fog nodes and vehicular sensing, where authors have analyzed Taiwan, Ximen taxi
positioning and operation trajectories record data sets. The analysis of user data nearer to the end user
has primary advantage. Therefore, we consider fog computing for the transportation system to analyze
heterogeneous IoT data. Furthermore in [21] the privacy preserving issue in customized bus sharing
service has been addressed by adopting fog computing where the fog servers perform ride clustering,
interacting with fog server near to the end user, on receiving pick-up and drop-off positions from user
device. Equally important, in [22] authors have designed an application to find the optimal charging
station in a real-time transportation. The route predicted in context aware fog computing assist in
finding the suitable charging station with optimal distance and route, based on amount of energy
left in the electric vehicles. Moreover, fog computing based IoT data collection, classification and
real-time decision making in healthcare is a signification approach to assist multiple healthcare entities
with real time alerts [23]. The authors in [24] have collected input IoT sensor data from the users and
have provided data risk assessment by adopting the reinforcement learning method. Furthermore,
authors in [25,26] have analyzed the challenges in ultra-dense deployment of the heterogeneous fog
networks in advancement of moving towards the AI based machine-oriented communication such
that wireless data acquisition, knowledge discovery, planning, operation, and management could be
optimized in the fog computing nodes.

Average passenger flow increases day-by-day in Shanghai city subway, Shanghai rail transit,
and the regular city dwellers change the platform to board next train that causes overcrowding during
the peak hours. Authors in [27] adopted K-means clustering to optimize operation of subway service
and improved the quality of management by analyzing the crowd monitoring data. Transportation
capacity of Urban Rail Transit (URT) is not adequate enough to meet the travel demands where the
density of the passengers waiting at the platform can exceed the critical density of the platform. At URT
line in Shentong metro management center, Shanghai, passengers are left stranded at the metro station
as the time table become infeasible. The authors in [28] proposed coordinated optimization scheme
for URT line, which combines both the coordinated passengers inflow control with train rescheduling
strategies. Similarly, authors in [29] proposed to optimize the inflow volume during a certain period
of time at each station with the aim of minimizing the safety risks imposed on passengers at the
metro stations. Both [28,29] designed the proposed model in Reinforcement Learning (RL). Moreover,
decision making being a prominent part in various types of transportation systems for optimizing as
well as to avoid undesirable events. Thus, the intelligent decision making becomes an important part
of future decision on air confrontation, where authors in [30] adapted heuristic Q-Network method to
enhance the efficiency of RL based algorithm. Furthermore, in automated vehicles prevailing issue is in
decision making in lane changing. The authors in [31] defined a policy based on Deep Reinforcement
Learning (DRL) to find a policy assisting the vehicle’s lane changing decision making system.

3. System Model

Let, the geographical area of a smart city be divided into certain number of zones i.e., a grid of
size M× N, where M and N are the number of rows and columns of the grid, respectively. Each zone
is represented as Zi, ∀i ∈ {1, 2, 3, ...|M× N|}. Let, fi be a fog node data center located in the zone
Zi, where, i ∈ {1, 2, 3, ..., |M× N|}. Let us consider two different types of transportation system such
as a and b represented as metro train and bus, respectively. The associated nearest metro station is
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denoted as αa for metros and bus station is denoted as αb. It is assumed that sensor gateways and Road
Side Units (RSUs) are deployed in each zone to communicate data in the smart city. All parameters
described above are depicted in the proposed system model as shown in Figure 1 and are listed in the
Table 1.

Figure 1. Proposed system model.

Table 1. Parameters name and description.

