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With the increasing demand for large amount of computing resources, the cloud is widely used for 
executing large number of independent tasks. In order to successfully execute more tasks and maximize 
the revenues, the cloud service providers (CSPs) should provide reliable services, while maximizing the 
resource utilization. Providing better Quality of Service (QoS), while maximizing the resource utilization 
in the event of failures is a critical research issue which needs to be addressed. In this paper, an 
Elastic pull-based Dynamic Fault Tolerant (E-DFT) scheduling mechanism is designed for minimizing the 
response time while executing the backups during multiple failures of independent tasks. A basic core 
primary backup model is also used and integrated with the backup tasks overlapping (BTO) and backup 
tasks fusion (BTF) techniques to tolerate multiple simultaneous failures. Simulation results show that 
the proposed E-DFT scheduling can achieve better performance in terms of guarantee ratio and resource 
utilization over other existing scheduling algorithms.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The emergence of cloud computing in the recent year has led 
to remarkable changes in the world of information technology with 
respect to the private and public cloud sectors [16]. With the pro-
liferation of virtualization technology, the adoptions of cloud to 
process various data-intensive computations, CPU-intensive com-
putations have become a trend in cloud computing. Running the 
jobs on virtual machines (VMs) has become an efficient solution 
for scalability, cost-efficiency and high resource utilization [33]. 
Moreover, the increasing demand for flexibility in obtaining and re-
leasing the resources has resulted in the wider adoption of cloud. 
In order to meet such increasing demands of various applications, 
many CSPs have built large cloud data centers (CDCs). With the 
consequent increase in number of CSPs, the competition among 
different CSPs has increased [20]. With the ambition to maximize 
the revenue, the CSPs must provide better QoS to the users.

The cloud consisting of data centers is established by inter-
connecting large-scale physical machines (PMs) also referred to 
as hosts, which are accommodated with VMs rented to users for 
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providing services using ‘pay-per-usage’ policy [12]. In addition, 
different methods for predicting the cost of VMs along with the 
workload and power consumption are also adopted by CSPs [22]. 
While the benefits are huge, there exist many probabilities of fail-
ures due to overloading of PMs, VMs, network congestions and 
hardware faults [24]. Moreover, these failures can be transient or 
permanent, thereby affecting the deadline-constrained applications 
scheduled on the VMs or PMs. As a result, there is increasing need 
to address these issues and provide users a reliable cloud to suc-
cessfully execute the accepted tasks. In order to achieve fault tol-
erance, there are various techniques involved such as redundancy 
checking for error correction, tolerance policies involving replica-
tion and load balancing for avoiding failures [19]. For the real-time 
tasks, scheduling plays an important role in satisfying the users’ 
requirement, while maximizing the resource utilization. Scheduling 
the tasks basically is meant to confirm the successful execution of 
tasks such that the deadlines of tasks are met even in the event of 
failures [25].

With the unique features such as the creation of multiple VMs 
by a single host, migration of VMs and dynamic resource scaling as 
per requirements, the cloud can provide benefit in two-fold; firstly, 
providing a reliable and secure cloud computing environment to 
the users and secondly, maximizing the revenues of the CSPs by 
increasing the number of accepted tasks and resource utilization 
[34]. Nevertheless, one of the most challenging requirements of 
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Fig. 1. A motivational example showing multiple failures.

users is that the accepted tasks should be successfully executed 
within the deadline. In order to satisfy this requirement, the CSPs 
should dynamically allocate the computing resources to the tasks 
in multiple PMs located in different CDCs lest the tasks should fail 
due to PM(s) failure. This is because the failure of a single task 
leads to the delay in execution of the task itself only. While on 
the other hand, the failure of a VM or PM results in the significant 
delay in the execution of all the allocated tasks.

Focusing on the probability of failure due overutilization and/or 
overrun of the resources, researchers have proposed different al-
gorithms for preventing the failure occurrences, while consider-
ing the energy minimization [15], load balancing [11] and time-
constraints. In addition to focusing on minimization of energy con-
sumption and maximization of resource utilization, the authors in 
[10] have also proposed resource allocation framework to reduce 
the overheads caused due to migration. Similarly, authors in [18]
have proposed the proactive fault tolerant approach to search for 
the optimal PM. The selected PM acts as the target for migrating 
the VMs from failing PMs. Irrespective of the type of failure, the 
scheduling performance and resource allocation is affected signif-
icantly. If the PMs are overloaded, the failure occurs due to over-
run. On the contrary, if the PMs are underloaded, this allocation 
leads to the poor utilization of resources. Therefore, a fault-tolerant 
scheduling mechanism, which not only focuses on maximization of 
revenues for CSPs but also guarantees the successful execution of 
the accepted tasks should be developed.

1.1. Motivations

The main objective of the cloud computing is to provide plat-
forms for different services, which can be easily used by different 
types of users with various applications. When a user’s task is 
accepted by a CSP, it is the responsibility of the CSP to provide 
resources for successful execution of the task. However, due to var-
ious reasons such as overrun, overloading and network failures, the 
PMs and thereby the VMs present in the CDCs experience transient 
or permanent failure. The failures of PMs and VMs cause degra-
dation in the QoS provided by the CSPs. Besides, sometimes such 
failure cannot be tackled well by the CSPs, leading to the failure 
of the tasks scheduled on the failed PMs and VMs. Although many 
research works have been carried out to handle the failure issues 
occurring in the cloud, very little attention has been paid to han-
dling multiple failures that occur simultaneously. In addition, when 
there are multiple failures of VMs or PMs, multiple backups must 
be scheduled efficiently in different PMs with minimum resource 
consumption towards minimizing the overall response time of the 
tasks.

For example, as shown in Fig. 1, let us consider a scenario when 
a task t1 arrives for execution. Usually, t p

1 , a primary copy of t1 is 
scheduled in host hi and the backup copy tb

1 is scheduled in host 
h j . During execution of t p

1 , hi may crash. Since, only one host is 
failed, backup copy of t1 can be executed, leading to the execu-
tion of tb

1 at its scheduled place. This increases the waiting time of 
the task t1. On the other hand, if both hi and h j crash simultane-
ously, both copies of t1 are lost. This results in poor performance of 
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cloud. One possible solution for providing better services is to cre-
ate multiple copies of a task and schedule them in different hosts 
[14]. Though this can reduce the probability of loss of all copies, 
this can in turn increase the resource consumption. However, the 
resource consumption can be minimized as a whole, which gives 
benefit to both the users and CSPs when multiple copies of differ-
ent tasks can be overlapped and fused together. In addition, when 
a failure of task is encountered, if one of the multiple backup 
copies of task can be executed at nearly next instance of failure 
time instead of waiting until the Latest Possible Start (LPS) of the 
failed task, there is two-fold benefit for the CSP. These are, firstly 
the impact of another failure within LPS time of the task can be 
avoided and secondly, the resources occupied by the task can be 
released when the task is already executed. Following this idea, 
in this paper, we attempt to design an Elastic pull-based Dynamic 
Fault Tolerant (E-DFT) scheduling mechanism.

1.2. Main contributions

Consequently, in order to improve the performance in terms of 
resource utilization and minimizing the response time of tasks, the 
following contributions are made in this paper:

1. An overlapping technique referred to as backup tasks over-
lapping (BTO) is designed and evaluated, which extends the 
traditional primary backup model in cloud to minimize the 
storage space required for the backup copies of tasks. This 
model helps in maximizing the resource utilization using fault 
tolerant scheduling mechanism.

2. A backup tasks fusion technique is designed and evaluated to 
integrate multiple tasks as a single task thus minimizing the 
switching time between tasks allocated to same host and also 
maximizing resource utilization.

