
Journal of Parallel and Distributed Computing 158 (2021) 80–93

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Dynamic fault tolerant scheduling with response time minimization

for multiple failures in cloud

Pushpanjali Gupta a, Prasan Kumar Sahoo a,b,∗, Bharadwaj Veeravalli c

a Department of Computer Science and Information Engineering, Chang Gung University, Guishan, 33302, Taiwan
b Department of Neurology, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
c Department of Electrical and Computer Engineering, National University of Singapore, 119077, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2021
Received in revised form 22 May 2021
Accepted 26 July 2021
Available online 4 August 2021

Keywords:
Cloud computing
Scheduling
Fault tolerant
Resource utilization

With the increasing demand for large amount of computing resources, the cloud is widely used for
executing large number of independent tasks. In order to successfully execute more tasks and maximize
the revenues, the cloud service providers (CSPs) should provide reliable services, while maximizing the
resource utilization. Providing better Quality of Service (QoS), while maximizing the resource utilization
in the event of failures is a critical research issue which needs to be addressed. In this paper, an
Elastic pull-based Dynamic Fault Tolerant (E-DFT) scheduling mechanism is designed for minimizing the
response time while executing the backups during multiple failures of independent tasks. A basic core
primary backup model is also used and integrated with the backup tasks overlapping (BTO) and backup
tasks fusion (BTF) techniques to tolerate multiple simultaneous failures. Simulation results show that
the proposed E-DFT scheduling can achieve better performance in terms of guarantee ratio and resource
utilization over other existing scheduling algorithms.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The emergence of cloud computing in the recent year has led
to remarkable changes in the world of information technology with
respect to the private and public cloud sectors [16]. With the pro-
liferation of virtualization technology, the adoptions of cloud to
process various data-intensive computations, CPU-intensive com-
putations have become a trend in cloud computing. Running the
jobs on virtual machines (VMs) has become an efficient solution
for scalability, cost-efficiency and high resource utilization [33].
Moreover, the increasing demand for flexibility in obtaining and re-
leasing the resources has resulted in the wider adoption of cloud.
In order to meet such increasing demands of various applications,
many CSPs have built large cloud data centers (CDCs). With the
consequent increase in number of CSPs, the competition among
different CSPs has increased [20]. With the ambition to maximize
the revenue, the CSPs must provide better QoS to the users.

The cloud consisting of data centers is established by inter-
connecting large-scale physical machines (PMs) also referred to
as hosts, which are accommodated with VMs rented to users for

* Corresponding author at: Department of Computer Science and Information En-
gineering, Chang Gung University, Guishan, 33302, Taiwan.

E-mail addresses: d0521006@cgu.edu.tw (P. Gupta), pksahoo@mail.cgu.edu.tw
(P.K. Sahoo), elebv@nus.edu.sg (B. Veeravalli).
https://doi.org/10.1016/j.jpdc.2021.07.019
0743-7315/© 2021 Elsevier Inc. All rights reserved.
providing services using ‘pay-per-usage’ policy [12]. In addition,
different methods for predicting the cost of VMs along with the
workload and power consumption are also adopted by CSPs [22].
While the benefits are huge, there exist many probabilities of fail-
ures due to overloading of PMs, VMs, network congestions and
hardware faults [24]. Moreover, these failures can be transient or
permanent, thereby affecting the deadline-constrained applications
scheduled on the VMs or PMs. As a result, there is increasing need
to address these issues and provide users a reliable cloud to suc-
cessfully execute the accepted tasks. In order to achieve fault tol-
erance, there are various techniques involved such as redundancy
checking for error correction, tolerance policies involving replica-
tion and load balancing for avoiding failures [19]. For the real-time
tasks, scheduling plays an important role in satisfying the users’
requirement, while maximizing the resource utilization. Scheduling
the tasks basically is meant to confirm the successful execution of
tasks such that the deadlines of tasks are met even in the event of
failures [25].

With the unique features such as the creation of multiple VMs
by a single host, migration of VMs and dynamic resource scaling as
per requirements, the cloud can provide benefit in two-fold; firstly,
providing a reliable and secure cloud computing environment to
the users and secondly, maximizing the revenues of the CSPs by
increasing the number of accepted tasks and resource utilization
[34]. Nevertheless, one of the most challenging requirements of

https://doi.org/10.1016/j.jpdc.2021.07.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.019&domain=pdf
mailto:d0521006@cgu.edu.tw
mailto:pksahoo@mail.cgu.edu.tw
mailto:elebv@nus.edu.sg
https://doi.org/10.1016/j.jpdc.2021.07.019

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
Fig. 1. A motivational example showing multiple failures.

users is that the accepted tasks should be successfully executed
within the deadline. In order to satisfy this requirement, the CSPs
should dynamically allocate the computing resources to the tasks
in multiple PMs located in different CDCs lest the tasks should fail
due to PM(s) failure. This is because the failure of a single task
leads to the delay in execution of the task itself only. While on
the other hand, the failure of a VM or PM results in the significant
delay in the execution of all the allocated tasks.

Focusing on the probability of failure due overutilization and/or
overrun of the resources, researchers have proposed different al-
gorithms for preventing the failure occurrences, while consider-
ing the energy minimization [15], load balancing [11] and time-
constraints. In addition to focusing on minimization of energy con-
sumption and maximization of resource utilization, the authors in
[10] have also proposed resource allocation framework to reduce
the overheads caused due to migration. Similarly, authors in [18]
have proposed the proactive fault tolerant approach to search for
the optimal PM. The selected PM acts as the target for migrating
the VMs from failing PMs. Irrespective of the type of failure, the
scheduling performance and resource allocation is affected signif-
icantly. If the PMs are overloaded, the failure occurs due to over-
run. On the contrary, if the PMs are underloaded, this allocation
leads to the poor utilization of resources. Therefore, a fault-tolerant
scheduling mechanism, which not only focuses on maximization of
revenues for CSPs but also guarantees the successful execution of
the accepted tasks should be developed.

1.1. Motivations

The main objective of the cloud computing is to provide plat-
forms for different services, which can be easily used by different
types of users with various applications. When a user’s task is
accepted by a CSP, it is the responsibility of the CSP to provide
resources for successful execution of the task. However, due to var-
ious reasons such as overrun, overloading and network failures, the
PMs and thereby the VMs present in the CDCs experience transient
or permanent failure. The failures of PMs and VMs cause degra-
dation in the QoS provided by the CSPs. Besides, sometimes such
failure cannot be tackled well by the CSPs, leading to the failure
of the tasks scheduled on the failed PMs and VMs. Although many
research works have been carried out to handle the failure issues
occurring in the cloud, very little attention has been paid to han-
dling multiple failures that occur simultaneously. In addition, when
there are multiple failures of VMs or PMs, multiple backups must
be scheduled efficiently in different PMs with minimum resource
consumption towards minimizing the overall response time of the
tasks.

For example, as shown in Fig. 1, let us consider a scenario when
a task t1 arrives for execution. Usually, t p

1 , a primary copy of t1 is
scheduled in host hi and the backup copy tb

1 is scheduled in host
h j . During execution of t p

1 , hi may crash. Since, only one host is
failed, backup copy of t1 can be executed, leading to the execu-
tion of tb

1 at its scheduled place. This increases the waiting time of
the task t1. On the other hand, if both hi and h j crash simultane-
ously, both copies of t1 are lost. This results in poor performance of
81
cloud. One possible solution for providing better services is to cre-
ate multiple copies of a task and schedule them in different hosts
[14]. Though this can reduce the probability of loss of all copies,
this can in turn increase the resource consumption. However, the
resource consumption can be minimized as a whole, which gives
benefit to both the users and CSPs when multiple copies of differ-
ent tasks can be overlapped and fused together. In addition, when
a failure of task is encountered, if one of the multiple backup
copies of task can be executed at nearly next instance of failure
time instead of waiting until the Latest Possible Start (LPS) of the
failed task, there is two-fold benefit for the CSP. These are, firstly
the impact of another failure within LPS time of the task can be
avoided and secondly, the resources occupied by the task can be
released when the task is already executed. Following this idea,
in this paper, we attempt to design an Elastic pull-based Dynamic
Fault Tolerant (E-DFT) scheduling mechanism.

1.2. Main contributions

Consequently, in order to improve the performance in terms of
resource utilization and minimizing the response time of tasks, the
following contributions are made in this paper:

1. An overlapping technique referred to as backup tasks over-
lapping (BTO) is designed and evaluated, which extends the
traditional primary backup model in cloud to minimize the
storage space required for the backup copies of tasks. This
model helps in maximizing the resource utilization using fault
tolerant scheduling mechanism.

2. A backup tasks fusion technique is designed and evaluated to
integrate multiple tasks as a single task thus minimizing the
switching time between tasks allocated to same host and also
maximizing resource utilization.

3. A pull-based fault tolerant mechanism is developed and eval-
uated, which can pull the backup copies of task(s) for faster
response time with a small delay in response. Using this pull-
based technique, the response time of the backup execution
could be minimized and the guarantee ratio could be maxi-
mized leading to maximization of the resource utilization and
revenue.

4. The E-DFT scheduling can tolerate multiple number of failures
that occur at a particular instance of time, considering energy
and load balancing models to reduce the number of failures
due to overloading and overrun

5. The proposed E-DFT achieves better guarantee ratio and re-
source utilization as compared to other protocols even in the
event of multiple failures occurring simultaneously.

The remainder of this paper is organized as follows. Section 2
presents review of the related works. Section 3 presents the system
model followed by the proposed protocol in Section 4. Simula-
tion results and comparisons of the proposed protocol with other
protocols are presented in Section 5. The concluding remarks are
made in Section 6.

