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Abstract—The Hadoop enabled cloud platforms are gradually becoming preferred computational environment to execute scientific big

data workloads in a periodic manner. However, it is observed that the default data placement approach of such cloud platforms is not

the efficient one and often ends up with significant data transfer overhead leading to degradation of the overall job completion time. In

this article, a Resource and Network-aware Data Placement Algorithm (RENDA) is proposed to reduce the non-local executions and

thereby reduce the overall job completion time for periodic workloads in the cloud environment. The entire job execution is modeled as

a two-stage execution characterized as data distribution and data processing. The RENDA reduces the time of the stages as

mentioned above by estimating the heterogeneous performance of the nodes on a real-time basis followed by careful allocation of data

in several installments to participating nodes. The experimental results show that the proposed RENDA algorithm consistently

outperforms over the recent state-of-the-art alternatives with as much as 28 percent reduction in data transfer overhead leading to 16

percent reduction in average job completion time with 27 percent average speedup on average job execution.

Index Terms—MapReduce, cloud computing, data placement, periodic workloads

Ç

1 INTRODUCTION

IN THE era of high-speed internet, the usage of web applica-
tions has increased many folds leading to the generation

of a massive amount of data daily [1]. Among the parallel
processing models, cloud computing is popular due to its
simplicity, scalability, and fault tolerance characteristics,
which has encouraged organizations such as Facebook to
adopt the open-source implementation Apache Hadoop to
build the big data analytic cloud platforms [2]. Usually,
Hadoop enabled cloud platforms scale from a few machines
to thousands of machines, also known as nodes.

The default data placement scheme of Hadoop assumes
homogeneous computing resources of nodes and distrib-
utes an equal amount of input data among the nodes for the
load balancing [3]. However, the default Hadoop scheme
triggers a significant number of non-local executions in het-
erogeneous cloud platforms [4]. The non-local execution
means the data processing happens in the node where data

are not present and need to be brought from other nodes.
The non-local executions result from inefficient data distri-
bution, whereby the nodes with higher computing resour-
ces finish the data processing earlier and become idle. To
maximize resource utilization, the data placement scheme
needs to transfer the excess data from the sluggish nodes to
the efficient nodes.

Several real-life applications generate huge amount of
data in a periodic manner such as weblog analysis [5], dis-
tributed grep [6], reverse web-link graph [7], URL access
frequency count [8] etc. Such applications can be easily
expressed as MapReduce (MR) jobs [9], which enable their
parallel execution in a cloud environment. Each MR job
completes the execution in sequential phases known as a
map and a reduce. The dedicated cloud machine known as
a master node partitions the input MR job in equal-sized
data blocks and distributes them onto the slave nodes.
Later, in a map phase, map tasks are scheduled to the nodes,
also known as mappers to generate the intermediate data. In
a reduce phase, selective nodes, also called reducers collect
the intermediate data from the mappers and generate the
final output.

The Hadoop architecture is comprised of two fundamen-
tal stages, such as data distribution and data processing.
The data distribution refers to the time master node takes to
distribute the input data blocks to slave nodes. The data
processing refers to the time slave nodes take to process the
assigned input data blocks. In default Hadoop enabled
cloud; job completion is the sequential execution of data dis-
tribution and data processing stages, as shown in Fig. 1.
However, such sequential execution compulsion is not effi-
cient, and it affects the job completion time. For instance,

� Hiren Kumar Thakkar is with the Department of Computer Science and
Engineering, SRM University, Andhra Pradesh 522240, India.
E-mail: hirenkumar.t@srmap.edu.in.

� Prasan Kumar Sahoo is with the Department of Computer Science and
Information Engineering, Chang Gung University, Guishan 333, Taiwan,
and also with the Department of Neurology, Chang Gung Memorial Hos-
pital, Linkou 33305, Taiwan. E-mail: pksahoo@mail.cgu.edu.tw.

� Bharadwaj Veeravalli is with the Department of Electrical and Computer
Engineering,NationalUniversity of Singapore, Singapore 119077 Singapore.
E-mail: elebv@nus.edu.sg.

Manuscript received 13 Mar. 2020; revised 27 Mar. 2021; accepted 29 Apr. 2021.
Date of publication 14 May 2021; date of current version 3 June 2021.
(Corresponding author: Prasan Kumar Sahoo.)
Recommended for acceptance by Q. Zheng.
Digital Object Identifier no. 10.1109/TPDS.2021.3080582

2906 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chang Gung Univ.. Downloaded on July 02,2021 at 05:06:16 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0002-4196-7651
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0003-3496-1195
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
https://orcid.org/0000-0001-9000-1813
mailto:hirenkumar.t@srmap.edu.in
mailto:pksahoo@mail.cgu.edu.tw
mailto:elebv@nus.edu.sg


the data distribution stage takes longer to complete if the
input data size is large or network resources are insufficient.
The possible best-case scenario is presented in Fig. 1, where
the data distribution is carried out in several installments
concurrent with the data processing resulting in the reduc-
tion of the overall job completion time.

The data distribution without assessing the computing
resources and network delay may trigger several non-local
executions. The non-local executions increase the network traf-
fic and therefore incur the data transfer overhead, which nega-
tively impacts the overall job completion time.Our experiment
on a 16 nodes virtual Hadoop cloud shows that data distribu-
tion takes as much as 48 percent of the total job completion
time. Hence, it is highly essential to reduce the data distribu-
tion time and the number of non-local executions to reduce the
overall job completion time. For simplicity, the terms data and
data blocks are used interchangeably throughout the study.

In this paper, we design a Resource and Network-aware
Data Placement Algorithm (RENDA) to reduce the data
transfer overhead in the cloud and thereby to reduce the
overall job completion time.

Our contributions are summarized as follow,

� The Hadoop enabled cloud’s data placement prob-
lem is formulated as a sequential execution of data
distribution and data processing stages.

� The major pitfalls in the existing data placement
schemes are described.

� A Resource and Network-Aware Data Placement
(RENDA) algorithm is designed by estimating the
cloud nodes’ performance on-the-fly.

� Extensive performance evaluation of RENDA is car-
ried out against the state-of-the-art alternatives.

The scope of this work is mainly addressing the above-
mentioned pitfalls and focuses on designing an efficient, in
the sense of including the resource and network awareness,
data placement strategy, conducting rigorous analysis, and
to evaluate its performance on actual cloud platforms. The
evaluation is also carried out by comparing our strategy
with most commonly available and relevant strategies in
the literature. The paper has all the four important contribu-
tions namely, design, analysis, performance evaluation and
actual realization on a Cloud platform employing both the
physical and virtual nodes.

The rest of the paper is organized as follows. In Section 2,
related works are described. The problem statement is dis-
cussed in Section 3 followed by the pitfalls in existing
schemes are described in Section 4. The proposed RENDA
scheme is described in Section 5. The experimental results
are presented in Section 6 and concluding remarks are
made in Section 7.

2 RELATED WORKS

Divisible Load Theory (DLT) refers to the scheduling of
large-scale partitionable workloads on networked comput-
ing platforms. Effective distribution of such partitionable
workloads on compute nodes makes it possible for their
rapid processing. Large-scale image processing [10], poly-
nomial multiplication [11], and stream data processing [12]
are few of the examples of the divisible workloads. In
Hadoop enabled cloud, the divisible workloads are distrib-
uted in a single installment. In other words, the divisible
workloads also referred to as the data blocks are distributed
to the compute nodes in a single shot. However, in a hetero-
geneous cloud data center, workload distribution in a single
installment may violate the ”Optimality principle” [13],
which states that compute nodes should conclude the work-
load processing simultaneously to ensure the shortest work-
load completion time. To overcome the shortcomings of
single installment distribution, in [14], [15] multi-install-
ment strategies are proposed. However, deriving an opti-
mal multi-installment model is challenging as the model
needs to capture all possible overheads.