3. A pull-based fault tolerant mechanism is developed and eval-
uated, which can pull the backup copies of task(s) for faster 
response time with a small delay in response. Using this pull-
based technique, the response time of the backup execution 
could be minimized and the guarantee ratio could be maxi-
mized leading to maximization of the resource utilization and 
revenue.

4. The E-DFT scheduling can tolerate multiple number of failures 
that occur at a particular instance of time, considering energy 
and load balancing models to reduce the number of failures 
due to overloading and overrun

5. The proposed E-DFT achieves better guarantee ratio and re-
source utilization as compared to other protocols even in the 
event of multiple failures occurring simultaneously.

The remainder of this paper is organized as follows. Section 2
presents review of the related works. Section 3 presents the system 
model followed by the proposed protocol in Section 4. Simula-
tion results and comparisons of the proposed protocol with other 
protocols are presented in Section 5. The concluding remarks are 
made in Section 6.

2. Related works

Scheduling of tasks in the form of jobs and requests has been 
extensively studied over the past few years [3]. In [5], the au-
thors proposed the VM provisioning algorithm for time sensitive 
requests and workflow considering the deadline. The tasks are 
scheduled considering the priority and types of VM instances. 
In [32], authors have proposed scheduling mechanisms of delay 
bounded tasks in hybrid cloud. Focusing on cost minimization as 
main goal, the tasks are scheduled in FCFS, depending upon the 
workload the tasks are scheduled in private and public cloud. The 
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authors in [31] proposed an algorithm to maximize the tasks’ ac-
ceptance rate and the throughput of a private cloud. When ex-
ceeding capacity, the private cloud outsources some tasks to pub-
lic cloud considering the deadline be met. Nevertheless, the time 
taken to migrate the tasks from private to public is considered 
negligible, a very sensitive assumption in case of delay bounded 
tasks. Similarly, the authors in [17] have proposed an approach to 
increase the resource utilization by accepting more jobs within a 
given time. The launching time of accepted jobs is postponed to 
the time until which the deadline can be satisfied. However, in 
cloud the traffic rate fluctuates, which might cause failure due to 
postponing the application. Thus, there is possibility that the job 
might miss the deadline. When considering the failure probabil-
ity of resources, the above proposed mechanisms might miss the 
deadline of workflows and tasks leading to performance degrada-
tion.

On the other hand, if failure occurs, the performance of the 
cloud can be maintained by using resubmission, particle swarm 
optimization based strategies [30] and replication [21] techniques. 
In resubmission, the task after failure in one resource is re-
executed on other normal computing resources. Some systems 
use replication techniques to execute several copies of a task for 
supporting fault tolerance while guaranteeing tasks’ execution be-
fore their deadlines. For instance in [27], authors have proposed 
the mixed integer programming based scheduling of direct acyclic 
graphs with optimal duplication strategy on homogeneous multi-
processor system. However, such systems endure relatively large 
resource consumption, and might not be applicable for large cloud 
computing scenario Similarly, in [8] the authors have proposed 
proactive and reactive scheduling mechanism for the aperiodic 
tasks considering uncertain cloud environment while guarantee-
ing QoS by minimizing the energy consumption. On the contrary, 
in [1] the authors proposed fault tolerance aware scheduling for 
tasks based on dynamic clustering league championship algorithm. 
The proposed fault aware techniques helps the scheduler be aware 
of resources and failures in the environment, which results in sig-
nificant reduction in failures.

In order to reduce the consumption of resources for backup 
copies, a technique for overlapping the backups is developed for 
fault tolerant scheduling in heterogeneous systems. In [35], fo-
cusing on the overlapping technique and considering dynamic 
scheduling, authors have developed two dynamic algorithms for 
the scheduling of backups of independent and dependent tasks 
in grids. Although the proposed mechanism considers the failure 
of nodes in grids consisting of clusters, when considering cloud, 
the strategy might not be applicable, due to geo-distributed loca-
tions, bandwidth and cost of replication to be considered during 
the selection of data centers for replication. Considering the max-
imization of resource utilization, the authors in [29] addressed 
the fault tolerant scheduling taking into account the elasticity of 
VM migration and virtualization technology of cloud. On the other 
hand, in [2], considering the checkpoint concept a reactive fault 
tolerance technique is proposed for distributed environment. Us-
ing the flexible checkpoints, the fault detector module maintains 
record of the allocated virtual machines and prompts the sched-
uler to reschedule the applications in another VM in case of failure 
of the originally assigned VMs. Although extensive studies have 
been carried out in both static and dynamic scheduling of tasks, 
requests, workflows in private, public and hybrid cloud, very few 
works focus on handling multiple failures occurring in the cloud 
[9]. In addition, when multiple failures occur in the cloud, all the 
tasks are to be executed through their backup copies. However, 
this might not be achieved when only one backup copy of the 
task is made, which also fails along with primary copy of task. 
Besides, the minimization of response time in case of multiple fail-
ures while considering maximization of resource utilization of the 
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Fig. 2. Earliest possible start time and latest possible start time of a task.

CSPs is not studied. Therefore, considering the issues such as mini-
mization of the response time while handling multiple failures and 
maximization of resource utilization, E-DFT has been proposed in 
this study.

3. System model

In this section the architecture of the proposed scheduling and 
fault tolerant structure is described, which consists of PMs, VMs 
distributed over the cloud. The PM or the host is referred to as 
hi that consists of heterogeneous resources Ci , Mi and Si to de-
note the total amount of CPUs, memory, and storage of the host hi , 
respectively. Using these resources, the host hi can host multiple 
VMs with same or different configurations of CPU, memory or stor-
age resources, which is clearly elaborated in Section 3.2. These VMs 
are responsible for performing the execution of accepted tasks. 
When a task is submitted to cloud, it is expected that the task 
will be successfully executed within the deadline with minimum 
resources based on the size and deadline of task. The user’s pri-
mary requirement would be successful execution of the submitted 
task satisfying the deadline constraint while the CSP’s requirement 
is to maximize the revenue while satisfying user’s requirement. 
In order to address this conflicting objective, an attempt is taken 
to design an Elastic pull-based Dynamic Fault Tolerant schedul-
ing mechanism referred to as E-DFT scheduling. Consequently, the 
preliminaries about different terms used in the proposed proto-
col are described. Besides, different models such as cloud model, 
task allocation model, fault model, etc., are discussed. Furthermore, 
the types of tasks to be submitted with their attributes are also 
elucidated. Along with these, the notations and descriptions of fre-
quently used symbols are summarized in a quick reference Table 1.

3.1. Preliminaries

1. Earliest Possible Start (EPS)
The Earliest Possible Start (EPS) of a task is defined as the 
soonest possible time at which a task can start its execution 
with least delay as shown in Fig. 2a. In this case, the primary 
copy of a task tk can be started when all of the tasks ahead 
of it in the queue q have been scheduled. It is mathematically 
defined in Eq. (1).

E P St p
k

=

⎧⎪⎪⎨
⎪⎪⎩

0 |q| = 0
|q|∑

a=1

eij
ta

|q| > 0,a �= k

⎫⎪⎪⎬
⎪⎪⎭ (1)

where 
∑|q|

a=1 ei j
ta

is the summation of execution times for all 
tasks ahead of t p

k in the queue scheduled in VM v j , which is 
hosted by hiεHǎ .

2. Latest Possible Start (LPS)
The Latest Possible Start (LPS) of a task is the maximum time 
to which the start of a task can be delayed after its failure in 
order to complete its execution without violating the deadline 
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Table 1
Notations and descriptions.