2. Related works

Scheduling of tasks in the form of jobs and requests has been
extensively studied over the past few years [3]. In [5], the au-
thors proposed the VM provisioning algorithm for time sensitive
requests and workflow considering the deadline. The tasks are
scheduled considering the priority and types of VM instances.
In [32], authors have proposed scheduling mechanisms of delay
bounded tasks in hybrid cloud. Focusing on cost minimization as
main goal, the tasks are scheduled in FCFS, depending upon the
workload the tasks are scheduled in private and public cloud. The

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
authors in [31] proposed an algorithm to maximize the tasks’ ac-
ceptance rate and the throughput of a private cloud. When ex-
ceeding capacity, the private cloud outsources some tasks to pub-
lic cloud considering the deadline be met. Nevertheless, the time
taken to migrate the tasks from private to public is considered
negligible, a very sensitive assumption in case of delay bounded
tasks. Similarly, the authors in [17] have proposed an approach to
increase the resource utilization by accepting more jobs within a
given time. The launching time of accepted jobs is postponed to
the time until which the deadline can be satisfied. However, in
cloud the traffic rate fluctuates, which might cause failure due to
postponing the application. Thus, there is possibility that the job
might miss the deadline. When considering the failure probabil-
ity of resources, the above proposed mechanisms might miss the
deadline of workflows and tasks leading to performance degrada-
tion.

On the other hand, if failure occurs, the performance of the
cloud can be maintained by using resubmission, particle swarm
optimization based strategies [30] and replication [21] techniques.
In resubmission, the task after failure in one resource is re-
executed on other normal computing resources. Some systems
use replication techniques to execute several copies of a task for
supporting fault tolerance while guaranteeing tasks’ execution be-
fore their deadlines. For instance in [27], authors have proposed
the mixed integer programming based scheduling of direct acyclic
graphs with optimal duplication strategy on homogeneous multi-
processor system. However, such systems endure relatively large
resource consumption, and might not be applicable for large cloud
computing scenario Similarly, in [8] the authors have proposed
proactive and reactive scheduling mechanism for the aperiodic
tasks considering uncertain cloud environment while guarantee-
ing QoS by minimizing the energy consumption. On the contrary,
in [1] the authors proposed fault tolerance aware scheduling for
tasks based on dynamic clustering league championship algorithm.
The proposed fault aware techniques helps the scheduler be aware
of resources and failures in the environment, which results in sig-
nificant reduction in failures.

In order to reduce the consumption of resources for backup
copies, a technique for overlapping the backups is developed for
fault tolerant scheduling in heterogeneous systems. In [35], fo-
cusing on the overlapping technique and considering dynamic
scheduling, authors have developed two dynamic algorithms for
the scheduling of backups of independent and dependent tasks
in grids. Although the proposed mechanism considers the failure
of nodes in grids consisting of clusters, when considering cloud,
the strategy might not be applicable, due to geo-distributed loca-
tions, bandwidth and cost of replication to be considered during
the selection of data centers for replication. Considering the max-
imization of resource utilization, the authors in [29] addressed
the fault tolerant scheduling taking into account the elasticity of
VM migration and virtualization technology of cloud. On the other
hand, in [2], considering the checkpoint concept a reactive fault
tolerance technique is proposed for distributed environment. Us-
ing the flexible checkpoints, the fault detector module maintains
record of the allocated virtual machines and prompts the sched-
uler to reschedule the applications in another VM in case of failure
of the originally assigned VMs. Although extensive studies have
been carried out in both static and dynamic scheduling of tasks,
requests, workflows in private, public and hybrid cloud, very few
works focus on handling multiple failures occurring in the cloud
[9]. In addition, when multiple failures occur in the cloud, all the
tasks are to be executed through their backup copies. However,
this might not be achieved when only one backup copy of the
task is made, which also fails along with primary copy of task.
Besides, the minimization of response time in case of multiple fail-
ures while considering maximization of resource utilization of the
82
Fig. 2. Earliest possible start time and latest possible start time of a task.

CSPs is not studied. Therefore, considering the issues such as mini-
mization of the response time while handling multiple failures and
maximization of resource utilization, E-DFT has been proposed in
this study.

3. System model

In this section the architecture of the proposed scheduling and
fault tolerant structure is described, which consists of PMs, VMs
distributed over the cloud. The PM or the host is referred to as
hi that consists of heterogeneous resources Ci , Mi and Si to de-
note the total amount of CPUs, memory, and storage of the host hi ,
respectively. Using these resources, the host hi can host multiple
VMs with same or different configurations of CPU, memory or stor-
age resources, which is clearly elaborated in Section 3.2. These VMs
are responsible for performing the execution of accepted tasks.
When a task is submitted to cloud, it is expected that the task
will be successfully executed within the deadline with minimum
resources based on the size and deadline of task. The user’s pri-
mary requirement would be successful execution of the submitted
task satisfying the deadline constraint while the CSP’s requirement
is to maximize the revenue while satisfying user’s requirement.
In order to address this conflicting objective, an attempt is taken
to design an Elastic pull-based Dynamic Fault Tolerant schedul-
ing mechanism referred to as E-DFT scheduling. Consequently, the
preliminaries about different terms used in the proposed proto-
col are described. Besides, different models such as cloud model,
task allocation model, fault model, etc., are discussed. Furthermore,
the types of tasks to be submitted with their attributes are also
elucidated. Along with these, the notations and descriptions of fre-
quently used symbols are summarized in a quick reference Table 1.

3.1. Preliminaries

1. Earliest Possible Start (EPS)
The Earliest Possible Start (EPS) of a task is defined as the
soonest possible time at which a task can start its execution
with least delay as shown in Fig. 2a. In this case, the primary
copy of a task tk can be started when all of the tasks ahead
of it in the queue q have been scheduled. It is mathematically
defined in Eq. (1).

E P St p
k

=

⎧⎪⎪⎨
⎪⎪⎩

0 |q| = 0
|q|∑

a=1

eij
ta

|q| > 0,a �= k

⎫⎪⎪⎬
⎪⎪⎭ (1)

where
∑|q|

a=1 ei j
ta

is the summation of execution times for all
tasks ahead of t p

k in the queue scheduled in VM v j , which is
hosted by hiεHǎ .

2. Latest Possible Start (LPS)
The Latest Possible Start (LPS) of a task is the maximum time
to which the start of a task can be delayed after its failure in
order to complete its execution without violating the deadline

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93

Table 1
Notations and descriptions.

Notations Descriptions

tk The kth task
hi The ith host
vij The jth VM hosted in ith host
ak The arrival time of kth task
sk The size of kth task
dk The deadline of kth task
τ f ail The time of failure
δ A constant representing delay in response after failure(s) has occurred
t p
k The pth primary copy of kth task

tb
k The bth backup copy of kth task

Hǎ The set of hosts containing all hi in active mode
Hâ The set of hosts containing all hi in inactive mode
H The set of hosts containing all hi , where H = Hǎ ∪ Hâ

ei j
t p
k

The execution time required by t p
k when executed in vij

to
k The oth overlapped backup copy of tk

t f
k The f th fused backup copy of tk

ei j
to
k / f The execution time required by oth overlapped backup copy or f th fused

backup copy of tk when executed in vij

E P St p
k

The earliest possible start time for the pth primary copy of kth task

L P Stb
k

The latest possible start time for the bth backup copy of kth task

L P Sto
k

The latest possible start time for the oth overlapped backup copy of tk

L P S
t f
k

The latest possible start time for the f th fused backup copy of tk

STtb
k

The start time of bth backup copy of kth task

ftk The fault tolerant time for kth task
c j(τ) The available amount of CPU resources in jth VM at time instance τ
m j(τ) The available amount of memory in jth VM at time instance τ
s j(τ) The available amount of storage in jth VM at time instance τ
Ci The total amount of CPU resources in ith host hi

Mi The total amount of memory in ith host hi

Si The total amount of storage in ith host hi¨lp
k (τ) The status of pth primary copy of kth task in vij
˘li j(τ) The load of vij at time instance τ

ĺi(τ) The load of hi at time instance τ
E∗(hi) The total energy consumed by host hi while executing both primary and

backup copies of tasks
Fig. 3. System architecture of the proposed scheduling mechanism.

as shown in Fig. 2b. The LPS of a task takes into account the
execution time of the backup copy tb

k in the available VM vij

as given in Eq. (2).

L P Stb
k
= dk − eij

tb
k

(2)

3. Fault Tolerant Time (ftk)
Fault tolerant time of a task tk is defined as the time duration
between the EPS and LPS of a task. Based on the value of ftk ,
the tasks are accepted by the scheduler for execution. This will
be further discussed after the strategy used in this paper is
introduced in later section.
83
3.2. Cloud system model

Let us consider that there exists a set of VMs represented as
V = {v1, v2, ..., vz} consisting of z number of VMs. Each VM v j is
associated with three different tuples c j(τ), m j(τ) and s j(τ), rep-
resenting the available resources CPUs, memory and storage of v j
at time τ , respectively. These VMs are hosted in the PMs with dif-
ferent configurations. Due to various factors such as the ongoing
maintenance of the PMs or failures of the tasks at a particular in-
stance of time, certain number of PMs may reside in the cloud
which may be in active mode Hǎ and certain number of PMs may
be in inactive mode Hâ . Thus, the total number of PMs can be
aggregated as a set H = Hǎ ∪ Hâ including both active and in-
active PMs. Since, the hosts hiεH are heterogeneous, they can
accommodate different number of VMs with varying configura-
tions. Let n be number of tasks represented in the form of set
T = {t1, t2, t3, ..., tn}. Each task tk has certain attributes such as the
arrival time ak , size sk and more importantly the deadline dk . In
order to maximize the utilization of the resources and to complete
the execution within the deadline, these tasks are scheduled si-
multaneously in different VMs of same or different hosts.