Several proposals are made to address the workload dis-
tribution issues of a Hadoop cloud [3], [16], [17], [18], [19].
In [16], a data placement algorithm is introduced to balance
the distribution of intermediate data of MR jobs. However,
balancing the intermediate data is not sufficient to reduce
the job completion time. In [18], a parallel distributed file
system ”Lustre” is proposed to benefit shuffle-intensive
workloads of MR jobs. However, [18] may not efficiently
work for map-intensive and reduce-intensive periodical
workloads. In [19], a heuristic data placement algorithm is
designed considering the topology of the nodes to cut down
the network traffic during the MR job execution. However,
fluctuating cloud performance makes it challenging to pre-
dict the optimum data layout leading to unexpected non-
local executions. In [17], a genetic optimization algorithm is
designed for the replica distribution in Hadoop.

Considering the impact of data placement on cloud per-
formance, various data placement approaches are proposed
in the past [4], [20], [21], [22], [23], [24]. In [21], an applica-
tion-specific data placement scheme is introduced, which is
exclusively designed for the scenarios, where data access
patterns exhibit data grouping and interest locality among
the data. In [20], [22], a sampling-based data distribution
approach is proposed, where it is mandated to execute a
sample task on each virtual node to estimate computational
capacity the proportional data placement. In [23], [24], over-
lapped execution of MR jobs is explored to improve the
overall performance. In [24], an algorithm is designed to
address the overlapping execution of different phases, such
as map, shuffle, and reduce. However, [24] algorithm relies
on a sampler that collects data distribution information
from partitions before executing an MR job. In [23], a joint
scheduling optimization of overlapping map and shuffle
phases is carried out by introducing the strong pairs to min-
imize the average job makespan. However, it is assumed
that an entire set of jobs can be decomposed into strong
pairs whereby map and shuffle workloads of one job equal
to shuffle and map workloads of another job. Such assump-
tions may not hold for all jobs in a real production cluster.

Fig. 1. Job completion time.
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The previous approaches’ fundamental shortcoming is to
build the notion of heterogeneity based on the sole factor of
computational resources. We argue that several other fac-
tors are responsible for the heterogeneous behavior of the
cloud nodes, such as the concurrency of tasks, resource
availability, and network delay. In the presence of the fac-
tors as mentioned above, the estimation of the nodes’
computational capacity may not be fully realized by merely
running sample tasks. A competent data placement scheme
comprehensively evaluates the impact of the aforemen-
tioned factors instead of relying on the nodes’ computa-
tional capacity for data distribution.

3 PROBLEM STATEMENT

In a typical MR job, data blocks are distributed followed by
the data blocks’ processing in a sequence. Hence, for any
MR job Ji, the job completion time T

Ji
JC can be defined as

shown in Eq. (1).

T
Ji
JC ¼ T

Ji
D þ T

Ji
P : (1)

Here, TJi
D and T

Ji
P represent data blocks distribution time

and data blocks processing time of job Ji, respectively. In
MR, data blocks are processed in two phases, such as a map
and a reduce. Hence, TJi

P can be defined as shown in Eq. (2).

T
Ji
P ¼ T

Ji
M þ T

Ji
R : (2)

Here, TJi
M and T

Ji
R represent the completion time of the

map phase and reduce phase of job Ji, respectively. The
periodic job arrival scenario is shown in Fig. 2. The system
model is comprised of data arrival model and cloud model.
The data arrival model is defined as a periodic time series
model represented as T ¼ ft0; t1; . . . ; tig, where input data
generated in time interval D ¼ fD0;1;D1;2; . . . ;Di�1;ig are
stored in log files F ¼ ff1; f2; . . . ; fig, respectively. The
input data are continuously generated by applications such

as streaming tweets, Google search queries, etc., which are
aggregated periodically and logged into the files to form the
workload batches. Here, Di�1;i represents the time interval
between ti�1 and ti, and fi represents the log file consisting
of data generated in Di�1;i. The size of the fi is represented
as SðfiÞ. Since, data generation rate may vary from one time
interval to another, SðfiÞ 6¼ Sðfiþ1Þ. This set F of log files
acts as periodical input workload to be processed by the
slave nodes.

The cloud model is presented in Fig. 2. LetN be the num-
ber of nodes, and r be the number of racks in a cloud data
center. Let r racks be represented as R ¼ fR1; R2; . . . ; Rrg. It
is assumed that each rack Ri 2 R is comprised of identical
number of nodes. Let k ¼ N

r

� �
be a number of nodes in a

rack Ri represented as fni1; ni2; . . . ; nikg. Let the communi-
cation among the nodes within a rack Ri 2 R takes place via
local switch Li; whereas communication among the nodes
across the racks Ri 2 R and Rj 2 R takes place via
combination of local switches (Li; Lj) and global switch G.
The cloud model is assumed to have heterogeneous nodes
with different computational capacities, and network with
different latency and bandwidth. The notations and corre-
sponding meaning are described in Table 1.

Let, job Ji be arrived at time ti in a cloud data center of N
nodes with an input file fi of size SðfiÞ. The master node
divides the file fi into set DJi of data blocks with each data
block of size b, where jDJi j ¼ SðfiÞ

b

l m
. Later, the master node

distributes jDJi j data blocks among N nodes. Let nodes
n11; n12; . . . ; nrk receive d11; d12; . . . ; drk data blocks, respec-
tively. Here, jDJi j ¼

Pr
i¼1

Pk
j¼1 jdijj, where jdijj is the num-

ber of data blocks in jth node of ith rack. Let us assume that
master node takes d11;d12; . . . ;drk amount of time to distrib-
ute jd11j; jd12j; . . . ; jdrkj data blocks to nodes n11; n12; . . . ; nrk,
respectively. The data blocks are distributed in parallel, and
therefore the longest distribution time among d11;d12;
. . . ;drk is considered as the total data blocks distribution
time TJi

D for job Ji as shown in Eq. (3).

T
Ji
D ¼ maxðd11;d12; . . . ;drkÞ: (3)

Fig. 2. System model of RENDA.

TABLE 1
Notations and Corresponding Meaning

Notation Meaning

Ji ith MR job
T

Ji
JC Job completion time of Ji

T
Ji
D Data blocks distribution time of Ji

T
Ji
P Data blocks processing time of Ji

T
Ji
M Map phase completion time of Ji

T
Ji
R Reduce phase completion time of Ji

N Number of data nodes in a cloud data center
r Number of racks in a cloud data center
Ri ith rack of cloud data center
nrk kth node of rth rack of a cloud data center
drk Data blocks allocated to nrk

mrk Time taken by nrk to process jdrkj during map phase
Li ith local switch of cloud data center
rp pth reduce node (reducer)
rp Time taken by pth reducer in reduce phase
Srk Sample task execution time on node nrk

Rrk Relative performance of nrk with respect to Srk

ptrk Mean data block processing time of nrk
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In data blocks processing stage, job Ji executes in map
phase followed by reduce phase. Let mij be the time taken
by nij to process jdijj data blocks in the map phase. To be
specific, n11; n12; . . . ; nrk take m11;m12; . . . ;mrk time to pro-
cess jd11j; jd12j; . . . ; jdrkj data blocks, respectively. Here, the
nodes participating in map phase are referred as mappers.
For any job Ji, the map phase completion time represented
as T

Ji
M is the time taken by the longest running mapper

expressed as follow.