Notations Descriptions

tk The kth task
hi The ith host
vij The jth VM hosted in ith host
ak The arrival time of kth task
sk The size of kth task
dk The deadline of kth task
τ f ail The time of failure
δ A constant representing delay in response after failure(s) has occurred
t p
k The pth primary copy of kth task

tb
k The bth backup copy of kth task

Hǎ The set of hosts containing all hi in active mode
Hâ The set of hosts containing all hi in inactive mode
H The set of hosts containing all hi , where H = Hǎ ∪ Hâ

ei j
t p
k

The execution time required by t p
k when executed in vij

to
k The oth overlapped backup copy of tk

t f
k The f th fused backup copy of tk

ei j
to
k / f The execution time required by oth overlapped backup copy or f th fused 

backup copy of tk when executed in vij

E P St p
k

The earliest possible start time for the pth primary copy of kth task

L P Stb
k

The latest possible start time for the bth backup copy of kth task

L P Sto
k

The latest possible start time for the oth overlapped backup copy of tk

L P S
t f
k

The latest possible start time for the f th fused backup copy of tk

STtb
k

The start time of bth backup copy of kth task

ftk The fault tolerant time for kth task
c j(τ ) The available amount of CPU resources in jth VM at time instance τ
m j(τ ) The available amount of memory in jth VM at time instance τ
s j(τ ) The available amount of storage in jth VM at time instance τ
Ci The total amount of CPU resources in ith host hi

Mi The total amount of memory in ith host hi

Si The total amount of storage in ith host hi¨lp
k (τ ) The status of pth primary copy of kth task in vij
˘li j(τ ) The load of vij at time instance τ

ĺi(τ ) The load of hi at time instance τ
E∗(hi) The total energy consumed by host hi while executing both primary and 

backup copies of tasks
Fig. 3. System architecture of the proposed scheduling mechanism.

as shown in Fig. 2b. The LPS of a task takes into account the 
execution time of the backup copy tb

k in the available VM vij

as given in Eq. (2).

L P Stb
k
= dk − eij

tb
k

(2)

3. Fault Tolerant Time ( ftk )
Fault tolerant time of a task tk is defined as the time duration 
between the EPS and LPS of a task. Based on the value of ftk , 
the tasks are accepted by the scheduler for execution. This will 
be further discussed after the strategy used in this paper is 
introduced in later section.
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3.2. Cloud system model

Let us consider that there exists a set of VMs represented as 
V = {v1, v2, ..., vz} consisting of z number of VMs. Each VM v j is 
associated with three different tuples c j(τ ), m j(τ ) and s j(τ ), rep-
resenting the available resources CPUs, memory and storage of v j
at time τ , respectively. These VMs are hosted in the PMs with dif-
ferent configurations. Due to various factors such as the ongoing 
maintenance of the PMs or failures of the tasks at a particular in-
stance of time, certain number of PMs may reside in the cloud 
which may be in active mode Hǎ and certain number of PMs may 
be in inactive mode Hâ . Thus, the total number of PMs can be 
aggregated as a set H = Hǎ ∪ Hâ including both active and in-
active PMs. Since, the hosts hiεH are heterogeneous, they can 
accommodate different number of VMs with varying configura-
tions. Let n be number of tasks represented in the form of set 
T = {t1, t2, t3, ..., tn}. Each task tk has certain attributes such as the 
arrival time ak , size sk and more importantly the deadline dk . In 
order to maximize the utilization of the resources and to complete 
the execution within the deadline, these tasks are scheduled si-
multaneously in different VMs of same or different hosts.

3.3. Scheduler characteristics

In order to have an efficient scheduling mechanism, the sched-
uler performs an admissibility test and then only forwards the 
accepted tasks to the task allocation model, as shown in Fig. 3. 
At a particular time instance τ , the scheduler considers a set of 
tasks T = {t1, t2, t3, ..., tn} with their respective attributes {ak , sk , 
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dk}. Since, multiple tasks may arrive to the cloud at the same time, 
the tasks are stored in a queue based on the First Come First Serve 
(FCFS) principle. If two tasks arrive simultaneously, the tasks are 
further arranged on the basis of earliest deadline first. The size of 
a task represents the resource required by a tasks to complete the 
execution before deadline. For each task tk , the time required (Tr ) 
to execute the task can be estimated as follows:

Tr = sk/p j(τ )

where, p j(τ ) is the processing speed of the fastest available VM at 
time τ . When Tr > dks , the task tks cannot be accepted for com-
pletion within the deadline. Therefore, the scheduler performs the 
admissibility test based on the following Eq. (3) to avoid the ac-
ceptance of such type of tasks.

tk =
{

Accept i f dk > E P St p
k

+ eij
t p
k

Reject otherwise

}
(3)

where, dk is the deadline for task tk , E P St p
k

is the time taken for 

scheduling the primary copy of tk , and ei j
t p
k

is the time taken to ex-

ecute the t p
k in vij . Using Eq. (3), the tasks are filtered out and the 

set containing the accepted tasks T̈ is forwarded to the task alloca-
tion model. It is to be noted that Eq. (3) is used for the scheduling 
of the primary copies of tasks. If the primary copies of the tasks 
are scheduled for the execution before the deadline, the schedul-
ing of backup copies are certainly accommodated using either the 
passive backup or active backup procedure as illustrated in Fig. 4.

3.4. Task allocation model

In order to have successful execution of the tasks while tolerat-
ing multiple failures, multiple copies of the task tk are made that 
comprise one primary and multiple backup copies. The primary 
copy t p

k is scheduled on the suitable vij considering the status of 
pth primary copy of kth task in vij at time τ , which is denoted as 
¨lp
k (τ ) and is deduced in Eq. (4).

¨lp
k (τ ) =

⎧⎨
⎩

+1 Task is ongoing
0 No Task is executed

−1 Task has successfully executed

⎫⎬
⎭ (4)

Based on the status of the task in vij , the load of each VM can 
be calculated as given in Eq. (5).

˘li j(τ ) =
tc∑

p=1

¨lp
k (τ ) (5)

where, ˘li j(τ ) depicts the load of VM vij at time τ and is calculated 
as the summation of the loads of different currently scheduled 
tasks in the set Tc , tcεTc . Based on the above Eq. (5), the vij with 
least value of ˘li j(τ ) is chosen first for the scheduling of t p

k . The 
remaining multiple copies are referred to as backup copies of tk . 
These copies of task are scheduled by the fusion controller and 
backup controller as discussed in Section 4.2.

3.5. Fault model

Considering the main goal of handling multiple failures with 
minimum response time, a fault tolerant model is described in 
this sub-section. After the primary copies of accepted tasks are 
scheduled onto the hosts, the information about the scheduled 
primary copies are sent from the task allocator to the backup con-
troller. Now, the backup controller is responsible for scheduling 
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the backup copies. The backup copies of tk are to be scheduled 
onto the hosts other than the one hosting t p

k . The host hi cho-
sen for storing the backups is the one that has either no primary 
scheduled or very few primaries scheduled and it can complete the 
execution of backup copy within the deadline with minimum cost. 
The failure can be transient or permanent leading to missing the 
deadline of the tasks and ultimately severe loss of revenue. In or-
der to avoid this, it is assumed that the host hi informs other hosts 
hgεH before it is shutdown completely. Along with this, the host 
hiεH and VMs fail due to various unpredictable factors such as 
overloading and higher temperature due to overrun. At a particular 
time instance τ f ail , there are multiple failures (say ω) of VMs and 
PMs. It is beyond the scope of this paper to design failures detec-
tion mechanisms. Hence, without loss of generality we assume that 
failures detection mechanisms exist to detect the failures of PMs. 
Therefore, there is no allocation of tasks among the failed PMs or 
VMs. When failures are detected [23], the information is sent to 
all healthy PMs containing the backups. This triggers the execu-
tion of backups of the corresponding failed tasks from that failure 
time τ f ail . On the other hand, when the primary copy of the task 
is successfully executed, the success message is broadcast to other 
PMs to free the resources occupied by the backup copies. As per 
our assumptions, the hosts that are considered for the scheduling 
of the backups would not schedule any primary copies. Therefore, 
it would not impact the execution of backups after failure at τ f ail .