Parameters Description

Zi Each zone
a, b Metro train a, bus b
αa Metro station αa
αb Bus station αb
fi Fog node

t, ∀t ∈ T Time stamp t, total duration T
p Passenger

ploc
id Passenger’s current location ID

pdes
id Passenger’s destination ID

3.1. Data Collection Phase

Various types of IoT devices are embedded in a smart city in synergy with fog integrated
transportation systems. These IoT devices in each zone can be categorized as Passenger and
Transportation IoT devices. The smart city passengers p can access information with help of the
smart mobile phone along with smart payment ID card provided by various vendors, which are
used in public transportation systems and are categorized as Passenger IoT devices. Two types
of data such as passenger’s current location ploc

id and requested destination pdes
id can be obtained

from the passenger’s IoT devices. On the other hand, transportation IoT devices consist of bus and
metro passenger’s payment system that generate several data such as the total inflow and outflow
of passengers, and number of passengers those are waiting in the line to reach at their destinations.
Smart CCTV sensors generate the organized or emergency events monitoring data around the zones
and passenger’s crowd density at the station. All data are transmitted to the fog node data centers,
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as shown in Figure 2 through the sensor gateway and RSU deployed in the smart city. It is to be noted
that all data are collected based on the time stamp t.

Figure 2. Data collection architecture.

3.2. Data Analysis Phase

Considering any passenger p at certain point of location ploc
id in a smart city requests to know

about the crowding status to travel to the destination pdes
id at time t, the request is sent to the fog

node through the communication network. Based on passenger p’s request, pdes
id and location ploc

id are
recorded and used to organize the collected data. Furthermore, the collected data in each zone are
analyzed at the fog node fij located in the nearest zone. The collected data are processed based on the
time stamp t, passenger’s location ploc

id , nearby station α and destination pdes
id , as shown in Figure 3.

The data analysis is carried out using Reinforcement Learning (RL).

Figure 3. Analysis of data in fog node data centers.

3.3. Objective Function

The objective of our proposed work is to minimize the total waiting time of passengers from the
source to the destination station. To achieve the minimum traveling time of the passengers, we consider
that passengers try to avoid crowded stations in order to avoid delay and minimize the initial number
of stations visited during the travel. As we know, social events, musical concerts, popular sports
activities etc., in a city may generate a huge crowd, which make the stations crowded and the traffic
is congested as people want to go back to their homes immediately after the event is over. Such an
unavoidable situation makes the passengers delay in reaching their destinations. The Equation (1)
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represents the objective function to minimize the delay MinD, where Wp
c,α is the waiting time of a

passenger p and c is the passenger density representing the volume of the passengers l = {1, 2, 3, ...c}
at visited station α such that h = {1, 2, 3, ...α}.

MinD =
l

∑
c=1

h

∑
α=1

Wp
c,α (1)

To optimize better available transportation methods for the passengers, two feasible constrains
are considered to build our model. First, passenger p’s waiting time at a station and the fog node
context awareness to determine the passenger density. All used parameters are described as constraints
in Table 2.

Table 2. Parameter’s name and description.

Parameters Description

pα
arriv Passenger arrival time at station

γα
arriv Passenger arrival time at a station from the bus or metro train

Wα
p Passenger waiting time at station

eα Events occur at station

cα
l Passenger density at station

Ptot Total number of passengers

GPtot

enter Total number of passengers that entered the platform

TrPtot

transit Total number of passengers transited

ExPtot

exit Total number of passengers exited

h Total number of stations visited by passenger

ptot(γα → pdes) Total number of passengers transited at station α from arrived bus or train

3.3.1. Passenger Waiting Time

The passenger’s waiting time is the primary constraint that needs to be considered, where the
passenger needs to wait until the arrival of any bus or train. The buses and metro trains follow different
time intervals to run all over the city that connect multiple stations. The transportation commodity
arrival time is denoted as γα

arrv. However, the passenger needs to reach any station to commute to
the respective destination. The passenger arrival time at any transportation station is represented as
pα

arrv. Thus, the passenger p’s waiting time at a particular metro or bus station α is determined from
constraints as given in Equation (2).

Wα
p = γα

arrv − pα
arrv (2)

3.3.2. Context Awareness at Stations

As shown in Figure 2, it is assumed in system model that the stations are equipped with IoT
devices to collect transportation related data. These IoT devices can record and store the contexts of
the environment in a station. For instance, CCTV keeps track of the events and passenger’s density,
and smart card reader records the inflow and outflow of passengers in the station. Two context
awarenesses are considered in our proposed method as events and passenger density.