T
Ji
M ¼ maxðm11;m12; . . . ;mrkÞ: (4)

In a reduce phase, the number of nodes also called as
reducers may vary between ½1; N�, where N is the maxi-
mum number of nodes in a cloud. Let p be number of
nodes that participate in the reduce phase, where 1 � p �
N . Let reducers x1;x2; . . . ;xp take r1; r2; . . . ; rp time in the
reduce phase, respectively. Here, xi 2 fn11; n12; . . . ; nrkg.
The reducers process the data concurrently and therefore
T

Ji
R represents the time taken by the longest running

reducer expressed as follow.

T
Ji
R ¼ maxðr1; r2; . . . ; rpÞ; where 1 � p � N: (5)

Using the Eqs. (2), (3), (4), (5), and (1) can be rewritten as
shown in Eq. (6). The Eq. (6) infers that for any MR job Ji,
the T

Ji
JC is the summation of longest time taken by the

respective nodes in data blocks distribution stage, map
phase, and reduce phase.

T
Ji
JC ¼ maxðd11;d12; ::;drkÞ þmaxðm11;m12; ::;mrkÞ

þmaxðr1; r2; ::; rpÞ: (6)

From Eq. (6), it is inferred that a single straggling node
can potentially hold up the job progress and delay its
completion.

4 PITFALLS IN EXISTING SCHEMES

In this section, the major pitfalls of data placement
approaches are described in detail.

4.1 Longer Data Blocks Distribution Time

Several applications generate a huge amount of data such
as IP trace streams [25], search queries [26], streaming
tweets [27] etc. Due to the huge input data size and a con-
strained bandwidth in a cloud data center, the data distri-
bution stage itself takes a substantial amount of time
followed by the data processing stage which continues
for the multiple rounds of MR phases depending on the
”cloud data center size” and the ”concurrency factor”.
The ”cloud data center size” is defined as the number of
nodes in a data center and the ”concurrency factor” is
defined as the number of concurrently running tasks on
any node.

Let node nij be allocated the jdijj number of input data
blocks. If the concurrency factor of nij is cij, then nij takes
dij
cij

l m
rounds to process jdijj number of data blocks. Here,

cij > 0. Fig. 3 illustrates the example for the execution of
node nij with jdijj ¼ 08 and cij ¼ 2.

Fig. 3a shows the single installment traditional Hadoop
execution [9]. First, the data blocks jdijj ¼ 08 are distributed
in the cloud and then nij processes two data blocks concur-
rently and takes four rounds to complete depending on the
concurrency factor cij ¼ 02. For simplicity, it is assumed
that the nodes take equal time to process the data blocks.
The improved multi-installment overlapped execution is
shown in Fig. 3b. Let initially jdijj ¼ 04 data blocks be dis-
tributed and the remaining jdijj ¼ 04 data blocks be distrib-
uted in another installment concurrent with the processing
of first four data blocks. The main advantage of overlapped
execution is a significant reduction in data blocks distribu-
tion time. Besides, the overlapped execution facilitates the
early start of the data blocks processing stage as well. In
overlapped execution, the data blocks distribution and data
blocks processing progress simultaneously, which reduces
the longer data blocks distribution time, as shown in Fig. 3.

4.2 Uniform Distribution

In a uniform distribution [9], [21], the nodes are assigned with
equal number of data blocks irrespective of their processing
capacities. Let job Ji be arrives in a clouddata center ofN nodes
with input data blocks of jDJi j. Each node nij 2 N receives

approximately d ¼ jDJi
j

N

j k
data blocks. Let pt11; pt12; . . . ; ptrk be

represents mean data block processing time of nodes
n11; n12; . . . ; nrk, respectively. For d data blocks, it takes
m11;m12; . . . ;mrk amount of time for nodes n11; n12; . . . ; nrk to
complete the processing, respectively. Here, mij ¼ d� ptij,
andmij 6¼ muv, where i; u 2 ½1; r�, and j; v 2 ½1; k�. It is worth
noting that nodes n11; n12; . . . ; nrk take different amount of time
m11;m12; . . . ;mrk to process d blocks, respectively.

From the workings, it is clear that the uniform distribu-
tion strategy is easy to realize in practice and suits well for
data blocks that need more-or-less homogeneous processing
that would consume almost identical amounts of processing
time. However, when data blocks take different amounts of
time, certain nodes tend to become idle earlier. Under such
circumstances, one can always find nodes nij and nuv with a
minimum processing time mij and a maximum processing
time muv, respectively. The node nij likely completes the
data blocks processing earlier and become idle. To fully uti-
lize the cloud resources, the node nij starts fetching the data
blocks from node nuv resulting in non-local executions. Such
non-local executions increase in cloud data centers with a
highly heterogeneous computing resource. Hence, the uni-
form data blocks distribution is not suitable in a heteroge-
neous cloud environment.

Fig. 3. Multiple rounds of executions of data blocks, (a). in traditional
manner, (b). in overlapped manner.
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4.3 Sampling-Based Distribution

In a sampling-based distribution, the Naı̈ve approach [20] is
used to allocate data blocks in the proportion of the nodes’
computing resources. However, it is challenging to measure
the exact computing resources of nodes. Hence, an estima-
tion is made by executing a sample task on nodes.

Let jDJi j be a number of input data blocks of job Ji, which
is to be distributed among N nodes. Let sample task execu-
tion time be S11;S12; . . . ;Srk for nodes n11; n12; . . . ; nrk,
respectively. Using a sample task execution time, a relative
performanceRij of node nij can be derived as follow.

Rij ¼ ðSijÞ�1Pr
x¼1

Pk
y¼1ðSxyÞ�1

; where i 2 ½1; r�; j 2 ½1; k�: (7)

Let nodes n11; n12; . . . ; nrk be assigned with jd11j;
jd12j; . . . ; jdrkj data blocks in direct proportion to their
observed relative performances R11;R12; . . . ;Rrk, respec-
tively as shown in Eq. (8). Here, jdijj � jDJi j.

jdijj ¼ Rij � jDJi j: (8)

In the following, we explain how the sampling-based dis-
tribution performs better over the uniform distribution. Let
jDJi j ¼ 06, and each data block dij = 64 MB, where dij 2 DJi .
Let there be three nodes in a cloud data center represented
as n11, n12, and n13. Let sample task execution time be S11 ¼
32s, S12 ¼ 16s, and S13 ¼ 08s. Based on the sample task exe-
cution time, the relative performance calculated using
Eq. (7) is R11 ¼ 0.14, R12 ¼ 0.29, and R13 ¼ 0.57. In a uni-
form distribution, each node receives equal number of data
blocks. Therefore, jd11j ¼ jd12j ¼ jd13j ¼ 02. However, as
observed during the sample task execution, nodes n11, n12,
and n13 are expected to take 64s, 32s, and 16s for the proc-
essing of assigned two data blocks, respectively. Such
skewed data processing time forces the cloud data center to
perform non-local executions. On the contrary, in a sam-
pling-based distribution, nodes n11, n12, and n13 are allo-
cated with 01, 02, and 03 data blocks in direct proportion to
their relative performance R11 ¼ 0.14, R12 ¼ 0.29, and
R13 ¼ 0.57, respectively. Based on the sample task execu-
tion, nodes n11, n12, and n13 take nearly identical data blocks
processing time 32s, 32s, and 24s, respectively. Contrary to
64s job execution time in a uniform distribution, the sam-
pling-based distribution concludes in 32s and reduces the
job completion time by half.