Along with fault tolerant scheduling mechanism, this work aims 
to maximize the resource utilization. Therefore, the backup tasks 
overlapping (BTO) and backup tasks fusion (BTF) techniques are 
used here. The backups copies are scheduled based on the LPS time 
of task. In case of BTO technique, two tasks tk1 and tk2 can overlap 
their backups if host(tb

k1) = host(tb
k2). However, in order to fuse the 

backup copies of tk1 and tk2, the host of both t p
k1 and t p

k2 should 
be same and STt p

k2
> STt p

k1
. When two tasks are scheduled onto 

one host, they are combined together in terms of sharing resources 
and treated as one unit. We refer to the combination of tasks into 
a single unit as BTF technique. Thus, using BTF guarantees that 
the respective hosts for fused tasks are same and this property 
plays a vital role in our algorithm, which maximizes the resource 
utilization and minimizes the switching time between the tasks.

3.6. Energy model

It is to be noted that the probability of failure due to overrun is 
directly related to the energy consumed during the run time and 
increase in temperature of host hi . If a particular host hi is chosen 
as a suitable candidate for executing the tasks for a long time the 
host hi may encounter a physical failure due to an increase in tem-
perature. In order to avoid the failure due to overrun the consumed 
energy E∗ must be calculated using Eq. (6). Consequently, the total 
energy consumed by a host hi can be represented as the sum of 
energy consumed by the primary copies of tasks, backups of tasks 
if primary copies fail and active backup tasks as follows:

E∗(hi) = P ∗
{ m∑

r=1

eij
t p
k

+
x∑

r=1

eij
to
k
+

y∑
r=1

eij

t f
k

+
c∑

r=1

eij
per(t

b
k )

}
(6)

where, m represents total number of primary copies of m different 
tasks, x and y represent the total number of overlapped and fused 
copies of all backup tasks, respectively. Finally, c gives the total 
number of backup copies of tasks, which are executing concur-
rently with the primary copies of tasks. The variable ei j

t p
k

represents 

the execution time of the primary copy of the task, ei j
to
k

and ei j

t f
k

show the execution time of the overlapped and fused backup copy 
of the task, respectively. The notation ei j

per(t
b) is the execution time 
k
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of an active task executed in the host hi . The execution time of 
primary copies, overlapped copies, and fused copies of different 
tasks are independent of each other. After multiplying the power 
consumed P with the total execution time of tasks, the energy 
consumed by the host is obtained. Furthermore, the total energy 
consumed by the system can be obtained by the summation of en-
ergy consumed by each host hi that belongs to H = Hǎ ∪ Hâ . In this 
work, it is always aimed to minimize the total energy consumed by 
the system by minimizing the active duration of the PMs. It is as-
sumed that the total power consumption P can be found within 
the list of specification details of the physical host when it is used 
for the virtualization. Based on the calculated value of the total 
power, the backup controller will attempt to choose a host hi with 
lower E∗ for scheduling of the backup copies, since the higher E∗
for hi implies the higher probability of failure due to overrun.

3.7. Load balancing

In case of CDCs, the load of each host is usually different from 
the other. This is because each host hi is heterogeneous in terms 
of different resources. Consequently, the number of VMs allocated 
to each host hi also varies. In order to accommodate more number 
of tasks in VMs while avoiding the overloading, a load balancing 
scheme is applied to improve the performance of each host hiεH. 
Besides, v j is assigned to host hi taking into account the current 
load of the host hi at time τ as presented in Eq. (7).

ĺi(τ ) =
|Q |∑
j=1

l̆ j(τ ) (7)

where, l̆ j refers to as the total load of v j at time τ and Q repre-
sents the set containing all v j associated with host hi . When there 
are failures of primary copies of different tasks, backup copies of 
all failed tasks are activated in different hosts leading to uneven 
distribution of loads among the hosts hiεH. Therefore, there is 
the VM migration policy adapted to have load balancing, which 
is possible throughout the execution of tb

kε T̈ . This VM migration 
is carried out to allow parallel execution of backup copies of dif-
ferent tasks of the hosts, which cannot execute the backup of all 
failed tasks simultaneously due to resource constraint. This pro-
cess is a tradeoff between the waiting time for the execution of 
the backup copy of a task tk at L P S

to/ f
k

in the current host hi and 
the delay time α required for that task to migrate to hg for exe-
cuting the backups following the pull-based mechanism. However, 
care must be taken during the VM migration that the destination 
hg is not overloaded. Therefore, a threshold value is set for the mi-
gration of VM from the host hi to hg . This is calculated by the 
mean of least loaded host (l̇hg1 (τ )) and most loaded host (ẋlhg2(τ )) 
at a particular time τ as given in the following Eq. (8).

ϒ(τ) = ∀H(ẋlhg1(τ ) + l̇hg2(τ ))/2 (8)

After each migration of VM, the values of l̇hg1 (τ ) and ẋlhg2(τ ) are 
updated. Besides, a host is considered suitable as long as the value 
of destination host satisfies the Eq. (8).

4. Elastic pull-based dynamic fault tolerant (E-DFT) scheduling

In order to maximize the resource utilization and minimize 
the response time for backups execution after ω number of si-
multaneous failures, an Elastic pull-based Dynamic Fault Tolerant 
scheduling mechanism referred to as E-DFT scheduling is proposed 
in this work.
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Algorithm 1 Tasks Filtering.
Input: Set of arriving tasks T : {t1,t2,...,tn}, and available VMs V : {v1,v2,...,vz}.
Output: Set of accepted tasks T̈ : {φ}.
1: while tkεT do
2: if Tr > dk then
3: Task ought to be rejected;
4: end if
5: Perform the admissibility test of each tkεT ;
6: T̈ = {T̈ } ⋃ tk ;
7: end while

4.1. Task filtering and scheduling of primaries

Let us assume that multiple tasks arrive at different arrival 
times ak , each with size sk and deadline dk . The arriving tasks are 
represented using a set T consisting of n number of tasks. More-
over, there exists some v jεV with processing speed p j(τ ), which 
may execute fewer or no tasks at time τ . For each task tk , the 
total time required to execute the task is calculated as Tr . If the 
Tr exceeds the given deadline of task, the task is rejected as de-
scribed in the Algorithm 1 (Lines 1 - 4). Next, the admissibility test 
is performed using Eq. (3) to decide the scheduling of the primary 
considering the accepted tasks those are stored in a set T̈ (Lines 5
- 6).

Algorithm 2 Scheduling of Primaries.
Input: Set of accepted tasks T̈ as input from Algorithm 1

A = {(a1, s1, d1), (a2, s2, d2)...(ak, sk, dk) |kε T̈ }, set of arrival time,
size and deadline of each task, available VMs V : {v1,v2,...,vz}. V ∗ = {φ}, H∗ =
{φ}.