3.3. Scheduler characteristics

In order to have an efficient scheduling mechanism, the sched-
uler performs an admissibility test and then only forwards the
accepted tasks to the task allocation model, as shown in Fig. 3.
At a particular time instance τ , the scheduler considers a set of
tasks T = {t1, t2, t3, ..., tn} with their respective attributes {ak , sk ,

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
dk}. Since, multiple tasks may arrive to the cloud at the same time,
the tasks are stored in a queue based on the First Come First Serve
(FCFS) principle. If two tasks arrive simultaneously, the tasks are
further arranged on the basis of earliest deadline first. The size of
a task represents the resource required by a tasks to complete the
execution before deadline. For each task tk , the time required (Tr)
to execute the task can be estimated as follows:

Tr = sk/p j(τ)

where, p j(τ) is the processing speed of the fastest available VM at
time τ . When Tr > dks , the task tks cannot be accepted for com-
pletion within the deadline. Therefore, the scheduler performs the
admissibility test based on the following Eq. (3) to avoid the ac-
ceptance of such type of tasks.

tk =
{

Accept i f dk > E P St p
k

+ eij
t p
k

Reject otherwise

}
(3)

where, dk is the deadline for task tk , E P St p
k

is the time taken for

scheduling the primary copy of tk , and ei j
t p
k

is the time taken to ex-

ecute the t p
k in vij . Using Eq. (3), the tasks are filtered out and the

set containing the accepted tasks T̈ is forwarded to the task alloca-
tion model. It is to be noted that Eq. (3) is used for the scheduling
of the primary copies of tasks. If the primary copies of the tasks
are scheduled for the execution before the deadline, the schedul-
ing of backup copies are certainly accommodated using either the
passive backup or active backup procedure as illustrated in Fig. 4.

3.4. Task allocation model

In order to have successful execution of the tasks while tolerat-
ing multiple failures, multiple copies of the task tk are made that
comprise one primary and multiple backup copies. The primary
copy t p

k is scheduled on the suitable vij considering the status of
pth primary copy of kth task in vij at time τ , which is denoted as
¨lp
k (τ) and is deduced in Eq. (4).

¨lp
k (τ) =

⎧⎨
⎩

+1 Task is ongoing
0 No Task is executed

−1 Task has successfully executed

⎫⎬
⎭ (4)

Based on the status of the task in vij , the load of each VM can
be calculated as given in Eq. (5).

˘li j(τ) =
tc∑

p=1

¨lp
k (τ) (5)

where, ˘li j(τ) depicts the load of VM vij at time τ and is calculated
as the summation of the loads of different currently scheduled
tasks in the set Tc , tcεTc . Based on the above Eq. (5), the vij with
least value of ˘li j(τ) is chosen first for the scheduling of t p

k . The
remaining multiple copies are referred to as backup copies of tk .
These copies of task are scheduled by the fusion controller and
backup controller as discussed in Section 4.2.

3.5. Fault model

Considering the main goal of handling multiple failures with
minimum response time, a fault tolerant model is described in
this sub-section. After the primary copies of accepted tasks are
scheduled onto the hosts, the information about the scheduled
primary copies are sent from the task allocator to the backup con-
troller. Now, the backup controller is responsible for scheduling
84
the backup copies. The backup copies of tk are to be scheduled
onto the hosts other than the one hosting t p

k . The host hi cho-
sen for storing the backups is the one that has either no primary
scheduled or very few primaries scheduled and it can complete the
execution of backup copy within the deadline with minimum cost.
The failure can be transient or permanent leading to missing the
deadline of the tasks and ultimately severe loss of revenue. In or-
der to avoid this, it is assumed that the host hi informs other hosts
hgεH before it is shutdown completely. Along with this, the host
hiεH and VMs fail due to various unpredictable factors such as
overloading and higher temperature due to overrun. At a particular
time instance τ f ail , there are multiple failures (say ω) of VMs and
PMs. It is beyond the scope of this paper to design failures detec-
tion mechanisms. Hence, without loss of generality we assume that
failures detection mechanisms exist to detect the failures of PMs.
Therefore, there is no allocation of tasks among the failed PMs or
VMs. When failures are detected [23], the information is sent to
all healthy PMs containing the backups. This triggers the execu-
tion of backups of the corresponding failed tasks from that failure
time τ f ail . On the other hand, when the primary copy of the task
is successfully executed, the success message is broadcast to other
PMs to free the resources occupied by the backup copies. As per
our assumptions, the hosts that are considered for the scheduling
of the backups would not schedule any primary copies. Therefore,
it would not impact the execution of backups after failure at τ f ail .

Along with fault tolerant scheduling mechanism, this work aims
to maximize the resource utilization. Therefore, the backup tasks
overlapping (BTO) and backup tasks fusion (BTF) techniques are
used here. The backups copies are scheduled based on the LPS time
of task. In case of BTO technique, two tasks tk1 and tk2 can overlap
their backups if host(tb

k1) = host(tb
k2). However, in order to fuse the

backup copies of tk1 and tk2, the host of both t p
k1 and t p

k2 should
be same and STt p

k2
> STt p

k1
. When two tasks are scheduled onto

one host, they are combined together in terms of sharing resources
and treated as one unit. We refer to the combination of tasks into
a single unit as BTF technique. Thus, using BTF guarantees that
the respective hosts for fused tasks are same and this property
plays a vital role in our algorithm, which maximizes the resource
utilization and minimizes the switching time between the tasks.

3.6. Energy model

It is to be noted that the probability of failure due to overrun is
directly related to the energy consumed during the run time and
increase in temperature of host hi . If a particular host hi is chosen
as a suitable candidate for executing the tasks for a long time the
host hi may encounter a physical failure due to an increase in tem-
perature. In order to avoid the failure due to overrun the consumed
energy E∗ must be calculated using Eq. (6). Consequently, the total
energy consumed by a host hi can be represented as the sum of
energy consumed by the primary copies of tasks, backups of tasks
if primary copies fail and active backup tasks as follows:

E∗(hi) = P ∗
{ m∑

r=1

eij
t p
k

+
x∑

r=1

eij
to
k
+

y∑
r=1

eij

t f
k

+
c∑

r=1

eij
per(t

b
k)

}
(6)

where, m represents total number of primary copies of m different
tasks, x and y represent the total number of overlapped and fused
copies of all backup tasks, respectively. Finally, c gives the total
number of backup copies of tasks, which are executing concur-
rently with the primary copies of tasks. The variable ei j

t p
k

represents

the execution time of the primary copy of the task, ei j
to
k

and ei j

t f
k

show the execution time of the overlapped and fused backup copy
of the task, respectively. The notation ei j

per(t
b) is the execution time
k

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
of an active task executed in the host hi . The execution time of
primary copies, overlapped copies, and fused copies of different
tasks are independent of each other. After multiplying the power
consumed P with the total execution time of tasks, the energy
consumed by the host is obtained. Furthermore, the total energy
consumed by the system can be obtained by the summation of en-
ergy consumed by each host hi that belongs to H = Hǎ ∪ Hâ . In this
work, it is always aimed to minimize the total energy consumed by
the system by minimizing the active duration of the PMs. It is as-
sumed that the total power consumption P can be found within
the list of specification details of the physical host when it is used
for the virtualization. Based on the calculated value of the total
power, the backup controller will attempt to choose a host hi with
lower E∗ for scheduling of the backup copies, since the higher E∗
for hi implies the higher probability of failure due to overrun.

3.7. Load balancing

In case of CDCs, the load of each host is usually different from
the other. This is because each host hi is heterogeneous in terms
of different resources. Consequently, the number of VMs allocated
to each host hi also varies. In order to accommodate more number
of tasks in VMs while avoiding the overloading, a load balancing
scheme is applied to improve the performance of each host hiεH.
Besides, v j is assigned to host hi taking into account the current
load of the host hi at time τ as presented in Eq. (7).

ĺi(τ) =
|Q |∑
j=1

l̆ j(τ) (7)

where, l̆ j refers to as the total load of v j at time τ and Q repre-
sents the set containing all v j associated with host hi . When there
are failures of primary copies of different tasks, backup copies of
all failed tasks are activated in different hosts leading to uneven
distribution of loads among the hosts hiεH. Therefore, there is
the VM migration policy adapted to have load balancing, which
is possible throughout the execution of tb

kε T̈ . This VM migration
is carried out to allow parallel execution of backup copies of dif-
ferent tasks of the hosts, which cannot execute the backup of all
failed tasks simultaneously due to resource constraint. This pro-
cess is a tradeoff between the waiting time for the execution of
the backup copy of a task tk at L P S

to/ f
k

in the current host hi and
the delay time α required for that task to migrate to hg for exe-
cuting the backups following the pull-based mechanism. However,
care must be taken during the VM migration that the destination
hg is not overloaded. Therefore, a threshold value is set for the mi-
gration of VM from the host hi to hg . This is calculated by the
mean of least loaded host (l̇hg1 (τ)) and most loaded host (ẋlhg2(τ))
at a particular time τ as given in the following Eq. (8).

ϒ(τ) = ∀H(ẋlhg1(τ) + l̇hg2(τ))/2 (8)

After each migration of VM, the values of l̇hg1 (τ) and ẋlhg2(τ) are
updated. Besides, a host is considered suitable as long as the value
of destination host satisfies the Eq. (8).