1. Events
An event around the station environment is detected by IoT devices installed in and around the
station. Events can be of organized programs like concerts by the popular stars, while unorganized
hazardous events like bomb blasts lead to blocking the stations with overcrowded passengers. Thus,
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IoT devices detect the events and store the event information eα of a station α in binary values as
illustrated in Equation (3).

eα =

{
1 eα = 1,
0 otherwise

(3)

where eα = 1 if any unpredictable crowding situation occurs, otherwise eα = 0.

2. Passenger Density
The passenger density is determined by the inflow and outflow of passengers at a particular
station. The passenger crowding is occurred in the stations having more than one transit platforms
where passenger transits from one metro train to another by changing the platform within station.
Alongside, the passengers aligning from other transportation change to the nearest stations, and
the passengers exit from the station. The following Equation (4) describes constraints for large
passenger density l or crowding at the station α.

cα
l = (in f low)− (out f low) (4)

The inflow of passengers at a station leads to huge crowds. It is the summation of total number
of passengers arriving from different station and departing from the current station as given in
Equation (5). Passengers who are waiting in a station may board or wait for the next bus or train as
represented in Equation (7).

inflow = γ
ptot

arriv + Gptot

enter (5)

γ
ptot
arrive =

k

∑
γ=1

ptot (6)

Gptot
enter = ∑

t∈t
checkin (7)

checkin =

{
1 passenger p check-in the payment
0 otherwise

(8)

Similarly, the passengers may exit the station or transfer to another vehicle within the same station
to continue the journey towards passenger’s destination as given in Equation (9). Passengers either
exit the station or transfer the platform is represented in Equation (12).

outflow = Trptot

transit + Exptot

exit (9)

Trptot
transit = ∑

pdes∈Tr

ptot(γα→pdes) (10)

Exptot
exit = checkout (11)

checkout =

{
1 passenger p checkout the payment
0 otherwise

(12)

4. Reinforcement Learning Based Passenger’s Assistance System

It is to be noted that any passenger who acts as an agent needs to choose better a transportation
method such as bus or metro to reach the destination by avoiding possible traffic congestion related
difficulties, which is the primary goal of this paper. Therefore, we modelled the transition of the
passengers using a Markov Decision Process (MDP) to achieve the objectives described in the previous
sections. The transition probability of the passengers is represented as 5-tuples t, S, A, T, R, where the
parameters are listed in Table 3.
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Table 3. Descriptions of Markov Decision Process (MDP) parameters.

Parameters Description

t Time step
S Set of environment states s
A Set of actions a
T Set of transition probabilities
R Set of reward, R : SXA→ R

4.1. State

Initially, any passenger starts from any state s at any given time t in the environment. As shown
in Equation (13), the state or station α represents the metro station αa and bus station αb. The passenger
may transfer within the same station or transition to different stations. Furthermore, the transition
from state α at time t to the next state α + 1 at time t + 1 can be performed by the passenger to reach
the desired destination.

St = {sαa
t , sαb

t } (13)

4.2. Action

When the agent sends a request from the free zone, information about all available nearby stations
can be extracted from the fog node. Two possible actions can be taken by an agent to choose the
suitable transportation point. Similarly, from the starting point, the agent again needs to select the
next one of the two possible suitable transportation systems to move from the initial state sα to the
next state sα+1. The actions could be taking metro or taking bus as in A = {takingbus, takingmetro}.
The states and actions are pictorially represented in Figure 4.

Figure 4. States and actions.

4.3. Reward

The goal of the agent is to minimize the travel and waiting time from the initial state to the
destination state. By doing so, few constraints need to be considered such as total time step T,
total visited stations h and total number of metros or buses associated with that particular station α.
Reward function R(s, a) is represented in Equation (14).