Output: Information of scheduled primaries.
1: for v jεV do
2: Calculate the status of tasks in the v j ;
3: Calculate the load of v j ;
4: V ∗ ← Sort V based on increasing load of v j ;
5: end for
6: for hiεHǎ do
7: Calculate the Load of hi ;
8: H∗ ← Sort Hǎ based on increasing load of hi ;
9: end for

10: Map the top v j to top hi of V ∗ , H∗ , respectively;
11: while tkε T̈ do
12: if ak1 < ak2 then
13: Schedule tk1 at E P St p

k1
< E P St p

k2
;

14: else if ak1 = ak2 then
15: if dk1 < dk2 then
16: Schedule tk1 at E P St p

k1
< E P St p

k2
;

17: end if
18: end if
19: Update the load of v j and hi and sort the queue V ∗ and H∗ , respectively;
20: end while

In the scheduling of primaries stated in Algorithm 2, the objec-
tive is to schedule the primary copies of different tasks tkε T̈ . As 
given in Algorithm 1, the filtered tasks form a new set T̈ , which 
is forwarded to the task allocator for the scheduling of primaries. 
For the scheduling of tasks in different VMs, the status of different 
tasks present in v jεV is determined using Eq. (4). Consequently, 
the current load of the v jεV is calculated using Eq. (5) (Lines 1 -
5). The VMs are sorted in ascending order of loads to form a new 
set V ∗ after determining the loads of different VMs. Similarly, the 
loads of hosts, hiεHǎ at time τ are estimated using the Eq. (7) and 
sorted in ascending order, H∗ (Lines 6 - 9). The sorting of PMs and 
VMs is followed by mapping the top v jεV ∗ to top hiεH∗ (Line 
10). This mapping allows the scheduling of tkε T̈ based on their ar-
rival time ak . If two tasks tk1 and tk2 have same arrival time, i.e., 
ak1 = ak2, the task with earlier deadline is scheduled first (Lines 
12 - 18). After each iteration of scheduling, the status of task is 
updated in v jεV ∗ and also the loads of v j and hi are updated. Fi-
nally, V ∗ and H∗ are also sorted in ascending order (Line 19) and 
the process is repeated until T̈ becomes empty.
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Fig. 4. Fault tolerant time.

Theorem 1. In case of Fault Tolerant Scheduling, when STtb
k

≤ ftk ≤
L P Stb

k
is satisfied, the failures can be tolerated.

Proof. Let tk be a task with arrival time ak = τ1, size = sk and 
deadline = dk . Supposing the waiting time = 0, tk is scheduled 
at E P St p

k
= τ1 calculated using Eq. (1). Considering the process-

ing speed of available v jεV the L P Stb
k

= τ2 (say) is calculated as 
given in Eq. (2). The time duration between τ1 and τ2 is the ftk , 
as shown in Fig. 4. If any task fails after τ2, the start time for ex-
ecution of backup copy of task tk , STtb

k
becomes τ2 + δ, which is 

τ2 +δ > L P Stb
k

. Eventually, the starting of execution of backup copy 

of task tk at STtb
k

= τ2 + δ followed by the execution time ei j

tb
k

ex-

ceeds dk . Therefore, the failures that occur until τ2 time duration 
can only be tolerated by the system and exceed τ2, which leads to 
miss the deadline. �
4.2. Scheduling of backups

When a task is accepted for execution, the information is pro-
vided to the backup and fusion controller using the Algorithm 2
after the primary copy is scheduled in a host. The backups of a task 
must be scheduled on hosts hiεH, which do not contain any pri-
mary or very few primaries as described in Algorithm 3. In order 
to choose the suitable hosts for the scheduling of backup copies 
of tasks, the backup controller checks the energy consumed and 
load of the hiεH, which are determined as given in Lines 1-9. Af-
ter sorting the hosts in ascending order of the energy and load 
of each PM, ω number of backup copies are created and sched-
uled at L P S

to/ f
k

in the hosts for every task tkε T̈ those have less 
loads. The energy, load and load threshold of hi are updated us-
ing Eqs. (6), (7), and (8), respectively (Lines 2-6). Furthermore, the 
fusion controller checks if two tasks belong to the same hosts. 
Upon satisfying the required condition (Line 8), the fusion con-
troller overlaps the backup copies of different tasks to

k1 and to
k2 to 

minimize the resource consumption. It is assumed that two tasks 
tk1 and tk2 can be merged and compressed to reduce the storage 
space required by them if they are in the same host as adopted in 
[4]. Besides, if two overlapped tasks have primary copy scheduled 
in same host: hi(t

p
k1) = hi(t

p
k2), the overlapped copies of those tasks 

are fused together into a single task. This allows the minimization 
of switching time between the tasks belonging to the same host 
(Lines 10-13).

Now, when there are multiple failures at time τ f ail , the backup 
copies of tasks are pulled to τ f ail+δ in a v jεhi . Since, there are 
both overlapped copies and fused copies of the tasks, the fused 
copies of the tasks are pulled if hi(t

p
k1) = hi(t

p
k2). On the other 

hand, if hi(t
p
k1) �= hi(t

p
k2), just the required overlapped copies of 

tasks are pulled to τ f ail+δ and are executed. The algorithm ter-
minates after successful execution of all tasks tkε T̈ (Lines 14-20).
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Algorithm 3 Fault Tolerant Scheduling of Backups.
Input: Information of scheduled primary tasks as input from Algorithm 2.
Output: Applied fault tolerant mechanisms.

1: Calculate the Energy consumed by hi ;
2: while tkε T̈ do
3: if E∗(hi1) < E T & ĺi(τ ) < ϒ(τ) then
4: Create ω copies of tb

k and schedule at L P S
to/ f
k

in hi1εH∗;

5: Update Energy, Load, Load Threshold of hi1;
6: end if
7: end while
8: if L P St p

k2
> L P St p

k1
then

9: Overlap copies of to
k1, to

k2 in hi1εH∗;

10: if hi(t
p
k1) = hi(t

p
k2) then

11: Merge to
k1, to

k2 and form fused copies t f
k1, t f

k2 to be scheduled
at L P S

t f
k1

in hi2εmathbbH∗;

12: end if
13: end if
14: while (There are failures of tasks t p

k1, t p
k2 at time τ f ail ) do

15: if hi1(t p
k1) = hi2(t p

k2) then
16: Pull the fused copy to τ f ail+δ and execute it;
17: else if hi1(t p

k1) �= hi2(t p
k2) then

18: Pull the overlapped copy of to
k1 to τ f ail+δ and execute it in v j2εV ;

19: Pull the overlapped copy of to
k1 to τ f ail+δ and execute it in v j1εV ;

20: end if
21: end while

Fig. 5. Handling multiple failures, 1 ≤ ω < |H|.

Theorem 2. For any task tk accepted for scheduling, the number of fail-
ures tolerated is 1 ≤ ω < |H|, assuming all failures occur within ftk .

Proof. Let tk be a task with arrival time ak = τ1, size = sk and 
deadline = dk . Assuming the waiting time = 0, tk is scheduled at 
its E P St p

k
= τ1. Considering the processing speed of the available 

v jεV , the L P S
to/ f
k

= τ2, as shown in Fig. 5.

For achieving fault tolerant scheduling, multiple backup copies 
of tk are placed in multiple hosts {h1, h2,..., hω}, hiεH and (say 
i = 0). Let us consider there are multiple failures of hosts h1, h2,..., 
h f , f < ω at time τ f ail such that τ1 < τ f ail ≤ τ2. As seen from 
Fig. 5a, τ f ail lies within ftk . Therefore, a backup copy of tk is pulled 
from τ2 to τ f ail+δ < τ2 in host hω for achieving the fault tolerance, 
Fig. 5b. Hence, the system tolerates multiple failures ω, ∀i ≤ ω <

|H|. �
Lemma 1. Using E-DFT response time is minimized when failure occurs 
during ftk .

Proof. Let tk be a task with arrival time ak = τ1, size = sk and 
deadline = dk . Assuming the waiting time = 0, tk is scheduled at its 
E P St p

k
= τ1. Considering the processing speed of available v jεV , 

the L P S o/ f = τ2, as shown in Fig. 6.

tk
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Fig. 6. Pull-based mechanism.