However, sampling-based distribution does not per-
form well in a fluctuating cloud performance. Fig. 4
shows an experimental execution of an MR job (Word
count) comprised of 69 tasks with their corresponding
task completion time on node nij. Fig. 4 shows that the
performance of nij fluctuates heavily during the job exe-
cution. The longest-running task takes 43s, and the least
running task completes in 10s. We argue that in such a
highly fluctuating cloud performance, the data blocks dis-
tribution becomes unreliable if a node’s performance is
ascertained based on the sample task execution. In the fol-
lowing, scenarios are described to show the vulnerability
of the sampling-based approach.

Let sample task on node nij takes the minimum execution
time i.e., Sij = 10s as shown in Fig. 4. Let jdijj data blocks be

assigned to node nij based on the sample task execution
time. However, Sij = 10s is the best performance of node nij.
For the rest of the tasks, node nij observes significantly more
time than that of sample one. Therefore, the allocation of jdijj
data blocks based on the sample task execution results into
an overestimation of computing capacity of node nij.

The opposite is also true as shown in Fig. 4. It is assumed
that the sample task takes themaximum execution time i.e., Sij

= 43s. Here, the data blocks distribution based on the sample
task execution results in an underestimation of the computa-
tional resources of node nij. In such scenarios, node nij

becomes idle earlier and requests the extra data blocks to
improve resource utilization, which results in non-local execu-
tions. The third scenario is also shown in Fig. 4. It is assumed
that the sample task takes time equals to the average task com-
pletion time i.e., Sij = 22s. However, it is less likely to happen
in a highly fluctuating cloud performance. Hence, the sam-
pling-based data blocks distribution is unreliable.

5 RENDA SCHEME

In this section, we describe the RENDA scheme with respect
to the environment as shown in Fig. 2. The notations used to
describe the RENDA scheme are explained in Table 2.

5.1 Overview of the RENDA

The overview of the RENDA is described as follow:

� Initial distribution: It is challenging to ascertain the
performance of cloud nodes a priori. Therefore, ini-
tial distribution is carried out with a few sample
data blocks. The nodes are assumed with equal com-
puting resources and an equal number of data blocks
are assigned to each node.

� Estimation of remaining time: Each node starts the proc-
essing of the assigned data blocks and simultaneously
estimate the remaining time to finish the processing.
Upon attaining the threshold time, the respective
node sends a request message to the master node for
more data blocks allocation. The threshold time is
defined as the amount of remaining time prior to that
the subsequent data blocksmust be allocated.

� Subsequent data blocks distribution: The master node
caters the request of the nodes well before they com-
plete the processing of existing data blocks.

Fig. 4. Problems in sampling based approach.
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The benefit of the RENDA is its pro-activeness in data
blocks distribution based on the continuous performance
estimation of nodes rather than based on one-time sample
task execution. By carefully distributing the set of input
data blocks in several installments, a substantial reduction
in the number of non-local executions is observed. Never-
theless, RENDA sticks to the default replication strategy of
the Hadoop for the fault tolerance.

5.2 Initial Distribution

Let job Ji be arrived at time ti to a cloud data center of N
nodes with an input file size SðfiÞ. The master node divides
the file fi into set DJi of data blocks with each data block of

size b, where jDJi j ¼ SðfiÞ
b

l m
. Let x% of jDJi j data blocks be

initially assigned to the N nodes. Here, x ¼ N
jDJi j

� 100
l m

,
which ensures that each node nij receives at least one data
block. In a cloud data center, jDJi j > > N is a normal sce-
nario. It is challenging to predict the performance of nodes
apriori, therefore the set of x% data blocks are equally

assigned to the nodes with each node nij is assigned with

d ¼
x
100�jDJi j

N

j k
data blocks, where i 2 ½1; r�; j 2 ½1; k�. It is

assumed that due to the heterogeneous network resources,
it takes d11;d12; . . . ;drk time to distribute d data blocks to
nodes n11; n12; . . . ; nrk, respectively. The data blocks dis-
tribution time dij of node nij is called as network delay.
In Section 5.5, the network delay calculation is described
in detail.

5.3 Estimation of the Remaining Time

The nodes with heterogeneous processing capacity take a
different amount of time to process the allocated data
blocks. At any given time interval, RENDA employs the
Weighted Moving Average (WMA) of processing rates to
better estimate the processing rate and the remaining time.
The WMA assigns more weights to the recent observations
and less weights to the distant observations, which helps to
capture the highly dynamic nature of the cloud environ-
ment. Moreover, WMA determines the trend direction more
accurately than Simple Moving Average. The WMA and its
alternatives are very popular and are used for the load pre-
diction [28], online traffic prediction [29], and dynamic
resource allocation [30] in cloud.

The WMAmeets the use condition of predicting the proc-
essing rate of slave nodes as WMA captures the instanta-
neous processing rate fluctuations along with historical
behavior of the slave nodes. To be specific, WMA gives more
importance to the current processing rate, which helps to
identify the near future trend of the corresponding slave
nodes. The result of Fig. 5 confirms our observation and the
appropriateness of the WMA. The WMA estimates any
node’s current processing rate by assigning the weights in
decreasing order from the very recent to the older processing
rates. For any node nij, the weighted moving average proc-
essing rate in tth time interval is denoted as wnijðtÞ. For the
pastm observations,wnijðtÞ is calculated as shown in Eq. (9).

wnijðtÞ ¼ 2�m:PnijðtÞ þ ðm� 1Þ:Pnijðt� 1Þ þ . . .þ Pnijðt�mþ 1Þ
m:ðmþ 1Þ :

(9)

Here, m > 0 is the number of past observations and it
can be decided experimentally. In our experiment, m ¼ 7
results in improved performance for Grep and Sort applica-
tions. The impact of m on estimation of the remaining time
of the nodes is shown in Figs. 10 and 11. In Eq. (9), the
wnijðtÞ on the left hand side represents the weighted moving
average processing rate in tth time interval and the right
hand side represents the m numbers of processing rates
fPnijðtÞ; Pnijðt� 1Þ; . . . ; Pnijðt�mþ 1Þg with discounted
weights fm;m� 1; . . . ; 1g, respectively.

PnijðtÞ ¼
PnijðtÞ
dt

: (10)

The processing rate of any node nij in tth time interval is
defined as PnijðtÞ and can be calculated as shown in

TABLE 2
List of Notations Used in RENDA

Notation Meaning

m Number of past observations
Pnij ðtÞ Processing rate of node nij in tth time interval
wnij ðtÞ Weighted moving average processing rate of nij in tth

time interval
Rnij ðtÞ Remaining time of nij in tth time interval
Pnij ðtÞ Amount of data processed by nij in tth time interval
dt Time interval duration

nij ðtÞ Subsequent data blocks allocated to nij

anij ðtÞ Number of processed data blocks on node nij in tth time
interval

bnij ðtÞ Number of currently under process data blocks on node
nij in tth time interval

gnij ðtÞ Number of unprocessed data blocks on node nij in tth

time interval
Unij ðtÞ Total amount of unprocessed data on node nij in tth time

interval
myðtÞ Amount of unprocessed data in a data block y in tth time

interval
b Size of an individual data block
pnij Average startup delay to process a data block on node

nij

zyðtÞ Amount of processed data in a data block y in tth time
interval

rp pth reduce node (reducer)
Pij A unique path from master node to nij

T
T;nij
D Data blocks distribution time to nij in traditional

hadoop execution
T

O;nij
D Data blocks distribution time to nij in overlapped

execution
Bcable Bandwidth of the cable

Fig. 5. Performance and applicability analysis of WMA in predicting
processing rate.
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Eq. (10). Here, PnijðtÞ represents the amount of data proc-
essed by node nij in tth time interval, and dt represents the
duration of the time interval.