R(s, a) =
l

∑
c=1

h

∑
α=1

Wp
c,α (14)

4.4. Reinforcement Learning Algorithm

As an agent does not have any idea about the environment, model free Reinforcement Learning
(RL) is chosen here. As one of the model free algorithms and based on off-policy Q-learning [32]
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can benefit the agent’s experience by exploiting and exploring the environments. Two algorithms
are modeled using Q-learning, out of which an agent can learn and act optimally by choosing the
suitable initial station state sα from the free zone area in a particular zone based on the first algorithm.
Upon deciding the suitable station based on Algorithm 1, an agent can smartly choose the next
suitable transportation system state based on Algorithm 2 until agent reaches the destination station.
The formal description of the first and second algorithms are given in Algorithms 1 and 2, respectively.

Algorithm 1 Prediction of suitable transportation point
For passenger p = 1
Input: Passenger request pdes

id
Parameter: Event ei, passenger density cα

l
Process:
1:Agent send a request: pdes

id
2:Fog node receive (pdes

id , ploc
id )

3:Check station α = pdes
id nearby ploc

id
4: IF TRUE
5: Check station α = eα, cα

l
6: FOR each station α = eα, cα

l
7: DO
8: Xt

α = eα.cα
l

9: IF TRUE (Xt
α == 0)

10: Predict and send suitable transportation point (xt
α)

11: Agent select the transportation point (xt
α)

12: Else
13: Fog node search for other possible α
14:END

Algorithm 2 Selection of most suitable transportation system

Input: Total visited stations h, Total number of metros or buses I, Passenger waiting time Wp
c,α

Parameter: Alpha α, γ, Policy π
Process:
1:For episode 1 to M do
2:Initialize state s = xt

αa or xt
αb

/based on Algorithm 1
3:Repeat for each step of episode
4:Choose action a
5: Calculate π (using Boltzman-Distributed Exploration [33])
6: Take an action a based on π
7:Observe ś
8:Calculate Reward r (Equation (14))
9:Calculate Q(s, a)← Q(s, a) + α[r + γ maxá Q(ś, á−Q(s, a))]
10:Update Q(s, a)
11:s← ś
12:Until s = pdes

id
13:END

4.5. Service Time Latency Minimization

In this paper, we analyze that the fog computing nodes can have minimum latency in providing the
computational services to the passengers of the smart city transportation system. In the fog computing
paradigm [34], fog nodes process the data with low latency to meet the edge node’s demands. The total
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latency in locally distributed fog computing can be estimated based on n-dimensional Euclidean model,
and the latency prediction formula as in [35].

D( f1, f2)
=

√
n

∑
i=1

( f1i − f2i )
2 (15)

where, D is predicted delay, f1i and f2i are the coordinates of two fog nodes f1 and f2. The estimated
latency E f and actual measure distance, i.e., round trip time ν are used to estimate the absolute relative
error R, which can give the difference between the estimated and total delay as represented in the
Equation (16).

R =
|E f − ν|

min(E f , ν)
(16)

For instance, if two applications’ data with high and low computational resource requirements
need to be processed in the fog network, the probability of offloading the high resource application
data such as video is offloaded to the cloud computing environment, whereas the low computational
application data are processed at the fog node data center. However, it is assumed that the fog nodes
process the context aware related data in each zone. On the other hand, cloud being the core computing
environment processes the image and video data from the camera sensors to determine the passenger’s
density c and events in the city e. The processed information is further updated at the fog node data
centers based on the location information of the events. Based on the received task size R of the
passengers, fog node data centers compute the estimated waiting time and provide the computing
resources, where threshold θ amount of resources could be allocated. If the received requested task
size is less than that of the threshold resources and average waiting delay, the request is accepted
at the fog node. If the request is accepted at the fog node fi, the waiting queue is updated with the
request. Else, the request R f wd is forwarded to another neighboring fog node fi in the fog computing
network among the available fog computing data centers, which is based on the maximum offloading
limit of the fog layer. If it crosses the limit, data are forwarded to the cloud computing environment to
minimize the delay in computation and provide the quality of service to the passengers.