4. Elastic pull-based dynamic fault tolerant (E-DFT) scheduling

In order to maximize the resource utilization and minimize
the response time for backups execution after ω number of si-
multaneous failures, an Elastic pull-based Dynamic Fault Tolerant
scheduling mechanism referred to as E-DFT scheduling is proposed
in this work.
85
Algorithm 1 Tasks Filtering.
Input: Set of arriving tasks T : {t1,t2,...,tn}, and available VMs V : {v1,v2,...,vz}.
Output: Set of accepted tasks T̈ : {φ}.
1: while tkεT do
2: if Tr > dk then
3: Task ought to be rejected;
4: end if
5: Perform the admissibility test of each tkεT ;
6: T̈ = {T̈ } ⋃ tk ;
7: end while

4.1. Task filtering and scheduling of primaries

Let us assume that multiple tasks arrive at different arrival
times ak , each with size sk and deadline dk . The arriving tasks are
represented using a set T consisting of n number of tasks. More-
over, there exists some v jεV with processing speed p j(τ), which
may execute fewer or no tasks at time τ . For each task tk , the
total time required to execute the task is calculated as Tr . If the
Tr exceeds the given deadline of task, the task is rejected as de-
scribed in the Algorithm 1 (Lines 1 - 4). Next, the admissibility test
is performed using Eq. (3) to decide the scheduling of the primary
considering the accepted tasks those are stored in a set T̈ (Lines 5
- 6).

Algorithm 2 Scheduling of Primaries.
Input: Set of accepted tasks T̈ as input from Algorithm 1

A = {(a1, s1, d1), (a2, s2, d2)...(ak, sk, dk) |kε T̈ }, set of arrival time,
size and deadline of each task, available VMs V : {v1,v2,...,vz}. V ∗ = {φ}, H∗ =
{φ}.

Output: Information of scheduled primaries.
1: for v jεV do
2: Calculate the status of tasks in the v j ;
3: Calculate the load of v j ;
4: V ∗ ← Sort V based on increasing load of v j ;
5: end for
6: for hiεHǎ do
7: Calculate the Load of hi ;
8: H∗ ← Sort Hǎ based on increasing load of hi ;
9: end for

10: Map the top v j to top hi of V ∗ , H∗ , respectively;
11: while tkε T̈ do
12: if ak1 < ak2 then
13: Schedule tk1 at E P St p

k1
< E P St p

k2
;

14: else if ak1 = ak2 then
15: if dk1 < dk2 then
16: Schedule tk1 at E P St p

k1
< E P St p

k2
;

17: end if
18: end if
19: Update the load of v j and hi and sort the queue V ∗ and H∗ , respectively;
20: end while

In the scheduling of primaries stated in Algorithm 2, the objec-
tive is to schedule the primary copies of different tasks tkε T̈ . As
given in Algorithm 1, the filtered tasks form a new set T̈ , which
is forwarded to the task allocator for the scheduling of primaries.
For the scheduling of tasks in different VMs, the status of different
tasks present in v jεV is determined using Eq. (4). Consequently,
the current load of the v jεV is calculated using Eq. (5) (Lines 1 -
5). The VMs are sorted in ascending order of loads to form a new
set V ∗ after determining the loads of different VMs. Similarly, the
loads of hosts, hiεHǎ at time τ are estimated using the Eq. (7) and
sorted in ascending order, H∗ (Lines 6 - 9). The sorting of PMs and
VMs is followed by mapping the top v jεV ∗ to top hiεH∗ (Line
10). This mapping allows the scheduling of tkε T̈ based on their ar-
rival time ak . If two tasks tk1 and tk2 have same arrival time, i.e.,
ak1 = ak2, the task with earlier deadline is scheduled first (Lines
12 - 18). After each iteration of scheduling, the status of task is
updated in v jεV ∗ and also the loads of v j and hi are updated. Fi-
nally, V ∗ and H∗ are also sorted in ascending order (Line 19) and
the process is repeated until T̈ becomes empty.

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
Fig. 4. Fault tolerant time.

Theorem 1. In case of Fault Tolerant Scheduling, when STtb
k

≤ ftk ≤
L P Stb

k
is satisfied, the failures can be tolerated.

Proof. Let tk be a task with arrival time ak = τ1, size = sk and
deadline = dk . Supposing the waiting time = 0, tk is scheduled
at E P St p

k
= τ1 calculated using Eq. (1). Considering the process-

ing speed of available v jεV the L P Stb
k

= τ2 (say) is calculated as
given in Eq. (2). The time duration between τ1 and τ2 is the ftk ,
as shown in Fig. 4. If any task fails after τ2, the start time for ex-
ecution of backup copy of task tk , STtb

k
becomes τ2 + δ, which is

τ2 +δ > L P Stb
k

. Eventually, the starting of execution of backup copy

of task tk at STtb
k

= τ2 + δ followed by the execution time ei j

tb
k

ex-

ceeds dk . Therefore, the failures that occur until τ2 time duration
can only be tolerated by the system and exceed τ2, which leads to
miss the deadline. �
4.2. Scheduling of backups

When a task is accepted for execution, the information is pro-
vided to the backup and fusion controller using the Algorithm 2
after the primary copy is scheduled in a host. The backups of a task
must be scheduled on hosts hiεH, which do not contain any pri-
mary or very few primaries as described in Algorithm 3. In order
to choose the suitable hosts for the scheduling of backup copies
of tasks, the backup controller checks the energy consumed and
load of the hiεH, which are determined as given in Lines 1-9. Af-
ter sorting the hosts in ascending order of the energy and load
of each PM, ω number of backup copies are created and sched-
uled at L P S

to/ f
k

in the hosts for every task tkε T̈ those have less
loads. The energy, load and load threshold of hi are updated us-
ing Eqs. (6), (7), and (8), respectively (Lines 2-6). Furthermore, the
fusion controller checks if two tasks belong to the same hosts.
Upon satisfying the required condition (Line 8), the fusion con-
troller overlaps the backup copies of different tasks to

k1 and to
k2 to

minimize the resource consumption. It is assumed that two tasks
tk1 and tk2 can be merged and compressed to reduce the storage
space required by them if they are in the same host as adopted in
[4]. Besides, if two overlapped tasks have primary copy scheduled
in same host: hi(t

p
k1) = hi(t

p
k2), the overlapped copies of those tasks

are fused together into a single task. This allows the minimization
of switching time between the tasks belonging to the same host
(Lines 10-13).

Now, when there are multiple failures at time τ f ail , the backup
copies of tasks are pulled to τ f ail+δ in a v jεhi . Since, there are
both overlapped copies and fused copies of the tasks, the fused
copies of the tasks are pulled if hi(t

p
k1) = hi(t

p
k2). On the other

hand, if hi(t
p
k1) �= hi(t

p
k2), just the required overlapped copies of

tasks are pulled to τ f ail+δ and are executed. The algorithm ter-
minates after successful execution of all tasks tkε T̈ (Lines 14-20).
86
Algorithm 3 Fault Tolerant Scheduling of Backups.
Input: Information of scheduled primary tasks as input from Algorithm 2.
Output: Applied fault tolerant mechanisms.

1: Calculate the Energy consumed by hi ;
2: while tkε T̈ do
3: if E∗(hi1) < E T & ĺi(τ) < ϒ(τ) then
4: Create ω copies of tb

k and schedule at L P S
to/ f
k

in hi1εH∗;

5: Update Energy, Load, Load Threshold of hi1;
6: end if
7: end while
8: if L P St p

k2
> L P St p

k1
then

9: Overlap copies of to
k1, to

k2 in hi1εH∗;

10: if hi(t
p
k1) = hi(t

p
k2) then

11: Merge to
k1, to

k2 and form fused copies t f
k1, t f

k2 to be scheduled
at L P S

t f
k1

in hi2εmathbbH∗;

12: end if
13: end if
14: while (There are failures of tasks t p

k1, t p
k2 at time τ f ail) do

15: if hi1(t p
k1) = hi2(t p

k2) then
16: Pull the fused copy to τ f ail+δ and execute it;
17: else if hi1(t p

k1) �= hi2(t p
k2) then

18: Pull the overlapped copy of to
k1 to τ f ail+δ and execute it in v j2εV ;

19: Pull the overlapped copy of to
k1 to τ f ail+δ and execute it in v j1εV ;

20: end if
21: end while

Fig. 5. Handling multiple failures, 1 ≤ ω < |H|.

Theorem 2. For any task tk accepted for scheduling, the number of fail-
ures tolerated is 1 ≤ ω < |H|, assuming all failures occur within ftk .

Proof. Let tk be a task with arrival time ak = τ1, size = sk and
deadline = dk . Assuming the waiting time = 0, tk is scheduled at
its E P St p

k
= τ1. Considering the processing speed of the available

v jεV , the L P S
to/ f
k

= τ2, as shown in Fig. 5.

For achieving fault tolerant scheduling, multiple backup copies
of tk are placed in multiple hosts {h1, h2,..., hω}, hiεH and (say
i = 0). Let us consider there are multiple failures of hosts h1, h2,...,
h f , f < ω at time τ f ail such that τ1 < τ f ail ≤ τ2. As seen from
Fig. 5a, τ f ail lies within ftk . Therefore, a backup copy of tk is pulled
from τ2 to τ f ail+δ < τ2 in host hω for achieving the fault tolerance,
Fig. 5b. Hence, the system tolerates multiple failures ω, ∀i ≤ ω <

|H|. �
Lemma 1. Using E-DFT response time is minimized when failure occurs
during ftk .