To validate the applicability of WMA in predicting the
processing rate, an experiment has been conducted by sched-
uling different number of VMs on different time instances.
As shown in Fig. 5, initially (0-10 sec), the PMs are loaded
with four VMs and three VMs were killed gradually during
the 10-22 sec that resulted in improved processing rate. The
processing rate of any active VM changes significantly by
creating or terminating the co-VMs on any PM as shown in
Fig. 5. The processing rate prediction ability of WMA is vali-
dated under this dynamic scenario against the Exponential
Moving Average (EMA) with a = 0.3 and Simple Moving
Average (SMA) with window size of m = 8, respectively.
Here, a = 0.3 is the constant smoothing factor, which is
obtained experimentally. The a = 0.3 and m = 8 for EMA and
SMA, respectively is considered due to the improved result.
On the contrary, m = 7 is considered for WMA based on the
detailed experimental analysis as shown in Figs. 10 and 11.
Fig. 5 shows that WMA adapts to the changes faster than the
SMA and EMA. However, performance of EMA is in line
with the WMA. On the contrary, SMA is bit lazy to adapt to
the dynamic changes in the cloud layout and therefore it
reduces the predictability of the processing rate.

MAE ¼
Pm

i¼1 jwnijðtÞ � PnijðtÞj
m

(11)

MSE ¼ 1

m

Xm
i¼1

ðPnijðtÞ � wnijðtÞÞ2 (12)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1

ðPnijðtÞ � wnijðtÞÞ2
s

: (13)

To quantify the predictability of EMA, SMA, and WMA,
prediction error analysis is performed for Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) using Eqs. (11), (12), and (13), respec-
tively. The corresponding results along with the Standard
Deviation (STD) are shown in Table 3. The results are
obtained for at least 200 VMs using Grep MR application
and then averaged to avoid the bias. It is evident from the
results that WMA quickly adapts to the dynamic changes in
the processing rate of VMs and has least prediction error
over MAE, MSE, and RMSE. On the contrary, SMA suffers
due to their lazy adaptiveness to the dynamic changes in
processing rates. The WMA performs marginally better
over EMA as WMA reacts quickly to the new processing
rates.

Theorem 1. In any given time interval, the time complexity to
calculate wnijðtÞ is a unit time.

Proof. As shown in Eq. (9), the calculation of wnijðtÞ is an
iterative process and it takes m > 0 iterations. Here, m is
the user-defined previous observations.

Let wnijðtþ 1Þ be the weighted moving average in next
time interval tþ 1 and can be defined as shown in
Eq. (14).

wnijðtþ 1Þ ¼ 2�m:Pnijðtþ 1Þ þ ðm� 1Þ:PnijðtÞ þ . . .þ Pnijðt�mÞ
m:ðmþ 1Þ :

(14)

The denominators of Eqs. (9) and (14) are constants
and can be represented as m:ðmþ1Þ

2 . The difference between
wnijðtþ 1Þ and wnijðtÞ can be represented as shown in
Eq. (15).

wnijðtþ 1Þ � wnijðtÞ ¼ m:Pnijðtþ 1Þ � PnijðtÞ
� . . .� Pnijðt�mþ 1Þ: (15)

If we represent wnijðtÞ þ . . .þ wnijðt�mþ 1Þ as SðtÞ,
then Sðtþ 1Þ ¼ SðtÞ þ Pnijðtþ 1Þ � Pnijðt�mþ 1Þ. Let
Nðtþ 1Þ and NðtÞ represent the numerator of Eqs. (14)
and (9), respectively. The Nðtþ 1Þ can be obtained using
the known information from previous iteration such as
NðtÞ, m:Pnijðtþ 1Þ, and SðtÞ. The Nðtþ 1Þ can be calcu-
lated as shown in Eq. (16).

Nðtþ 1Þ ¼ NðtÞ þ P:wnijðtþ 1Þ � SðtÞ: (16)

The iterative calculation of wnijðtÞ defined in Eq. (9)
can be performed in a single operation using Eqs. (9),
(14), and (16). Hence, the time complexity to calculate
wnijðtÞ is a unit time. tu
Without loss of generality, let us consider that in any

time interval, each node has a different number of proc-
essed, currently under process, and unprocessed data
blocks, as shown in Fig. 6. The remaining time of any node
is defined as the summation of the time to complete the cur-
rently under process and unprocessed data blocks.

Let QnijðtÞ be the total number of data blocks on node nij

in tth interval. Out of QnijðtÞ, let anijðtÞ, bnij
ðtÞ, and gnij

ðtÞ be
the processed, currently under process, and unprocessed
data blocks, respectively on node nij in tth interval.

Let UnijðtÞ be the total amount of unprocessed data on
node nij in tth interval. The UnijðtÞ can be expressed as
shown in Eq. (17). Here, myðtÞ represents the amount of

TABLE 3
Prediction Error Analysis Results for Grep

EMA (a=0.3) SMA (m=8) WMA (m=7)

MAE 6.5% 8.1% 5.6%
STD 6.6% 8.0% 6.8%
MSE 8.7% 13.0% 7.7%
RMSE 9.3% 11.4% 8.8%

Fig. 6. Representation of data blocks on nodes.
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unprocessed data of data block y in tth interval, where y 2
bnij

ðtÞ. The myðtÞ can be expressed as myðtÞ ¼ b� zyðtÞ,
where b represents individual data block size and zyðtÞ rep-
resents the amount of processed data of data block y 2
bnij

ðtÞ. The zyðtÞ can be obtained using well-defined scheme
such as Longest Approximate Time to End (LATE) [31]. For
the Map tasks, the processed data is the fraction of input
data read. For the Reduce tasks, the execution is divided
into three phases such as copy, sort, and reduce, each of
which accounts for 1

3 of the processed data. Based on the
fraction of data read, the amount zyðtÞ is ascertained and
communicated to the Master node in each time interval.
gnij

ðtÞ represents the number of unprocessed data blocks on
node nij in tth interval.

UnijðtÞ ¼
X

y2bnij ðtÞ
myðtÞ þ gnij

ðtÞ � b: (17)

Using Eqs. (9) and (17), the remaining time Rnij can be
estimated as defined in Eq. (18). Here, pnij represents the
average startup delay to process a data block on node nij.

RnijðtÞ ¼
UnijðtÞ
wnijðtÞ

þ gnij
ðtÞ � pnij : (18)

In Eq. (18), the wnijðtÞ represents the overall average data
processing rate in time interval t, which also includes the
concurrent processing rate of the node. The number of con-
current tasks on any node may vary from one-time interval
to another. Therefore, without losing the generality, the
average data processing capacity wnijðtÞ is considered for
any node nij.

5.4 Subsequent Data Blocks Distribution

During the data blocks processing, nodes communicate
RnijðtÞ to master node in each time interval. Later, master
node compares the RnijðtÞ with network delay dij and
decides the threshold value using Eq. (19). The threshold
represents the time at which subsequent data blocks should
be assigned to respective node nij.

threshold ¼ 0 if ðRnijðtÞ � dijÞ > 0
1 if ðRnijðtÞ � dijÞ <¼ 0

�
: (19)

Here, threshold ¼ 0 indicates that the node has enough
data to process. On the contrary, threshold ¼ 1 indicates
that the subsequent data blocks allocation should be

initiated. Let lnij be the subsequent data blocks allocated to
node nij. The lnij can be calculated using Eq. (20).

lnij ¼ x� RnijðtÞPr
i¼1

Pk
j¼1 RnijðtÞ

: (20)

Here, RnijðtÞ is the relative performance of node nij in a
cloud data center in tth time interval. The RnijðtÞ can be cal-
culated using Eq. (21).