L =


R < θ fog node accept and update the queue
R f wd ≤ θ fog node forward the request to best neighbor node
R > θ fog node forward the request to cloud

(17)

5. Performance Evaluation

In this section, our proposed algorithms are evaluated by simulating in the fog computing and
reinforcement learning based analytic environments. Fog computing based performance evaluation is
executed using PureEdgeSim simulator [36]. For fog and cloud computing platforms, we compared
and evaluated the computing resource consumption, task computing delay and energy consumption.
From our simulation results, it is observed that distributed fog computing platform could provide
the computing services consistently as compared to the conventional cloud computing platform.
Furthermore, the Reinforcement Learning (RL) approach in finding better transportation for the smart
city passengers was evaluated using Python and OpenCV. By doing so, the predicted transportation
method can assist the passengers to reach at their destination faster by achieving the maximum reward
and concurrently minimizing the waiting time.

5.1. Simulation Environment

Similar to our system model, we considered the simulation environment that consisted of the
cloud data center, distributed fog node data centers, and end-user devices that included laptops,
mobile phones, IoT actuators and IoT sensors. Accordingly, the cloud computing environment
was assumed to have large amount of physical resources as compared to the fog node data centers.
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Furthermore, the physical properties of the IoT devices and computing entities varied from one another.
In detail, our simulation environment consisted of a cloud and fog nodes setup with two hosts, 16
VMs each, and devices with one and zero VMs as illustrated in Table 4. The IoT applications with
different data size and computing requests were executed in two different computing platforms, where
comparison and evaluation were performed with various input parameters.

Table 4. Fog simulation environment: specifications.

Parameters Cloud DC Fog DC Laptop Mobile Phone IoT Actuator IoT Sensor

Layer 0 1 2 2 2 2
CPU 2× 106 MIPS 16× 104 MIPS 11× 103 25× 103 16× 102 4× 102

Memory 150 GB 40 GB 8 GB 4 GB 2 GB 2 GB
Storage 10 TB 2 TB 300 GB 30 GB 20 GB 0

VMs 16 16 1 1 1 0
Hosts 2 2 - - - -

The simulation environment was developed by considering a real-world urban transportation
system in Taipei City that comprises Taipei Mass Rapid Transit (MRT) and Taipei Bus. We took
an example of the main city transportation system. In MRT system, we included four lines such
as GreenLine (GL), BlueLine (BL), RedLine (RL), and BrownLine (BRL), where each station was
connected to each other with the corresponding lines. Besides, GL, BL, and RL are interconnected
with BRL. Moreover, due to numerous bus stations nearby each MRT station, for simplicity,
let {North, West, East, South} be the four neighboring bus stations nearby any single MRT station.
Different from the MRT connectivity, bus stations were randomly connected to each other to the
respective MRT lines. The detail information about the considered simulation environment is depicted
in Figure 5.

Figure 5. Simulation environment.

Based on our simulation environment, we set 12 nodes for the MRT, each of which had four bus
stations as the neighboring nodes. Accordingly, we used 12(12× 4) nodes in our simulation along with
the inter-connectivity. We assigned the initial inflow and outflow of passengers to any interconnected
node either as a bus or MRT station based on the collected data [37,38]. Starting point and destination
point of an agent was assumed to be fixed from any given point, i.e., either from a bus or MRT
station. The implementation of the Reinforcement Learning based simulation was run on the GPU
GeForce GTX 1070 Ti system, 418.56 NVIDIA-SMI, 32 GB memory, and Ubuntu 18.04.2 platform.
The implementation was executed using Python 3.6.9 including python libraries Numpy 1.19.1,
Matplotlib 3.3.0, and Networkx 2.4.
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5.2. Simulation Results: Fog Computing