Proof. Let tk be a task with arrival time ak = τ1, size = sk and
deadline = dk . Assuming the waiting time = 0, tk is scheduled at its
E P St p

k
= τ1. Considering the processing speed of available v jεV ,

the L P S o/ f = τ2, as shown in Fig. 6.

tk

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
Fig. 6. Pull-based mechanism.

Fig. 7. Storage area minimization using BTO.

Let us consider t p
k fails at time τ f ail . This failure information

is sent to all healthy hosts containing the backups tb
k . In gen-

eral, the execution of backup copy starts at τ2 such that the task
is successfully completed at dk . However, using the proposed E-
DFT, the backup copy, tb

k is pulled to τ f ail+δ , assuming δ as the
response time. Hence, the execution of tb

k is successful at time
τ f ail+δ + sk/p j < dk . Therefore, the proposed mechanism minimizes
the response time efficiently. �
Lemma 2. The storage resource for two tasks tk1 and tk2 with similar
arrival times ak1 � ak2 can be minimized by overlapping them.

Proof. Let tk1 and tk2 be two independent tasks with arrival times
ak1, ak2 and deadline dk1, dk2, respectively. Based on Theorem 2,
the backups of tk1 and tk2 can be overlapped as shown in Fig. 7a
with space requirement ω∗(sk1 + sk1 −overlap(sk1k2)) for h|ω|ε|H|.
Let us consider there are failures of h1 and h2 at τ f ail . In order to
have faster response, the overlapping backup copies to

k1 and to
k2

are pulled to τ f ail+δ as demonstrated in Fig. 7b, minimizing the
response time for execution of backups. �
Lemma 3. If the overlapping copies of the tasks tk1 and tk2 are in the
same host, to

k1 and to
k2 can be fused as t f

k1 and t f
k2 , thus minimizing the

switching time during execution of the backups of a single host hi.

Proof. Let tk1 and tk2 be two independent tasks with arrival time
ak1, ak2 and deadline dk1, dk2, respectively. The tasks belong to the
same host. Therefore, both can have their backups fused in the
form of t f

k1 and t f
k2. If failure occurs at τ f ail as seen in Fig. 8a, some

time is required by the system to recover. To overcome such tran-
sient failure, the fused copies of the tasks of same host is pulled to
τ f ail+δ and are executed, as shown in Fig. 8b, saving the switching
time between the tasks of the same host. �
Theorem 3. The time complexity for scheduling of primaries in E-DFT
algorithm is O(m logm), where m is total number of accepted tasks.
87
Fig. 8. Saving switching time using BTF.

Proof. In the Algorithm 1, the time taken for admissibility test of
n tasks is O(n) and sorting m tasks using Heapsort is O(m log m)

time. The worst case time complexity is O(m log m), when all tasks
are accepted (n = m). The time taken by Heapsort for sorting
VMs and PMs in Algorithm 2 (Lines 1-5) and PMs (Lines 6-9) is
O(z log z) and O(|Hǎ| log |Hǎ|), respectively. The scheduling of pri-
mary copies of accepted tasks requires O(m) time. In worst case,
one task is assigned to one VM (m = z) and number of VMs is al-
ways greater than number of PMs. Hence, the time complexity for
scheduling of primaries in EDF algorithms is O(m log m). �
Theorem 4. The time complexity for scheduling and executing the back-
ups in E-DFT algorithm is O(m), where m is total number of accepted
tasks.

Proof. The time complexity for scheduling the backups in Algo-
rithm 3 is O(m) (Lines 2-6) and for executing the backups is O(ω)

(Lines 8-20), where ω is the number of failures. As a result, the
worst case time complexity for scheduling and executing the back-
ups in E-DFT algorithm is O(m), when all accepted tasks have
failed. �
4.3. Example of E-DFT

In order to have a comprehensive idea about the working of the
proposed E-DFT mechanism, an illustration is provided in this sec-
tion. For the working, let us consider there are five tasks in a set
T = {t1, t2, t3, t4, t5} with three different integers in the brackets,
as shown in Fig. 9 representing ak , sk and dk , respectively for each
task. The dk is the maximum time that can be allotted to com-
plete the task tk . Before accepting the tasks, Tr is used to check
whether deadline for the task is suitable for acceptance. Consid-
ering p j(0) = 500 of available v j , it is found that Tr for t1, t2,
t3, t4 is less than their deadlines 16, 20, 1.5, 7, respectively. How-
ever, the task t5 has d5 = 20 for s5 = 40000, which causes the
rejection of t5, since Tr = 80 is greater than deadline. Assuming
the waiting time is equal to zero, the E P St p

k
is also considered as

zero, making the scheduling possible as soon as the task is ac-
cepted. Finally, there is a list T̈ = {t1, t2, t3, t4} to be scheduled
using E-DFT for successful execution in case of multiple failures.
In phase 1 of the E-DFT scheduling as shown in Fig. 9, the tasks
are scheduled on the different hosts hi considering the earliest
possible start time of the tasks. Along with this, loads of the
hosts are also checked to schedule the tasks. It is assumed that
loads of hosts ĺ1(0) < ĺ2(0) < ĺ3(0) in the initial phase. Therefore,
the primary copy t p

1 is scheduled in h1 based on early possible
start time. Both t2 and t3 arrive at time a2 = a3 = 1. However,
d3 < d2, which allows t p

3 to be scheduled in h2 followed by t p
2 in

h3 and so on. It can be observed that updated loads at τ = 5 are
ĺ2(5) < ĺ1(5) < ĺ3(5). On the other hand, at time τ = 22, the energy

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93

Fig. 9. Illustration of E-DFT.
consumed is ĺ2(22) > ĺ3(22) > ĺ1(22), since h2 needs to execute t p
4

leading to overrun and chances of failure. In phase 2 of E-DFT, mul-
tiple backup copies of the tasks are scheduled onto different hosts
based on the L P S

to/ f
k

in order to tolerate multiple failures due to
failures of some active hosts. The phase 3 of the E-DFT focuses
on overlapping the backup copies of the tasks to minimize the re-
source requirements, such as to

1 and to
3, to

2 and to
3 are overlapped

in h4 and h5, respectively. Further, if a host fails, it will take cer-
tain time to recover. During that instance, all the backup copies of
the tasks in that host are supposed to be executed. Therefore, the
tasks with primary copies in the same host are fused together to
minimize the switching time between the tasks of the same host.
Based on the E-DFT scheduling in phase 1 and 3, if hosts h1, h2
and h4 fail simultaneously, the backup copy of t1 can be executed
in the host h5. Since, t3 and t4 are of the same host h2, the fused
copy of both tasks t f

3 and t f
4 can be used to have successful ex-

ecution in host h6 with faster response time. Thus, the proposed
scheduling mechanism E-DFT handles multiple failures with faster
response time.

5. Performance evaluation

In order to demonstrate the performance of the proposed pro-
tocol E-DFT, certain comparisons are made with three standard
algorithms- Earliest Deadline First (EDF) [13], Minimum Comple-
tion Time (MCT) [26] and Deadline Monotonic scheduling Algo-
rithm (A) [28]. In case of EDF algorithm, all the arriving tasks are
arranged in a queue following ascending order of the deadline.
EDF is a dynamic priority scheduling algorithm for independent
tasks, whose main goal is to execute the tasks based on the ear-
liest deadline. However, when system is overloaded, the deadline
can be missed to much greater extent.

Secondly, MCT algorithm maps a new task on a VM that can
complete the task at the earliest time while maintaining the fin-
ish time upper bound before the task’s deadline. In addition, all
the tasks are allocated to VMs upon their arrivals. Therefore, MCT
is selected as the representative of classic greedy scheduling algo-
rithms to demonstrate the performance improvements gained by
the protocol when compared with classic greedy scheduling algo-
rithms. The final comparison is made with DMA, a fixed priority
scheduling algorithm, which assigns high priority to the tasks with
earlier deadline. The goal of comparing the proposed protocol with
EDF, MCT and DMA is to demonstrate that the proposed protocol
can produce better scheduling performance than these algorithms
88
even in the event of multiple failures, while minimizing the re-
sponse time and maximizing the resource utilization.

5.1. Simulation setup

A widely recognized simulator in both industry and academia,
CloudSim [7] is chosen as the building block of the considered
simulating environment. Different settings of parameters are used
in CloudSim such as the Million Instructions Per Second (MIPS)
of each host is modeled with performance similar to 1000, 1500,
2000, 3000 and 5000 MIPS and the processing configuration of
VMs are considered equivalent to 250, 500, 700, and 1000 MIPS.

With regards to the impact of different parameters of cloudlets
(tasks) on the performance of clouds, the simulation is conducted
based on cloudlets. The tasks are assumed to arrive at the cloud
with size less than 1 × 105 MI. In addition, the deadlines of the
tasks are distributed with range [1 × 102 to 1 × 103] seconds. The
impact of each of the parameters is determined by repeating the
experiments 30 times and average value is considered with stan-
dard error as discussed in [6]. All algorithms are compared using
the following practically useful metrics. The first metric, Guarantee
Ratio(GR) is defined as the ratio of number of tasks accepted by
the scheduler to the tasks those are successfully executed within
deadline. This metric depends on the availability of resources at
the time of arrival of task along with the deadline of the task and
response time due to failure of task. When the deadline for the
task is very short, both the primary and backup copies of the task
cannot be scheduled, resulting in the task being rejected.

The second metric, Average Execution Time represents the aver-
age time taken for the execution of a task. This is estimated by
keeping some parameters constant such as keeping the deadline
fixed or number of tasks fixed or generating fix number of fail-
ures. If there occurs no failure, the execution time of a task is the
average duration from arrival to completion time of the primary
copy of task, t p

k . On the other hand, if failure occurs, the execution
time is the average duration from arrival to completion time of the
backup copy of the task. The third metric, Active Time of PMs shows
the total active time of all the hosts in the cloud, thus implying
at least one task is running in the system. The fourth metric, Re-
source Utilization, is defined as the ratio of the utilized resources to
the total available resources of all the allocated hosts in the cloud.
This represents the resource utilization of the system considering
the case of both with and without failures.