RnijðtÞ ¼
PnijðtÞ

minfPn11ðtÞ; . . . ; PnrkðtÞg
: (21)

Theorem 2. Given the fRn11ðtÞ;Rn12ðtÞ; . . . ;RnrkðtÞg and set
fd11;d12; . . . ;drkg, it takes linear time for master node to ver-
ify the threshold in each time interval.

Proof. Consider the worst scenario as follow. The nodes
n11; n12; . . . ; nrk send the remaining time information
Rn11ðtÞ;Rn12ðtÞ; . . . ;RnrkðtÞ in the form of heartbeat mes-
sage at the same time to master node, respectively.

For simplicity N ¼ jfn11; n12; . . . ; nrkgj. This implies
that clouddata center is comprised of totalN nodes, which
together send N heartbeat messages in each time interval.
As shown in Fig. 2, the nodes have unique path frommas-
ter node, which implies that each node is associated with
single network delay. Hence,N ¼ jfd11;d12; . . . ;drkgj.

In each heartbeat message, master node performs one-
to-one comparison of N remaining time messages
Rn11ðtÞ;Rn12ðtÞ; . . . ;RnrkðtÞ from nodes to corresponding
N network delay messages d11;d12; . . . ;drk, respectively.
The comparison process concludes in the most N com-
parisons. Hence, the worst case time complexity to obtain
threshold information is OðNÞ. tu

5.5 Determining Network Delay

In RENDA, network delay dij is defined as the data blocks
distribution time to node nij. Fig. 7 shows the part of the
cloud model shown in Fig. 2. Here, the network configura-
tion is comprised of switches and cables with different laten-
cies and bandwidths, respectively. Let nodes ni1; ni2; . . . ; nik

of rack Ri be connected to local switch Li using network
cables with bandwidths Bi1; Bi2; . . . ; Bik, respectively. The
local switch Li connects to the global switch G using a cable
with bandwidthBgi and the global switch in turn connects to
themaster node using the cable with bandwidth bwG.

To calculate the network delay dij, a unique path Pij is
defined comprised of network cables and switches. Eq. (22)
represents the network delay dij that incurs to transfer N
data blocks from the master node to node nij.

dij ¼
X

switch2Pij

delayswitch þ
X

cable2Pij

N

Bcable
: (22)

Eq. (22) calculates the network delay dnij by incorporat-
ing the delays incurred by switches and transmission time
consumed by cables in path P to transfer N data blocks. The
network delay is comprised of switch delay and data trans-
mission time. The switching delay, i.e., delayswitch is

Fig. 7. Network delay of data nodes.
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perceived as a fixed minimum time (latency) a switch takes
to forward a data block irrespective of its size, and therefore
it is a constant term. On the contrary, the data transmission
time is a function of the number of data blocks, i.e., N and
cable bandwidth, i.e., Bcable.

The step by step process of RENDA data placement
procedure is presented in Algorithm 1. Initially, an equal
number of data blocks are assigned to each node and a
unique network delay dij is obtained using Eq. (22). In
each heartbeat, nodes obtain the information of the num-
ber of processed (anijðtÞ), currently under processing
(bnij

ðtÞ), and unprocessed (gnij
ðtÞ) data blocks and esti-

mate the remaining time (RnijðtÞ) using the WMA
(wnijðtÞ). In any time interval, if the remaining time RnijðtÞ
becomes less than the network delay dij, lnij data blocks
are distributed by calculating the relative performance of
the node RnijðtÞ.

Algorithm 1. RENDA Algorithm

Input: SðfiÞ, b,N
Output: lnij

1: Number of data blocks: jDJi j ¼ SðfiÞ
b

l m
) ;

2: Determine the initial percentage: x ¼ N
jDJi

j � 100
l m

;

3: Equally distribute
x
100�jDJi

j
N

j k
data blocks ;

4: foreach node: nij 2 N do
5: Prepare network path Pij ;
6: Calculate network delay dij using Eq. (22);
7: end
8: foreach heartbeat message at time t do
9: foreach node: nij 2 N do
10: Obtain number of processed data blocks anijðtÞ ;
11: Obtain number of currently under process data

blocks bnij
ðtÞ ;

12: Obtain number of unprocessed data blocks gnij
ðtÞ ;

13: Calculate processing rate PnijðtÞ using Eq. (10) ;
14: Calculate weighted moving average processing rate

wnijðtÞ using Eq. (9) ;
15: Calculate amount of unprocessed data UnijðtÞ using

Eq. (17) ;
16: Calculate remaining time RnijðtÞ using Eq. (18) ;
17: if ðRnijðtÞ � dnijÞ � 0) then
18: ifMore data blocks? then
19: Calculate relative performance

RnijðtÞ ¼
Pnij ðtÞ

minfPn11 ðtÞ;...;Pnrk ðtÞg ;

20: Dispatch lnij ¼ x� Rnij ðtÞPr

i¼1

Pk

j¼1
Rnij ðtÞ

data blocks to
node nij ;

21: end
22: end
23: end
24: end

Theorem 3. The data blocks distribution time in overlapped exe-
cution is at most the distribution time in a traditional
execution.

Proof. Let the cloud data center comprises of N number of
nodes with jDJi j input data blocks. First, the theorem’s
correctness is described for one node, which is later gen-
eralized for all cloud nodes.

In traditional Hadoop execution, data blocks distribu-
tion is a one time process and is carried out in a load bal-
anced manner. The jDJi j data blocks are distributed in a
manner that each node nij receives jdj ¼ jDJi j

N data blocks.
For any node nij, the data blocks distribution time T

T;nij
D

can be expressed as shown in Eq. (23) using Eq. (22). For
simplicity, the first part of Eq. (22) is ignored as irrespec-
tive of the data blocks, the delay of network switches
remain constant.

T
T;nij
D ¼

X
cable2Pij

jdj
Bcable

: (23)

As the summation is commutative and associative, we
can rewrite Eq. (23) as shown in Eq. (24), where 1 � x �
100.

T
T;nij
D ¼

X
cable2Pij

x%� jdj
Bcable

þ
X

cable2Pij

ð100� xÞ%� jdj
Bcable

:

(24)

In overlapped execution, except initial x% of jDJi j uni-
form data blocks distribution, rest ð100� xÞ% of jDJi j
data blocks are distributed in concurrent of data blocks
processing. Hence, for any node nij, the data blocks dis-
tribution time in overlapped execution can be expressed
as shown Eq. (25). Again, for simplicity, the delay of net-
work switches is ignored.

T
O;nij
D ¼

X
cable2Pij

x%� jdj
Bcable

þ
X

cable2Pij

ð100� xÞ%� jdj
Bcable

:

(25)

In overlapped execution, the distribution of ð100� xÞ%
of jdijj data blocks is carried out concurrently with data
blocks processing. Hence, the effective data blocks distri-
bution time is considered the difference between net-
work delay and the corresponding node processing time,
as expressed in Eq. (26).

T
O;nij
D ¼

X
cable2Pij

x%� jdj
Bcable

þ
X

cable2Pij

ð100� xÞ%� jdj
Bcable

�ð100� xÞ%� jdj
Pnij

:
(26)

From Eqs. (24) and (26), we can write T
O;nij
D � T

T;nij
D . tu

6 EXPERIMENTAL RESULTS

In this section, the cloud environment setup is described,
and the evaluation results of the RENDA are presented.