As per our assumptions in the system model, the fog enabled smart city consisted of various types
of smart devices. Those smart devices were normally the IoT devices such as mobile phone, laptop,
smart card reader, smart sensor and so on, which had limited computing resources. Though those IoT
devices had limited computing resources, they generated a vast number of requests, which need to be
processed and therefore need to be offloaded to the external computing environment like cloud and
fog data centers. Conventionally, IoT device tasks were offloaded to the fog computing platform, even
though the cloud computing platform’s physical resource capabilities were significantly larger than
that of the fog computing nodes. Furthermore, the fog nodes having limited computational capabilities
were deployed to execute the requests from various IoT devices in the smart city. Upon receiving
the requests of IoT users, those requests were executed in the neighboring fog nodes or needed to
be forwarded to the cloud platform based on the availability of the computing resources as given
in Equation (17). For instance, in our simulation we considered IoT devices of task requests with
different data size ranging from 103 ∼ 10× 103 (Mega Bytes), which were randomly offloaded to
the fog and cloud computing platform. We found that task execution latency in terms of execution
delay was comparatively higher in cloud than that of the fog data center for average IoT requests.
Figure 6 indicates that with increase in the average number of IoT device requests, data size impacted
the average tasks execution latency at the fog and cloud data centers.

Figure 6. Comparison of Internet of Things (IoT) task execution latency in the fog and cloud platforms.

Furthermore, the fog node data centers that were widely deployed nearer to the edge devices
provided computing services with high rate of resource utilization. For instance, passengers with
smart phone device or IoT devices requested to find less crowded commuting stations, where the
context aware fog nodes processed the data and provided computing resources with minimal delay
as compared to the cloud platform. As shown in Figure 7, a number of user devices ranging from
103 ∼ 10 × 103, with four different types of configurations, offloaded requests randomly to the
computing environment. It is observed that IoT requests were mainly executed in the fog data centers
as compared to the cloud data centers, which was inferred from the maximum CPU utilization of the
fog data centers.
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Figure 7. Comparison of CPU utilization in the fog and cloud platforms.

The IoT devices in the smart city generated task requests that needed to be executed in the fog
or cloud computing platforms. The average computation time can be defined as the task waiting
time and task execution time as shown in Figure 8. In a conventional cloud data center, the request
processing queues were comparatively longer than that of the fog computing data centers. The cloud
computing platform computes the global tasks of long queues that led to longer waiting time, as shown
in Figure 8a. On the contrary, the distributively deployed fog computing data centers executed the
local tasks with shorter queues of tasks that required processing the requests with minimum waiting
time. Hence, as shown in Figure 8b, the waiting time of the tasks to be executed in the cloud needed a
longer time as compared to the waiting time in the fog data centers.

Figure 8. Computation time: (a) IoT tasks waiting time at fog and cloud data centers. (b) Avg. IoT tasks
execution time at fog and cloud data centers.

In order to evaluate the energy consumption complexity, the generated tasks ranging from
103 ∼ 10× 103 MB are computed in the cloud and fog computing environments as depicted in Figure 9.
It is observed that energy consumption in fog computing data centers was comparatively higher
due to high execution rate of processing the data as compared to the cloud platform. It is due to the
execution of large number of local tasks in the fog computing platform. Besides, due to extensive
utilization of the computational resources, the energy consumption was also comparatively high in
fog computing platform.
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Figure 9. Energy consumption in fog and cloud platform.

5.3. Simulation Results: Reinforcement Learning

Based on Algorithms 1 and 2, we adopted Q-learning to conduct our simulation. The experiment
was carried out in various episodes, and by considering the destinations nearer to and farther from
the current location of the passengers. First, we optimized the value of the hyper-parameters of our
adopted Q-learning using random search technique and by considering ten configurations. Table 5
shows the details of the hyper-parameter tuning configurations with the total number of episodes
being 1000, which was composed of three hyper-parameters such as number of steps, learning rate α,
discount factor γ, and ε− Greedy with range of (0, 1).

Table 5. Hyperparameter tuning configuration.