Fig. 7. Storage area minimization using BTO.

Let us consider t p
k fails at time τ f ail . This failure information 

is sent to all healthy hosts containing the backups tb
k . In gen-

eral, the execution of backup copy starts at τ2 such that the task 
is successfully completed at dk . However, using the proposed E-
DFT, the backup copy, tb

k is pulled to τ f ail+δ , assuming δ as the 
response time. Hence, the execution of tb

k is successful at time 
τ f ail+δ + sk/p j < dk . Therefore, the proposed mechanism minimizes 
the response time efficiently. �
Lemma 2. The storage resource for two tasks tk1 and tk2 with similar 
arrival times ak1 � ak2 can be minimized by overlapping them.

Proof. Let tk1 and tk2 be two independent tasks with arrival times 
ak1, ak2 and deadline dk1, dk2, respectively. Based on Theorem 2, 
the backups of tk1 and tk2 can be overlapped as shown in Fig. 7a 
with space requirement ω∗(sk1 + sk1 −overlap(sk1k2)) for h|ω|ε|H|. 
Let us consider there are failures of h1 and h2 at τ f ail . In order to 
have faster response, the overlapping backup copies to

k1 and to
k2

are pulled to τ f ail+δ as demonstrated in Fig. 7b, minimizing the 
response time for execution of backups. �
Lemma 3. If the overlapping copies of the tasks tk1 and tk2 are in the 
same host, to

k1 and to
k2 can be fused as t f

k1 and t f
k2 , thus minimizing the 

switching time during execution of the backups of a single host hi.

Proof. Let tk1 and tk2 be two independent tasks with arrival time 
ak1, ak2 and deadline dk1, dk2, respectively. The tasks belong to the 
same host. Therefore, both can have their backups fused in the 
form of t f

k1 and t f
k2. If failure occurs at τ f ail as seen in Fig. 8a, some 

time is required by the system to recover. To overcome such tran-
sient failure, the fused copies of the tasks of same host is pulled to 
τ f ail+δ and are executed, as shown in Fig. 8b, saving the switching 
time between the tasks of the same host. �
Theorem 3. The time complexity for scheduling of primaries in E-DFT 
algorithm is O(m logm), where m is total number of accepted tasks.
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Fig. 8. Saving switching time using BTF.

Proof. In the Algorithm 1, the time taken for admissibility test of 
n tasks is O(n) and sorting m tasks using Heapsort is O(m log m)

time. The worst case time complexity is O(m log m), when all tasks 
are accepted (n = m). The time taken by Heapsort for sorting 
VMs and PMs in Algorithm 2 (Lines 1-5) and PMs (Lines 6-9) is 
O(z log z) and O(|Hǎ| log |Hǎ|), respectively. The scheduling of pri-
mary copies of accepted tasks requires O(m) time. In worst case, 
one task is assigned to one VM (m = z) and number of VMs is al-
ways greater than number of PMs. Hence, the time complexity for 
scheduling of primaries in EDF algorithms is O(m log m). �
Theorem 4. The time complexity for scheduling and executing the back-
ups in E-DFT algorithm is O(m), where m is total number of accepted 
tasks.

Proof. The time complexity for scheduling the backups in Algo-
rithm 3 is O(m) (Lines 2-6) and for executing the backups is O(ω)

(Lines 8-20), where ω is the number of failures. As a result, the 
worst case time complexity for scheduling and executing the back-
ups in E-DFT algorithm is O(m), when all accepted tasks have 
failed. �
4.3. Example of E-DFT

In order to have a comprehensive idea about the working of the 
proposed E-DFT mechanism, an illustration is provided in this sec-
tion. For the working, let us consider there are five tasks in a set 
T = {t1, t2, t3, t4, t5} with three different integers in the brackets, 
as shown in Fig. 9 representing ak , sk and dk , respectively for each 
task. The dk is the maximum time that can be allotted to com-
plete the task tk . Before accepting the tasks, Tr is used to check 
whether deadline for the task is suitable for acceptance. Consid-
ering p j(0) = 500 of available v j , it is found that Tr for t1, t2, 
t3, t4 is less than their deadlines 16, 20, 1.5, 7, respectively. How-
ever, the task t5 has d5 = 20 for s5 = 40000, which causes the 
rejection of t5, since Tr = 80 is greater than deadline. Assuming 
the waiting time is equal to zero, the E P St p

k
is also considered as 

zero, making the scheduling possible as soon as the task is ac-
cepted. Finally, there is a list T̈ = {t1, t2, t3, t4} to be scheduled 
using E-DFT for successful execution in case of multiple failures. 
In phase 1 of the E-DFT scheduling as shown in Fig. 9, the tasks 
are scheduled on the different hosts hi considering the earliest 
possible start time of the tasks. Along with this, loads of the 
hosts are also checked to schedule the tasks. It is assumed that 
loads of hosts ĺ1(0) < ĺ2(0) < ĺ3(0) in the initial phase. Therefore, 
the primary copy t p

1 is scheduled in h1 based on early possible 
start time. Both t2 and t3 arrive at time a2 = a3 = 1. However, 
d3 < d2, which allows t p

3 to be scheduled in h2 followed by t p
2 in 

h3 and so on. It can be observed that updated loads at τ = 5 are 
ĺ2(5) < ĺ1(5) < ĺ3(5). On the other hand, at time τ = 22, the energy 
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Fig. 9. Illustration of E-DFT.
consumed is ĺ2(22) > ĺ3(22) > ĺ1(22), since h2 needs to execute t p
4

leading to overrun and chances of failure. In phase 2 of E-DFT, mul-
tiple backup copies of the tasks are scheduled onto different hosts 
based on the L P S

to/ f
k

in order to tolerate multiple failures due to 
failures of some active hosts. The phase 3 of the E-DFT focuses
on overlapping the backup copies of the tasks to minimize the re-
source requirements, such as to

1 and to
3, to

2 and to
3 are overlapped 

in h4 and h5, respectively. Further, if a host fails, it will take cer-
tain time to recover. During that instance, all the backup copies of 
the tasks in that host are supposed to be executed. Therefore, the 
tasks with primary copies in the same host are fused together to 
minimize the switching time between the tasks of the same host. 
Based on the E-DFT scheduling in phase 1 and 3, if hosts h1, h2
and h4 fail simultaneously, the backup copy of t1 can be executed 
in the host h5. Since, t3 and t4 are of the same host h2, the fused 
copy of both tasks t f

3 and t f
4 can be used to have successful ex-

ecution in host h6 with faster response time. Thus, the proposed 
scheduling mechanism E-DFT handles multiple failures with faster 
response time.

5. Performance evaluation

In order to demonstrate the performance of the proposed pro-
tocol E-DFT, certain comparisons are made with three standard 
algorithms- Earliest Deadline First (EDF) [13], Minimum Comple-
tion Time (MCT) [26] and Deadline Monotonic scheduling Algo-
rithm (A) [28]. In case of EDF algorithm, all the arriving tasks are 
arranged in a queue following ascending order of the deadline. 
EDF is a dynamic priority scheduling algorithm for independent 
tasks, whose main goal is to execute the tasks based on the ear-
liest deadline. However, when system is overloaded, the deadline 
can be missed to much greater extent.