The fifth metric, Response Time determines how quickly the task
or the backup of task is re-executed in case of failures. The re-

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
sponse time is the minimum time taken to start the execution of
the backup copy of a task in case of failures of PMs and VMs. An-
other metric Number of failures N f that is tolerated is defined as
the percentage of tasks which are successfully re-executed when
multiple failures of host and VMs occur. The N f shows the effec-
tiveness of a protocol in tolerating multiple failures and also serves
as a Quality of Service parameter for the CSPs.

5.2. Simulation results

The CloudSim that supports the seamless modeling, simulation
and experimentation of large-scale cloud infrastructures is chosen
to simulate our cloud environment, which consists of hosts with
abundant resources. It is assumed that initially no task is sched-
uled on any host though all are active. Upon arrival of the tasks
in the form of cloudlets, the scheduler allocates resources to the
tasks. Based on this assumption of resource scalability, the pro-
posed E-DFT algorithm is evaluated by comparing it with EDF, MCT
and DMA. In order to analyze the impact of one metric over the
others, the value of one metric is changed keeping the rests con-
stant. Therefore, the number of tasks is increased from 1, 000 to
50, 000, keeping the deadline constant as 1000 seconds and the
performance of the EDF, MCT, DMA, and E-DFT are recorded with
respect to different metrics for analyzing the performance impact
of number of tasks.

The impact of number of arriving tasks over Guarantee Ratio
is shown in Fig. 10a, where all algorithms maintain high Guaran-
tee Ratio when number of tasks is less, which is due to highly
scalable resource in cloud. Due to virtualization nature of cloud,
multiple tasks can be executed concurrently and independently
without missing deadlines. However, when the number of tasks
increases, the guarantee ratio decreases. This is due to the start
up time of PMs and VMs, which adds to delay in execution of
tasks that ultimately leads to miss the deadline. With less number
of arriving tasks, all four algorithms maintain high guarantee ra-
tios; which are attributed to the availability of abundant resources
in the cloud. The resource in cloud can be scaled-up or scaled-
down as per the resource requirements. However, the guarantee
ratios decrease gradually due to additional time required to create
VMs as per the requirements as the number of tasks increases. The
EDF and DMA always focus on prioritizing tasks based on deadline,
and MCT focuses on selecting VMs with highest processing speed.
These comparisons among tasks lead to miss the deadline as the
number of tasks increases. On the other hand, the guarantee ra-
tio of E-DFT is better than EDF, MCT, and DMA, since E-DFT only
focuses on the execution time and deadline of the task.

Similarly, Fig. 10b shows the average execution time of each
task when number of tasks ranges from 1, 000 to 50, 000. As
shown in the Fig. 10b, the average execution time of the tasks
remains within the deadline, forming slight variation in the exe-
cution that is due to variable task sizes. Moreover, since the task
size varies within 102 to 105M I , when multiple tasks are sched-
uled on VMs of different configurations, the average execution time
reduces. When number of tasks increases, requirement for more
number of best available resources also increases. In order to suc-
cessfully execute the tasks within deadline, the PMs remain ac-
tive for longer duration. This can be easily deduced from Fig. 10c,
which shows the impact of number of tasks over active time of
PMs. It can be clearly seen from the Fig. 10c that with the ad-
dition of tasks the active time of PMs increases, but E-DFT has
better performance than EDF, MCT, and DMA. This is due to load
distribution and energy model, which assigns the tasks to different
PMs evenly based on its scheduling strategy. Finally, the percent
of resources utilized by the different algorithms are determined in
Fig. 10d. In case of cloud, huge amount of resources are available.
In favor of achieving better guarantee ratio more resources are re-
89
served for concurrent execution of tasks. As a result, this causes
the PMs to be idle leading to underutilization of resources. On the
contrary, when the resources are already reserved, based on the
objectives of E-DFT, to resolve the multiple failures of PMs and
VMs, scheduling of multiple backups of each task are performed
on these underutilized PMs, which is clearly visible in the Fig. 10d.
Since every CSP wants to increase the QoS, in case of E-DFT, the
idle resources are used to create backups of the tasks leading to
maximization of resource utilization, enhancing it further to BTO
and BTF for maximizing revenue.

Along with the number of tasks, the deadline has also much
impact on the performance of various algorithms, which is justi-
fied by performing the following simulation. The base deadline is
varied from 1 × 102 to 1 × 103 seconds. Here, the size of the tasks
vary from 102 to 105M I and number of tasks remain constant as
20000. As represented in Fig. 11a, the Guarantee Ratios of all the
algorithms increase gradually with extended deadline. This is be-
cause when the deadline is extended, more number of resources
can be added and more number of tasks can be accepted for exe-
cution. Furthermore, when the deadline becomes more flexible, the
Guarantee Ratio reaches almost 100% due to scalable resources of
Cloud. For all the algorithms, variability in the performance of av-
erage execution time of the tasks is observed as shown in Fig. 11b,
when considering various deadlines. This is primarily due to the
fact that tasks those are accepted for execution are variable in size
with variable deadline. Moreover, when deadline is relaxed, large
number of VMs are launched, which can be used for executing
large number of tasks of variable sizes and priorities. However, the
execution time of MCT increases with increase in deadline, this
is because it accepts tasks with longer completion time, which in
turn increases the average execution time.

In Fig. 11c, the performance impact of deadline on the active
time of PMs is shown. When deadline is extended, more num-
ber of tasks are accepted and so the active time of PMs increases.
However, E-DFT outperforms other algorithms by applying load
balancing and energy consumption model, while distributing the
tasks and the backups among all the hosts instead of scaling up
the resources. Finally, the impact of deadline over resource utiliza-
tion is shown in Fig. 11d. When the deadline is short, less number
of tasks are accepted but those accepted must be executed success-
fully within the deadline. This creates start up of more number of
PMs for concurrent execution, leading to lower utilization of re-
sources. On the other hand, when the deadline is extended, huge
number of tasks are accepted satisfying the admissibility test and
executed without increasing number of PMs, thus leading to max-
imization of resource utilization.

E-DFT mainly focuses on the minimization of response time
while focusing on the resource utilization, when multiple failures
occur. In order to show the efficiency of the proposed protocol,
the failure handling experiment is performed using random failure
generators for checking the impact of failure on different metrics.
In E-DFT protocol, when multiple tasks tk1 and tk2 are accepted
for execution along with one primary copy of each task t p

k1 and
t p
k2, multiple backup copies are scheduled as tb

k1 and tb
k2, which

can be further overlapped with other tasks based on the condi-
tion mentioned in Section 4.2 and Algorithm 3. It is implemented
by using the custom code for reducing the size of two backup
tasks by 0.15% for achieving the backup tasks overlapping (BTO),
if backup tasks are scheduled in the same host. Besides, two over-
lapped tasks are merged by adding their sizes to form the fused
backup tasks for achieving the backup task fusion (BTF), if pri-
maries of both overlapped tasks are scheduled in the same host.

Keeping number of tasks constant at 10000, the number of fail-
ures N f in the range of 100 to 500 are generated, which could
lead to the simultaneous failures of VMs and PMs. As shown in
Fig. 12a, Guarantee Ratio is affected by the number of failures.

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93

Fig. 10. Number of tasks versus different metrics.

Fig. 11. Base deadline versus different metrics.
90

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93

Fig. 12. Number of failures versus different metrics.
With increase in the value of N f , the Guarantee Ratio decreases
for EDF, DMA and MCT. This is due to failures of PMs and VMs that
lead to the missing of the deadline of the tasks those are sched-
uled in them. Moreover, in some cases, it was also observed that
some low priority tasks scheduled a healthy PM is successfully ex-
ecuted. On the contrary, due to poor response times of EDF and
DMA, the deadlines for some high priority tasks are missed when
the tasks are re-executed due to failures of the PMs. Despite the
failures, E-DFT outperforms over EDF, DMA and MCT due to faster
response time and multiple backups in different hosts and thereby
the Guarantee Ratio is almost maintained. When there are multiple
failures, the executions of ongoing tasks are interrupted. However,
the healthy PMs are already notified by the failed ones accord-
ing to our E-DFT protocol. The healthy PMs with backups start the
pull-based backup scheduling of the overlapped and fused tasks
with response time of δ. Although the tasks are executed suc-
cessfully due to multiple backup copies stored in different PMs,
the average execution time of the tasks is increased as the new
execution time incurs delay in response. Therefore, as shown in
Fig. 12b, it leads to delay in response time as with increase in
the number of failures, the numbers of tasks to be re-executed in-
crease. However, E-DFT performs better over EDF, MCT and DMA,
since it adopts backup scheduling. The response time for executing
already-scheduled backup copies is less than finding a suitable PM
for re-executing the failed tasks as adopted by other algorithms.

Fig. 12c shows the performance impact of N f on response time
of the four protocols. It can be clearly seen from the Fig. 12c that
E-DFT has lower response time as compared to EDF, DMA and MCT
as multiple copies of the backups are already scheduled in differ-
ent PMs. If the PM with t p

k fails, the nearest backup with minimum
response time is used. This minimizes delay in E-DFT as compared
to EDF, DMA and MCT, where the re-execution of the failed tasks
must be carried out by suitably scheduling the tasks on the avail-
91
able PMs. This increases the response time and therefore the tasks
miss their deadlines.