6.1 Environment and Settings

The cloud environment settings for physical nodes (PNs)
and virtual nodes (VNs) are shown in Table 4, respectively.
To be specific, four high performance PNs are employed
with each PN comprised of four cores Intel(R) Core(TM) i7-
3770 process, 8.0 GB of main memory, and 1.0 TB of storage.
Consequently, sixteen VNs are created, with each PN
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hosting four VNs. The VNs are created using Oracle VM Vir-
tualBox 5.1.22. The system configuration of VNs is carefully
chosen and made diversified to ensure a heterogeneous
cloud environment. Out of the sixteen VNs, the VN4 acts as
a master and slave node, and the rest VNs act as a slave.
Additionally, the cloud environment is made heterogeneous
in terms of network data transfer capacity. Three local
switches such as L1, L3, and L4 are chosen with a theoretical
data transfer speed of 100 Mbps; two network switches
such as L2 and G are chosen with a theoretical data transfer
speed of 1.0 Gbps. The VNs are equipped with the operating
system Ubuntu 14.04.5 LTS (Trusty Tahr) and Hadoop
repository Hadoop 1.0.1 (Stable release).

6.2 Results and Discussion

The performance evaluation is carried out on MR applica-
tions such as WordCount, Grep, and Sort. Each application
is executed for at least ten rounds across different input
data sizes, such as 32 GB, 64 GB, and 96 GB, and later aver-
aged to obtain consistent results.

The performance of the virtual cloud data center is shown
in Fig. 8 to demonstrate the time each VN takes to distribute
the input data. It is to note that the input data is equally dis-
tributed among the VNs. For example, the 32 GB input file is
partitioned into data blocks each with 64MB and assigned in
equal number to all of the sixteen VNs. Each VN receives 32
data blocks with an accumulated input data size of 2.0 GB.
Despite allocating the equal amount of data, the heterogene-
ity in network switches, the amount of memory, and hard
disk rotational speed, the data distribution time varies across
the VNs. As evident from Fig. 8, except VN4, the data distri-
bution time is noticeably less for VN5, VN6, VN7, and VN8

hosted on PN2 compared to those hosted on PN1, PN3, and
PN4. Since VN4 acts as master and slave node, a little data
transfer time is observed. From Fig. 8, it can be observed that
despite the same number of CPUs and amount main mem-
ory allocated to VN7 and VN14, the data transfer time differs
significantly. This infers that network delay is also a promi-
nent factor behind cloud heterogeneity in addition to factors
such as computing capacity.

The heterogeneous performance of VNs is presented in
Fig. 9. For each VN , the data processing time is calculated sepa-
rately, and the mean of at least ten rounds of execution is con-
sidered. It is observed that the VN4, VN5, and VN12 with better
computing capacity perform consistently better across the
applications with different input data sizes. The performance
evaluation outcomes for WordCount, Grep, and Sort is shown
in Figs. 9a, 9b, and 9c, respectively. The evaluation results
show that irrespective of the computing capacity, the VNs take
significant processing time in Sort’s case, followed by Grep,
and WordCount. The Sort involves two computer-intensive
operations, such as search and compare, followed by Grep,
which involves only search operation. On the contrary, the
WordCount involves less compute-intensive operation count.

The RENDA employs the WMA for the estimation of the
remaining time of the node. However, the value of m, the
number of past observations to include in WMA, is critical

TABLE 4
The Cloud Data Center Environment Settings for Physical Nodes

Fig. 8. Data distribution time of virtual nodes in a cloud.
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to RENDA’s performance. Therefore, an error analysis is
carried out across three MR applications, as shown in
Figs. 10 and 11 to experimentally obtain the sub-optimal
window size for m. In the first experiment of error analysis
shown in Fig. 10, the average % estimation error is consid-
ered as a metric. At least 10 MR tasks are executed on each
PN and remaining time estimation is made for the m ¼ 0 to
m ¼ 10. The difference between actual and estimated task
completion time is averaged, and results are plotted for
WordCount, Grep, and Sort, as shown in Figs. 10a, 10b, and
10c, respectively. The results show the consistently lower
estimation error for window size m ¼ ½5� 8� with m ¼ 6
provides the least estimation error across the three MR
applications. The results provide insights that a sufficient
number of past observations are required to better estimate
the remaining time. However, the inclusion of more than
eight and less than five previous observations likely
increases the estimation error. The potential reason might
be the older values become irrelevant and contribute less in
generalizing the node performance. On the contrary, an

insufficient number of previous observations may not help
WMA to realize the actual node performance.

Despite the window m ¼ ½5� 8� provides evidence of
lower estimation error, another experiment was carried out
for detailed investigation under different % of cloud loads.
The average % estimation error is obtained form ¼ 1 tom ¼
10 under cloud loads 20, 40, 60, and 80 percent and the cor-
responding results for WordCount, Grep, and Sort are
shown in Figs. 11a, 11b, and 11c, respectively. The results
shown in Fig. 11 confirm the window sizem ¼ ½5� 8� under
varying cloud load scenario as well.

The performance of RENDA is evaluated against the
state-of-the-art schemes such as Dynamic Data Placement
(DDP) [20], Data-gRouping-AWare Data Placement
(DRAW) [21], Locality Aware Block Placement (LABP) [4],
Overlapping-Based Resource Utilization (OBRU) [24], and
default Hadoop Placement. The schemes are evaluated for
the following performance metrics. 1). The percentage of
non-local task executions, 2). The percentage of data transfer
overhead, and 3). The average job completion time.

Fig. 9. Data processing time across the virtual nodes in a cloud.

Fig. 10. Impact of past “m” observations of WMA on estimation of the remaining time of the node.

Fig. 11. Impact of past “m” observations of WMA on estimation of the remaining time of the node with different percentage of cloud load.
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Fig. 12 shows the results for the percentage of non-local
task executions across different input data sizes and Fig. 13
shows the results for the percentage of data transfer over-
head across different input data sizes. In the default
Hadoop scheme, the data are distributed irrespective of the
computing capacity of nodes and network delay. This is the
main reason for the default Hadoop placement scheme’s
poor performance, leading to the highest percentage of non-
local task executions and data transfer overhead compared
to the rival schemes, as evident from Figs. 12 and 13, respec-
tively. On the contrary, DRAW [21] and DDP [20] performs
marginally better compared to default Hadoop placement.
The potential justification for the improved performance of
DDP [20] over the DRAW [21] is its partially informed data
distribution scheme. The DDP [20] obtains the computing
capacity information of VNs from the sample task execu-
tion. On the contrary, DRAW [21] is highly application-spe-
cific, and in the absence of significant interest locality and
data grouping, it performs similarly to that of the default
Hadoop scheme. Contrary to DDP and DRAW, recent data
placement schemes LABP [4] and OBRU [24] perform bet-
ter. The LABP improves the local task executions and
reduces the data transfer overhead at the cost of an increase
in the number of replicas of data blocks. However, data
blocks replication increases the data blocks distribution
time and thereby increases the job completion time. On the
contrary, OBRU benefits from its overlapped execution
strategy of multiple MR phases such as Map, Shuffle, and
Reduce. However, OBRU heavily relies on the sampler to
collect the data distribution information from partitions
before running the MR jobs. As evident from Figs. 12 and
13, the RENDA consistently outperforms the rival schemes
irrespective of the underlying MR applications and input
data size with a reduction in the percentage of non-local
executions and data transfer overhead. The possible

explanation of RENDA’s improved performance is it’s care-
ful on-the-fly dispatching of data to VNs just in time before
the currently executing data exhaust.