Secondly, MCT algorithm maps a new task on a VM that can 
complete the task at the earliest time while maintaining the fin-
ish time upper bound before the task’s deadline. In addition, all 
the tasks are allocated to VMs upon their arrivals. Therefore, MCT 
is selected as the representative of classic greedy scheduling algo-
rithms to demonstrate the performance improvements gained by 
the protocol when compared with classic greedy scheduling algo-
rithms. The final comparison is made with DMA, a fixed priority 
scheduling algorithm, which assigns high priority to the tasks with 
earlier deadline. The goal of comparing the proposed protocol with 
EDF, MCT and DMA is to demonstrate that the proposed protocol 
can produce better scheduling performance than these algorithms 
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even in the event of multiple failures, while minimizing the re-
sponse time and maximizing the resource utilization.

5.1. Simulation setup

A widely recognized simulator in both industry and academia, 
CloudSim [7] is chosen as the building block of the considered 
simulating environment. Different settings of parameters are used 
in CloudSim such as the Million Instructions Per Second (MIPS) 
of each host is modeled with performance similar to 1000, 1500, 
2000, 3000 and 5000 MIPS and the processing configuration of 
VMs are considered equivalent to 250, 500, 700, and 1000 MIPS.

With regards to the impact of different parameters of cloudlets 
(tasks) on the performance of clouds, the simulation is conducted 
based on cloudlets. The tasks are assumed to arrive at the cloud 
with size less than 1 × 105 MI. In addition, the deadlines of the 
tasks are distributed with range [1 × 102 to 1 × 103] seconds. The 
impact of each of the parameters is determined by repeating the 
experiments 30 times and average value is considered with stan-
dard error as discussed in [6]. All algorithms are compared using 
the following practically useful metrics. The first metric, Guarantee 
Ratio(GR) is defined as the ratio of number of tasks accepted by 
the scheduler to the tasks those are successfully executed within 
deadline. This metric depends on the availability of resources at 
the time of arrival of task along with the deadline of the task and 
response time due to failure of task. When the deadline for the 
task is very short, both the primary and backup copies of the task 
cannot be scheduled, resulting in the task being rejected.

The second metric, Average Execution Time represents the aver-
age time taken for the execution of a task. This is estimated by 
keeping some parameters constant such as keeping the deadline 
fixed or number of tasks fixed or generating fix number of fail-
ures. If there occurs no failure, the execution time of a task is the 
average duration from arrival to completion time of the primary 
copy of task, t p

k . On the other hand, if failure occurs, the execution 
time is the average duration from arrival to completion time of the 
backup copy of the task. The third metric, Active Time of PMs shows 
the total active time of all the hosts in the cloud, thus implying 
at least one task is running in the system. The fourth metric, Re-
source Utilization, is defined as the ratio of the utilized resources to 
the total available resources of all the allocated hosts in the cloud. 
This represents the resource utilization of the system considering 
the case of both with and without failures.

The fifth metric, Response Time determines how quickly the task 
or the backup of task is re-executed in case of failures. The re-
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sponse time is the minimum time taken to start the execution of 
the backup copy of a task in case of failures of PMs and VMs. An-
other metric Number of failures N f that is tolerated is defined as 
the percentage of tasks which are successfully re-executed when 
multiple failures of host and VMs occur. The N f shows the effec-
tiveness of a protocol in tolerating multiple failures and also serves 
as a Quality of Service parameter for the CSPs.

5.2. Simulation results

The CloudSim that supports the seamless modeling, simulation 
and experimentation of large-scale cloud infrastructures is chosen 
to simulate our cloud environment, which consists of hosts with 
abundant resources. It is assumed that initially no task is sched-
uled on any host though all are active. Upon arrival of the tasks 
in the form of cloudlets, the scheduler allocates resources to the 
tasks. Based on this assumption of resource scalability, the pro-
posed E-DFT algorithm is evaluated by comparing it with EDF, MCT 
and DMA. In order to analyze the impact of one metric over the 
others, the value of one metric is changed keeping the rests con-
stant. Therefore, the number of tasks is increased from 1, 000 to 
50, 000, keeping the deadline constant as 1000 seconds and the 
performance of the EDF, MCT, DMA, and E-DFT are recorded with 
respect to different metrics for analyzing the performance impact 
of number of tasks.

The impact of number of arriving tasks over Guarantee Ratio 
is shown in Fig. 10a, where all algorithms maintain high Guaran-
tee Ratio when number of tasks is less, which is due to highly 
scalable resource in cloud. Due to virtualization nature of cloud, 
multiple tasks can be executed concurrently and independently 
without missing deadlines. However, when the number of tasks 
increases, the guarantee ratio decreases. This is due to the start 
up time of PMs and VMs, which adds to delay in execution of 
tasks that ultimately leads to miss the deadline. With less number 
of arriving tasks, all four algorithms maintain high guarantee ra-
tios; which are attributed to the availability of abundant resources 
in the cloud. The resource in cloud can be scaled-up or scaled-
down as per the resource requirements. However, the guarantee 
ratios decrease gradually due to additional time required to create 
VMs as per the requirements as the number of tasks increases. The 
EDF and DMA always focus on prioritizing tasks based on deadline, 
and MCT focuses on selecting VMs with highest processing speed. 
These comparisons among tasks lead to miss the deadline as the 
number of tasks increases. On the other hand, the guarantee ra-
tio of E-DFT is better than EDF, MCT, and DMA, since E-DFT only 
focuses on the execution time and deadline of the task.

Similarly, Fig. 10b shows the average execution time of each 
task when number of tasks ranges from 1, 000 to 50, 000. As 
shown in the Fig. 10b, the average execution time of the tasks 
remains within the deadline, forming slight variation in the exe-
cution that is due to variable task sizes. Moreover, since the task 
size varies within 102 to 105M I , when multiple tasks are sched-
uled on VMs of different configurations, the average execution time 
reduces. When number of tasks increases, requirement for more 
number of best available resources also increases. In order to suc-
cessfully execute the tasks within deadline, the PMs remain ac-
tive for longer duration. This can be easily deduced from Fig. 10c, 
which shows the impact of number of tasks over active time of 
PMs. It can be clearly seen from the Fig. 10c that with the ad-
dition of tasks the active time of PMs increases, but E-DFT has 
better performance than EDF, MCT, and DMA. This is due to load 
distribution and energy model, which assigns the tasks to different 
PMs evenly based on its scheduling strategy. Finally, the percent 
of resources utilized by the different algorithms are determined in 
Fig. 10d. In case of cloud, huge amount of resources are available. 
In favor of achieving better guarantee ratio more resources are re-
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served for concurrent execution of tasks. As a result, this causes 
the PMs to be idle leading to underutilization of resources. On the 
contrary, when the resources are already reserved, based on the 
objectives of E-DFT, to resolve the multiple failures of PMs and 
VMs, scheduling of multiple backups of each task are performed 
on these underutilized PMs, which is clearly visible in the Fig. 10d. 
Since every CSP wants to increase the QoS, in case of E-DFT, the 
idle resources are used to create backups of the tasks leading to 
maximization of resource utilization, enhancing it further to BTO 
and BTF for maximizing revenue.

Along with the number of tasks, the deadline has also much 
impact on the performance of various algorithms, which is justi-
fied by performing the following simulation. The base deadline is 
varied from 1 × 102 to 1 × 103 seconds. Here, the size of the tasks 
vary from 102 to 105M I and number of tasks remain constant as 
20000. As represented in Fig. 11a, the Guarantee Ratios of all the 
algorithms increase gradually with extended deadline. This is be-
cause when the deadline is extended, more number of resources 
can be added and more number of tasks can be accepted for exe-
cution. Furthermore, when the deadline becomes more flexible, the 
Guarantee Ratio reaches almost 100% due to scalable resources of 
Cloud. For all the algorithms, variability in the performance of av-
erage execution time of the tasks is observed as shown in Fig. 11b, 
when considering various deadlines. This is primarily due to the 
fact that tasks those are accepted for execution are variable in size 
with variable deadline. Moreover, when deadline is relaxed, large 
number of VMs are launched, which can be used for executing 
large number of tasks of variable sizes and priorities. However, the 
execution time of MCT increases with increase in deadline, this 
is because it accepts tasks with longer completion time, which in 
turn increases the average execution time.