The overhead of this proposed protocol is discussed in terms of
resource utilization and energy consumption as shown in Fig. 13.
E-DFT creates multiple backup copies of tasks and schedule them
in different hosts. In the event of multiple failures, some of the ac-
tive hosts that have executed the primaries may fail, resulting in
reduction of resource utilization. However, the inactive hosts may
be active to execute the backup tasks, which aid to improve the re-
source utilization. As a result, as shown in Fig. 13a, E-DFT has bet-
ter resource utilization in comparison to EDF, MCT and DMA, since
it uses the resources for scheduling of both primary and backup
copies. In case of failures, the resource utilization that is reduced
due to failures of primaries is compensated to some extent by im-
proving the resource utilization with execution of the backups. In
addition, with the use of BTO and BTF mechanism, the overlapped
and fused backup copies of the tasks are pulled towards τ f ail with
small delay δ, which is less than L P Stk

b
. This pull-based fault tol-

erant mechanism allows faster completion of tasks and release of
VMs and PMs resources, which in turn reduces the active time of
PMs.

In case of failures, the response time for execution of the
backup tasks is increased. As a result, the PMs need to remain ac-
tive for longer duration. Consequently, the increase in active time
of PMs results in increase in the energy consumption of the sys-
tem. However, as shown in Fig. 13b, E-DFT has lower active time
of PMs in comparison to EDF, MCT and DMA, which also lowers
the energy consumption of the system. As a result, the proposed
protocol can be used for providing better QoS as required by the
users and can be used for maximizing the revenue by achieving
better Guarantee Ratio as desired by the CSPs even in the event of
failures.

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93

Fig. 13. Effectiveness of E-DFT in terms of resource utilization and active time of PMs.
6. Conclusion

This paper investigates the elastic pull-based dynamic fault tol-
erant scheduling of different independent tasks in cloud comput-
ing. The scheduling aims to minimize the response time while
responding to simultaneous failures of PMs and VMs considering
the resource utilization and guarantee ratio. The resource utiliza-
tion of the proposed protocol is maximized by using BTO and BTF
techniques in various VMs and multiple hosts. In case of failures,
the response time is minimized by using our scheduling mecha-
nism through increasing the guarantee ratio. In order to evaluate
the performance of the proposed protocol, simulation was per-
formed using CloudSim as building block. The proposed protocol,
E-DFT is efficient in terms of response time, resource utilization,
guarantee ratio, and energy consumption compared to EDF, DMA,
and MCT especially during the failures. This work mainly focuses
on the successful execution of the accepted tasks, while maximiz-
ing the resource utilization and minimizing energy consumption of
the CSPs. How the CSP could provide better QoS even in the event
of multiple resource failures is investigated here. Different pricing
policies adopted for renting the VMs from users’ point of view is
not considered here. This could be considered as our future work,
where a user can decide where he wants to submit the tasks based
on the pricing policy of different CSPs. Failures in case of work-
flows and designing failure prediction model with implementation
in real cloud computing platform will also be considered as our
future work to improve the efficiency of the proposed protocol.

CRediT authorship contribution statement

Pushpanjali Gupta, Prasan Kumar Sahoo and Bharadwaj Veer-
avalli conceived the idea. Pushpanjali Gupta and Prasan Kumar Sa-
hoo developed the algorithms and theoretical models. Pushpanjali
Gupta designed the simulation outline, performed the simulation
and prepared the manuscript. Prasan Kumar Sahoo supervised the
work and supported the infrastructure and funding. Prasan Kumar
Sahoo and Bharadwaj Veeravalli revised the manuscript.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgment

This work was supported in part by the Ministry of Science and
Technology (MOST), Taiwan, under Grant number 109-2221-E-182-
014.
92
References

[1] S.M. Abdulhamid, M.S. Abd Latiff, S.H.H. Madni, M. Abdullahi, Fault tolerance
aware scheduling technique for cloud computing environment using dynamic
clustering algorithm, Neural Comput. Appl. 29 (1) (2018) 279–293.

[2] M. Amoon, N. El-Bahnasawy, S. Sadi, M. Wagdi, On the design of reactive ap-
proach with flexible checkpoint interval to tolerate faults in cloud computing
systems, J. Ambient Intell. Humaniz. Comput. 10 (11) (2019) 4567–4577.

[3] A. Arunarani, D. Manjula, V. Sugumaran, Task scheduling techniques in cloud
computing: a literature survey, Future Gener. Comput. Syst. 91 (2019) 407–415.

[4] B. Balasubramanian, V.K. Garg, Fault tolerance in distributed systems using
fused data structures, IEEE Trans. Parallel Distrib. Syst. 24 (4) (2012) 701–715.

[5] R. Begam, W. Wang, D. Zhu, Timer-cloud: time-sensitive vm provisioning in
resource-constrained clouds, IEEE Trans. Cloud Comput. (2017) 1.

[6] S. Belia, F. Fidler, J. Williams, G. Cumming, Researchers misunderstand confi-
dence intervals and standard error bars, Psychol. Methods 10 (4) (2005) 389.

[7] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. Pract. Exp. 41 (1) (2011)
23–50.

[8] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, J. Wu, Towards energy-efficient schedul-
ing for real-time tasks under uncertain cloud computing environment, J. Syst.
Softw. 99 (2015) 20–35.

[9] M.N. Cheraghlou, A. Khadem-Zadeh, M. Haghparast, A survey of fault tolerance
architecture in cloud computing, J. Netw. Comput. Appl. 61 (2016) 81–92.

[10] M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, An energy-efficient vm pre-
diction and migration framework for overcommitted clouds, IEEE Trans. Cloud
Comput. (2017) 1.

[11] E.J. Ghomi, A.M. Rahmani, N.N. Qader, Load-balancing algorithms in cloud com-
puting: a survey, J. Netw. Comput. Appl. 88 (2017) 50–71.

[12] Y. Guo, A. Stolyar, A. Walid, Online vm auto-scaling algorithms for application
hosting in a cloud, IEEE Trans. Cloud Comput. (2018) 1.

[13] Z.A. Hammadeh, S. Quinton, R. Ernst, Weakly-hard real-time guarantees for
earliest deadline first scheduling of independent tasks, ACM Trans. Embed.
Comput. Syst. 18 (6) (2019) 1–25.

[14] G. Joshi, E. Soljanin, G. Wornell, Efficient replication of queued tasks for latency
reduction in cloud systems, in: 2015 53rd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), IEEE, 2015, pp. 107–114.

[15] C. Kathpal, R. Garg, Survey on fault-tolerance-aware scheduling in cloud com-
puting, in: Information and Communication Technology for Competitive Strate-
gies, Springer, 2019, pp. 275–283.

[16] Y. Laalaoui, J. Al-Omari, A planning approach for reassigning virtual machines
in iaas clouds, IEEE Trans. Cloud Comput. (2018) 1.

[17] D. Li, C. Chen, J. Guan, Y. Zhang, J. Zhu, R. Yu, Dcloud: deadline-aware resource
allocation for cloud computing jobs, IEEE Trans. Parallel Distrib. Syst. 27 (8)
(2016) 2248–2260.

[18] J. Liu, S. Wang, A. Zhou, S. Kumar, F. Yang, R. Buyya, Using proactive fault-
tolerance approach to enhance cloud service reliability, IEEE Trans. Cloud Com-
put. (2017) 1.

[19] L. Luo, S. Meng, X. Qiu, Y. Dai, Improving failure tolerance in large-scale cloud
computing systems, IEEE Trans. Reliab. 68 (2) (2019) 620–632.

[20] A. Marahatta, Y. Wang, F. Zhang, A.K. Sangaiah, S.K.S. Tyagi, Z. Liu, Energy-aware
fault-tolerant dynamic task scheduling scheme for virtualized cloud data cen-
ters, Mob. Netw. Appl. 24 (3) (2019) 1063–1077.

[21] C.D. Martino, S. Sarkar, R. Ganesan, Z.T. Kalbarczyk, R.K. Iyer, Analysis and di-
agnosis of sla violations in a production saas cloud, IEEE Trans. Reliab. 66 (1)
(2017) 54–75.

[22] Y.S. Patel, A. Page, M. Nagdev, A. Choubey, R. Misra, S.K. Das, On demand clock
synchronization for live vm migration in distributed cloud data centers, J. Par-
allel Distrib. Comput. 138 (2020) 15–31.