Configuration Number Learning Rate (α) Discount Factor(γ) ε−Greedy

1 0.6 0.9 0.09
2 0.7 0.7 0.07
3 0.8 0.8 0.08
4 0.9 0.3 0.07
5 0.7 0.5 0.05
6 0.8 1 0.04
7 0.2 0.6 0.03
8 0.3 0.7 0.01
9 0.4 0.1 0.02
10 1 0.2 0.1

Based on the configurations given in Table 5, we analyzed the maximum Q-Value and Cumulative
Reward taking two scenarios, i.e., when the agent could have nearest and farthest destination
stations either as bus or MRT from the current location of the passengers. The maximum Q-Value
and cumulative reward were calculated when the training for any given episode was completed.
Figures 10 and 11 show the results for nearest and farthest destination, respectively in terms of
maximum Q-value (a) and cumulative reward (b). We observed that the highest maximum Q-value and
total reward can be found in configuration number 1, 2, and 3 in both scenarios. These configurations
have similarity, where all combinations of hyper-parameters value are >0.5. In contrast, low values
can be found in configuration, which has average value <0.5 for any of the hyper-parameters.

By considering the optimal configuration of hyper-parameter number = 1 for a complex scenario
such as farthest destination, we analyzed the performance of our adopted Q-learning algorithm
in-depth by comparing with the well-known RL algorithm such as State-Action-Reward-State-Action
(SARSA), SARSA Lambda, and Expected SARSA. First, we analyzed the maximum Q-value with
different number of episodes. In episode 5000, it shows that SARSA and our adopted Q-learning had
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similar performance. As the episode number increases, the maximum Q-value in adopted Q-learning
increased as compared to SARSA. Similarly, SARSA lambda and expected SARSA had the lowest
maximum Q-value as compared to the adopted Q-learning. It implies that the agent learned better by
getting higher reward when the action was chosen to reach at the farthest destination. The comparison
of the maximum Q-value is shown in Figure 12.

Figure 10. (a) Maximum Q-value and total reward comparison for nearest destination. (b) Total reward
comparison for nearest destination

Figure 11. (a) Maximum Q-value and total reward comparison for farthest destination. (b) Total reward
comparison for farthest destination.

Figure 12. Maximum Q-value comparison.

It is observed that the maximum Q-value had an impact on the total reward performance. Based on
the maximum Q-learning comparison, we compared the average rewards achieved by an agent.
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As shown in Figure 13, the agent could successfully arrive at its destination by executing our adopted
Q-learning, which was farthest from the starting point with highest average reward as compared to the
other algorithms. Furthermore, we analyzed the execution time of our adopted Q-learning. As shown
in Figure 14, the execution time was higher than the Expected SARSA as Q-learning took maximum
value of the state–action pair, whereas in Expected SARSA, the expected value was used to define the
likelihood of the actions to be taken.

Figure 13. Average reward comparison.

Figure 14. Execution time comparison.

6. Conclusions

In this paper, a passenger assistance system for crowded public transportation in fog-enabled
smart city is designed by applying reinforcement learning, where the IoT data analysis is carried out in
the fog computing environment. The data generated by the IoT devices of the passengers are collected
and analyzed by fog nodes located in different zones of a smart city. In order to achieve our primary
objectives of minimizing the passenger’s waiting time, the highest reward is obtained by applying
the Q-learning based reinforcement learning. Performance evaluation is made by considering the fog,
cloud computing, and reinforcement learning environment. It is observed that the fog computing
environment performs better over the cloud computing in terms of service time, computation time
and energy consumption. Moreover, we also find that our adopted Q-Learning based reinforcement
learning model achieves the highest maximum Q-Value and cumulative reward as compared to
SARSA, SARSA lambda and expected SARSA, which indicates that the agent can concurrently reach
the destination faster by reducing the waiting time. Finally, our proposed method can be beneficial
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for reducing the travel time of the passengers under the crowded traffic conditions of the public
transportation in a smart city.
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