In Fig. 11c, the performance impact of deadline on the active 
time of PMs is shown. When deadline is extended, more num-
ber of tasks are accepted and so the active time of PMs increases. 
However, E-DFT outperforms other algorithms by applying load 
balancing and energy consumption model, while distributing the 
tasks and the backups among all the hosts instead of scaling up 
the resources. Finally, the impact of deadline over resource utiliza-
tion is shown in Fig. 11d. When the deadline is short, less number 
of tasks are accepted but those accepted must be executed success-
fully within the deadline. This creates start up of more number of 
PMs for concurrent execution, leading to lower utilization of re-
sources. On the other hand, when the deadline is extended, huge 
number of tasks are accepted satisfying the admissibility test and 
executed without increasing number of PMs, thus leading to max-
imization of resource utilization.

E-DFT mainly focuses on the minimization of response time 
while focusing on the resource utilization, when multiple failures 
occur. In order to show the efficiency of the proposed protocol, 
the failure handling experiment is performed using random failure 
generators for checking the impact of failure on different metrics. 
In E-DFT protocol, when multiple tasks tk1 and tk2 are accepted 
for execution along with one primary copy of each task t p

k1 and 
t p
k2, multiple backup copies are scheduled as tb

k1 and tb
k2, which 

can be further overlapped with other tasks based on the condi-
tion mentioned in Section 4.2 and Algorithm 3. It is implemented 
by using the custom code for reducing the size of two backup 
tasks by 0.15% for achieving the backup tasks overlapping (BTO), 
if backup tasks are scheduled in the same host. Besides, two over-
lapped tasks are merged by adding their sizes to form the fused 
backup tasks for achieving the backup task fusion (BTF), if pri-
maries of both overlapped tasks are scheduled in the same host.

Keeping number of tasks constant at 10000, the number of fail-
ures N f in the range of 100 to 500 are generated, which could 
lead to the simultaneous failures of VMs and PMs. As shown in 
Fig. 12a, Guarantee Ratio is affected by the number of failures. 
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Fig. 10. Number of tasks versus different metrics.

Fig. 11. Base deadline versus different metrics.
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Fig. 12. Number of failures versus different metrics.
With increase in the value of N f , the Guarantee Ratio decreases 
for EDF, DMA and MCT. This is due to failures of PMs and VMs that 
lead to the missing of the deadline of the tasks those are sched-
uled in them. Moreover, in some cases, it was also observed that 
some low priority tasks scheduled a healthy PM is successfully ex-
ecuted. On the contrary, due to poor response times of EDF and 
DMA, the deadlines for some high priority tasks are missed when 
the tasks are re-executed due to failures of the PMs. Despite the 
failures, E-DFT outperforms over EDF, DMA and MCT due to faster 
response time and multiple backups in different hosts and thereby 
the Guarantee Ratio is almost maintained. When there are multiple 
failures, the executions of ongoing tasks are interrupted. However, 
the healthy PMs are already notified by the failed ones accord-
ing to our E-DFT protocol. The healthy PMs with backups start the 
pull-based backup scheduling of the overlapped and fused tasks 
with response time of δ. Although the tasks are executed suc-
cessfully due to multiple backup copies stored in different PMs, 
the average execution time of the tasks is increased as the new 
execution time incurs delay in response. Therefore, as shown in 
Fig. 12b, it leads to delay in response time as with increase in 
the number of failures, the numbers of tasks to be re-executed in-
crease. However, E-DFT performs better over EDF, MCT and DMA, 
since it adopts backup scheduling. The response time for executing 
already-scheduled backup copies is less than finding a suitable PM 
for re-executing the failed tasks as adopted by other algorithms.

Fig. 12c shows the performance impact of N f on response time 
of the four protocols. It can be clearly seen from the Fig. 12c that 
E-DFT has lower response time as compared to EDF, DMA and MCT 
as multiple copies of the backups are already scheduled in differ-
ent PMs. If the PM with t p

k fails, the nearest backup with minimum 
response time is used. This minimizes delay in E-DFT as compared 
to EDF, DMA and MCT, where the re-execution of the failed tasks 
must be carried out by suitably scheduling the tasks on the avail-
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able PMs. This increases the response time and therefore the tasks 
miss their deadlines.

The overhead of this proposed protocol is discussed in terms of 
resource utilization and energy consumption as shown in Fig. 13. 
E-DFT creates multiple backup copies of tasks and schedule them 
in different hosts. In the event of multiple failures, some of the ac-
tive hosts that have executed the primaries may fail, resulting in 
reduction of resource utilization. However, the inactive hosts may 
be active to execute the backup tasks, which aid to improve the re-
source utilization. As a result, as shown in Fig. 13a, E-DFT has bet-
ter resource utilization in comparison to EDF, MCT and DMA, since 
it uses the resources for scheduling of both primary and backup 
copies. In case of failures, the resource utilization that is reduced 
due to failures of primaries is compensated to some extent by im-
proving the resource utilization with execution of the backups. In 
addition, with the use of BTO and BTF mechanism, the overlapped 
and fused backup copies of the tasks are pulled towards τ f ail with 
small delay δ, which is less than L P Stk

b
. This pull-based fault tol-

erant mechanism allows faster completion of tasks and release of 
VMs and PMs resources, which in turn reduces the active time of 
PMs.

In case of failures, the response time for execution of the 
backup tasks is increased. As a result, the PMs need to remain ac-
tive for longer duration. Consequently, the increase in active time 
of PMs results in increase in the energy consumption of the sys-
tem. However, as shown in Fig. 13b, E-DFT has lower active time 
of PMs in comparison to EDF, MCT and DMA, which also lowers 
the energy consumption of the system. As a result, the proposed 
protocol can be used for providing better QoS as required by the 
users and can be used for maximizing the revenue by achieving 
better Guarantee Ratio as desired by the CSPs even in the event of 
failures.
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Fig. 13. Effectiveness of E-DFT in terms of resource utilization and active time of PMs.
6. Conclusion

This paper investigates the elastic pull-based dynamic fault tol-
erant scheduling of different independent tasks in cloud comput-
ing. The scheduling aims to minimize the response time while 
responding to simultaneous failures of PMs and VMs considering 
the resource utilization and guarantee ratio. The resource utiliza-
tion of the proposed protocol is maximized by using BTO and BTF 
techniques in various VMs and multiple hosts. In case of failures, 
the response time is minimized by using our scheduling mecha-
nism through increasing the guarantee ratio. In order to evaluate 
the performance of the proposed protocol, simulation was per-
formed using CloudSim as building block. The proposed protocol, 
E-DFT is efficient in terms of response time, resource utilization, 
guarantee ratio, and energy consumption compared to EDF, DMA, 
and MCT especially during the failures. This work mainly focuses 
on the successful execution of the accepted tasks, while maximiz-
ing the resource utilization and minimizing energy consumption of 
the CSPs. How the CSP could provide better QoS even in the event 
of multiple resource failures is investigated here. Different pricing 
policies adopted for renting the VMs from users’ point of view is 
not considered here. This could be considered as our future work, 
where a user can decide where he wants to submit the tasks based 
on the pricing policy of different CSPs. Failures in case of work-
flows and designing failure prediction model with implementation 
in real cloud computing platform will also be considered as our 
future work to improve the efficiency of the proposed protocol.
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