Fig. 14 shows the performance comparison in terms of
overall average job completion time taken by various
schemes across different MR applications and input data
size. Fig. 14 shows that the default Hadoop scheme per-
forms poorly and takes the maximum job completion time
followed by DRAW, DDP, LABP, OBRU, and the RENDA.
The DRAW, DDP, and LABP schemes have the sequential
execution compulsion for the job execution, whereby the
data processing stage follows the data distribution stage.
Hence, unless the data distribution is completed, the data
processing can not start. In several instances, few straggling
nodes or faulted networking hold up the data distribution
stage for unexpectedly longer duration resulting in the
delay of overall job completion time. However, LABP bene-
fits from its locality-awareness data block distribution strat-
egy, which reduces the percentage of non-local task
executions and decreases job completion time. On the con-
trary, OBRU performs better than DRAW, DDP, and LABP
as it efficiently handles the imbalanced workloads during
the reduce phase to efficiently utilize the cloud resources,
which marginally improves the performance of the MR
jobs. RENDA overcomes the compulsion as mentioned
above and overlaps the data distribution and data process-
ing stages by carefully allocating data in several install-
ments based on the nodes’ real-time computing capacity
estimation. As evident from Figs. 14a, 14b, and 14c, RENDA
shows the improved performance over the rival schemes
with reduced overall job completion time regardless of the
underlying MR applications and input data size.

Table 5 shows the percentage reduction obtained in non-
local execution of tasks by RENDA with respect to the
default Hadoop, DRAW, DDP, LABU, and OBRU. The

Fig. 12. Comparison of data placement schemes with respect to percentage of non-local task executions.

Fig. 13. Comparison of data placement schemes with respect to percentage of data transfer overhead.
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performance comparison results are obtained for three MR
applications, such as WordCount, Grep, and Sort. The
RENDA achieves as much as a 28 percent reduction in non-
local execution compared to the default Hadoop scheme.
The RENDA also performs superior compared to the
DRAW, DDP, LABU, and OBRU with as much as 20.5, 13.0,
12.2, and 10.6 percent reduction in non-local task execu-
tions. The results of Table 5 shows that the RENDA is robust
and performs consistently well across the diversified MR
applications and workload sizes. Table 6 shows the percent-
age reduction obtained in average job completion time by
the RENDA with respect to the default Hadoop, DRAW,
DDP, LABU, and OBRU. On the line of the results obtained
in Table 5, RENDA shows as much as 29.0, 23.3, 13.9, 12.6,
and 11.8 percent reduction in average job completion time
compared to the default Hadoop scheme, DRAW, DDP,
LABU, and OBRU, respectively.

The load-balanced data distribution is one of the crucial
aspects to improve the job completion time. The RENDA
carries out multi-installment on-th-fly data blocks allocation
in proportion to the computing capacity of nodes and net-
work characteristics. The experiment was carried out to val-
idate the performance of RENDA for subsequent data
blocks distribution. Except the master node VN4, data
blocks’ processing time of all slave VNs is recorded for at
leaast ten tasks of a given MR application. Additionally, the
performance is assessed across different input sizes, such as
32 GB, 64 GB, and 96 GB. The corresponding results for the
WordCount, Grep, and Sort are shown in Figs. 15a, 15b, and
15c, respectively. Despite heterogeneous computing capaci-
ties of nodes shown in Fig. 9, the data placement by RENDA
has resulted in uniform average data processing time, as
shown in Fig. 15. The uniform data processing time of nodes
confirms the balanced distribution of workloads to the

nodes. The slower nodes received less data and faster nodes
received more data. The maximum standard deviation of
data processing time of nodes is 5.4 sec, 8.6 sec, and 11.2 sec
for input data size 32 GB, 64 GB, and 96 GB, respectively
across the three MR applications.

6.3 Limitations and Future Directions

The RENDA ensures the efficient data placement of periodic
workloads in heterogeneous clouds and improves cloud
resource utilization by reducing the overall job completion
time. The efficiency of RENDA is validated on a in-house
cloud of a 16 VMs, which is one of the limitations. In the
future, we starve to validate the scalability of RENDA on a
cloud data center comprised of hundreds of VMs. Under the
abstraction of the MR paradigm, RENDA relies on the
Weighted Moving Average (WMA) to estimate the remain-
ing time. The WMA performs reasonably well, provided a
sufficient number of past m observations are considered,
which is challenging to ascertain theoretically in a produc-
tion cluster. However, sub-optimalm can be obtained exper-
imentally, which provides an improved estimation of the
remaining time. The online estimation of remaining time
and prefetch of data requires additional computation power
compared to the straight forward defaultHadoop data place-
ment. However, the time complexity to estimate remaining
time is a unit time as described in Theorem 1.

RENDA improves cloud performance through efficient
data placement, and it is not designed as the overall
resource manager. The recent cloud architectures such as
YARN, BORG, and Fuxi act as resource managers and
address broader issues such as workload partitioning, job
scheduling, and resource allocation. On the contrary,
RENDA solely focuses on efficient partitioning of the

TABLE 5
The Evaluation Results of RENDAWith Respect to the Percent-

age Reduction in Non-Local Execution of Tasks

RENDA

WordCount Grep Sort

Hadoop 28.0% 25.9% 25.5%
DRAW 19.5% 20.5% 18.3%
DDP 11.9% 13.0% 12.4%
LABP 10.4% 12.2% 10.9%
OBRU 9.1% 9.7% 10.6%

TABLE 6
The Evaluation Results of RENDA With Respect to the Average

Reduction in Job Completion Time

RENDA

WordCount Grep Sort

Hadoop 18.6% 25.0% 29.0%
DRAW 13.5% 22.7% 23.2%
DDP 9.3% 13.1% 13.9%
LABP 10.6% 12.6% 12.3%
OBRU 8.7% 11.8% 10.5%

Fig. 14. Comparison of data placement schemes with respect to average job completion time.
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periodic workloads and distributing them to nodes consid-
ering the dominant factors of cloud, such as network delay
and concurrency. RENDA benefits the existing architec-
tures, and it can be used as an external plug-in to address
the data placement issue efficiently.

One interesting immediate extension to the problem
posed in this paper is to validate using the DLT model.
Although the DLT model attempts to derive optimal data
sizes under constant network and processing speeds, when
applied in our problem context, the processing time derived
using DLT model could serve as a useful estimate on time
performance, which could also give an estimate on the
amount of resources to be deployed.

7 CONCLUSION

In this paper, a Resource and Network-aware Data Place-
ment Algorithm (RENDA) is proposed. At the center of
the RENDA is the fine-tuned overlapped execution of the
data distribution stage and data processing stage, which
overcomes the sequential execution compulsion of MR
jobs and improves the cloud performance in terms of job
completion time. The performance of RENDA is largely
dependent on the estimation of the remaining time of the
nodes and subsequent data blocks distribution. RENDA
employs Weighted Moving Average with m ¼ 7 past
observations that give an improved estimation of the
remaining time for Grep and Sort applications. Moreover,
RENDA allocates the subsequent data blocks to nodes uti-
lizing relative performance, which ensures timely data
availability and streamlines the data distribution and proc-
essing stages. The RENDA is implemented on 16 nodes
heterogeneous virtual Hadoop cloud and subsequently
evaluated on three periodical batch applications. The
experimental results show that the RENDA reduces the
data transfer overhead up to 28 percent, thereby reducing
the average job completion time up to 16 percent with an
average speedup of 27 percent over default Hadoop pol-
icy. To be specific, RENDA consistently outperforms the
existing state-of-the-art alternatives.
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