http://refhub.elsevier.com/S0743-7315(21)00165-9/bib061F3C58C6DD9C56D56A93CA6E631E77s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib061F3C58C6DD9C56D56A93CA6E631E77s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib061F3C58C6DD9C56D56A93CA6E631E77s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib4EC07D6ACDE7C4F0E3B96509C449AEFEs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib4EC07D6ACDE7C4F0E3B96509C449AEFEs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib4EC07D6ACDE7C4F0E3B96509C449AEFEs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF89C79D64D590948B1F7689117F1C296s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF89C79D64D590948B1F7689117F1C296s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib88E3720DC0A2DC7A4E2F136A88FCD620s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib88E3720DC0A2DC7A4E2F136A88FCD620s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibE5B7640856BB5C785434E8E5D7EED448s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibE5B7640856BB5C785434E8E5D7EED448s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib7E99EF8BE556414C8CE4E9A22E22401Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib7E99EF8BE556414C8CE4E9A22E22401Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2FE106D97409FE8F5CF94E14F6F87D9Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2FE106D97409FE8F5CF94E14F6F87D9Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2FE106D97409FE8F5CF94E14F6F87D9Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2FE106D97409FE8F5CF94E14F6F87D9Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib33C318423FA10B0FB1773B695C6813ADs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib33C318423FA10B0FB1773B695C6813ADs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib33C318423FA10B0FB1773B695C6813ADs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib797782E0FBFE8E1FA42F777052F271C5s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib797782E0FBFE8E1FA42F777052F271C5s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibDB66D92BA9B235AE613085D5509E5D2As1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibDB66D92BA9B235AE613085D5509E5D2As1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibDB66D92BA9B235AE613085D5509E5D2As1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib7E64B115485484AA06B3078FB2908E64s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib7E64B115485484AA06B3078FB2908E64s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib9B7F4AA64F84A67A06A8D0DB5296316Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib9B7F4AA64F84A67A06A8D0DB5296316Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF8E8ABB7D998DB60004D66AB0D269753s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF8E8ABB7D998DB60004D66AB0D269753s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF8E8ABB7D998DB60004D66AB0D269753s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib9FDE6FEE790D92D50391E806B2167807s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib9FDE6FEE790D92D50391E806B2167807s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib9FDE6FEE790D92D50391E806B2167807s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib0F383094CFDF06B35B78DD96E8EFE3D1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib0F383094CFDF06B35B78DD96E8EFE3D1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib0F383094CFDF06B35B78DD96E8EFE3D1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib93B8517E0D723A93CF4C7B1A09E5249As1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib93B8517E0D723A93CF4C7B1A09E5249As1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib855707EA2A7BEF6C1EFA433B9C9EE1ACs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib855707EA2A7BEF6C1EFA433B9C9EE1ACs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib855707EA2A7BEF6C1EFA433B9C9EE1ACs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibC652FCF3D4ECC61FBA502ECA028775CAs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibC652FCF3D4ECC61FBA502ECA028775CAs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibC652FCF3D4ECC61FBA502ECA028775CAs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibB3C5736C75C3D890D82361301E768F3Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibB3C5736C75C3D890D82361301E768F3Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib219C483800AD4DE14EC3CC77652B7BDDs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib219C483800AD4DE14EC3CC77652B7BDDs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib219C483800AD4DE14EC3CC77652B7BDDs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib85F11EFB857ED9ECF2C98DA4F01E30A1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib85F11EFB857ED9ECF2C98DA4F01E30A1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib85F11EFB857ED9ECF2C98DA4F01E30A1s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibB939A42E956C69ED64024B92AA995EEBs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibB939A42E956C69ED64024B92AA995EEBs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibB939A42E956C69ED64024B92AA995EEBs1

P. Gupta, P.K. Sahoo and B. Veeravalli Journal of Parallel and Distributed Computing 158 (2021) 80–93
[23] C. Pham, L. Wang, B.C. Tak, S. Baset, C. Tang, Z. Kalbarczyk, R.K. Iyer, Failure
diagnosis for distributed systems using targeted fault injection, IEEE Trans. Par-
allel Distrib. Syst. 28 (2) (2017) 503–516.

[24] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P.P. Jayaraman, A.Y. Zomaya, Secure
authentication and load balancing of distributed edge datacenters, J. Parallel
Distrib. Comput. 124 (2019) 60–69.

[25] M. Soualhia, F. Khomh, S. Tahar, A dynamic and failure-aware task scheduling
framework for hadoop, IEEE Trans. Cloud Comput. (2018) 1.

[26] G.L. Stavrinides, H.D. Karatza, Scheduling real-time bag-of-tasks applications
with approximate computations in saas clouds, Concurr. Comput., Pract. Exp.
32 (1) (2020) e4208.

[27] Q. Tang, L.-H. Zhu, L. Zhou, J. Xiong, J.-B. Wei, Scheduling directed acyclic
graphs with optimal duplication strategy on homogeneous multiprocessor sys-
tems, J. Parallel Distrib. Comput. 138 (2020), https://doi .org /10 .1016 /j .jpdc .
2019 .12 .012.

[28] J. Teraiya, A. Shah, Analysis of dynamic and static scheduling algorithms in soft
real-time system with its implementation, in: Soft Computing: Theories and
Applications, Springer, 2020, pp. 757–768.

[29] J. Wang, W. Bao, X. Zhu, L.T. Yang, Y. Xiang Festal, Fault-tolerant elastic schedul-
ing algorithm for real-time tasks in virtualized clouds, IEEE Trans. Comput.
64 (9) (2015) 2545–2558.

[30] L. Wang, K.S. Trivedi, Architecture-based reliability-sensitive criticality measure
for fault-tolerance cloud applications, IEEE Trans. Parallel Distrib. Syst. 30 (11)
(2019) 2408–2421.

[31] H. Yuan, J. Bi, W. Tan, B.H. Li, Temporal task scheduling with constrained ser-
vice delay for profit maximization in hybrid clouds, IEEE Trans. Autom. Sci. Eng.
14 (1) (2017) 337–348.

[32] H. Yuan, J. Bi, W. Tan, M. Zhou, B.H. Li, J. Li, Ttsa: an effective scheduling ap-
proach for delay bounded tasks in hybrid clouds, IEEE Trans. Cybern. 47 (11)
(2017) 3658–3668.

[33] M. Zakarya, L. Gillam, Managing energy, performance and cost in large scale
heterogeneous datacenters using migrations, Future Gener. Comput. Syst. 93
(2019) 529–547.

[34] P. Zhang, M. Zhou, Dynamic cloud task scheduling based on a two-stage strat-
egy, IEEE Trans. Autom. Sci. Eng. 15 (2) (2017) 772–783.

[35] Q. Zheng, B. Veeravalli, C.K. Tham, On the design of fault-tolerant scheduling
strategies using primary-backup approach for computational grids with low
replication costs, IEEE Trans. Comput. 58 (3) (2009) 380–393.

Pushpanjali Gupta received the BSc degree in
Computer Science with Honors from Fakir Mohan Uni-
versity, India in June 2011 and the MCA degree from
Orissa University of Agriculture and Technology, In-
dia in June 2014. Currently she is working toward the
PhD degree in the Department of Computer Science
and Information Engineering, Chang Gung University,
Taiwan. Her research interests include fault tolerance,
real-time scheduling, and resource management prob-

lems of cloud computing.

Prasan Kumar Sahoo received the B.Sc. degree in
physics (with Honors), the M.Sc. degree in mathemat-
ics both from Utkal University, Bhubaneswar, India, in
1987 and 1994, respectively. He received the M.Tech.
degree in computer science from the Indian Institute
of Technology (IIT), Kharagpur, India, in 2000, the first
Ph.D. degree in mathematics from Utkal University, in
2002, and the second Ph.D. degree in computer sci-
ence and information engineering from the National

Central University, Taiwan, in 2009. He is currently a Professor in the De-
partment of Computer Science and Information Engineering, Chang Gung
University, Taiwan. He is an Adjunct Researcher in the Department of Neu-
rology, Chang Gung Memorial Hospital, Linkou, Taiwan. He was a Visiting
Associate Professor in the Department of Computer Science, Universite
Claude Bernard Lyon 1, Villeurbanne, France. His current research inter-
ests include artificial intelligence, edge computing, and IoT. He is currently
Editorial Board Member of Elsevier’s Journal of Network and Computer
Applications and Inderscience’s International Journal of Vehicle Informa-
tion and Communication Systems. He is also Topic Editor of Electronics
Journal, MDPI. He has worked as the Program Committee Member of sev-
eral IEEE and ACM conferences and is a senior member, IEEE.

Bharadwaj Veeravalli received his BSc degree in
Physics, from Madurai-Kamaraj University, India, in
1987, the Master’s degree in Electrical Communication
Engineering from the Indian Institute of Science, Ban-
galore, India in 1991, and the PhD degree from the
Department of Aerospace Engineering, Indian Institute
of Science, Bangalore, India, in 1994. He received gold
medals for his bachelor degree overall performance
and for an outstanding PhD thesis (IISc, Bangalore In-

dia) in the years 1987 and 1994, respectively. He is currently with the
Department of Electrical and Computer Engineering, Communications and
Information Engineering (CIE) division, at The National University of Sin-
gapore, Singapore, as a tenured Associate Professor. His main stream re-
search interests include cloud/grid/cluster computing (big data processing,
analytics and resource allocation), scheduling in parallel and distributed
systems, Cybersecurity, and multimedia computing. He is one of the earli-
est researchers in the field of Divisible Load Theory (DLT). He is currently
serving the editorial board of IEEE Transactions on Parallel and Distributed
Systems as an associate editor. He is a senior member of the IEEE and the
IEEE-CS.
93

http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF4586697280A51D862977BBD50880C93s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF4586697280A51D862977BBD50880C93s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibF4586697280A51D862977BBD50880C93s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib80D4A085A6DA1900722CE016473D7C9Bs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib80D4A085A6DA1900722CE016473D7C9Bs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib80D4A085A6DA1900722CE016473D7C9Bs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib820CA82A8949C203388588BC6DA58A01s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib820CA82A8949C203388588BC6DA58A01s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCB01A7A5FDDB468DD80C47EC4B12DC3Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCB01A7A5FDDB468DD80C47EC4B12DC3Es1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCB01A7A5FDDB468DD80C47EC4B12DC3Es1
https://doi.org/10.1016/j.jpdc.2019.12.012
https://doi.org/10.1016/j.jpdc.2019.12.012
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3F8DDABB1B8898FA8B6C5B72E6FE7DC7s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3F8DDABB1B8898FA8B6C5B72E6FE7DC7s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3F8DDABB1B8898FA8B6C5B72E6FE7DC7s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib1A1EBADF84DA82A335CDF07498E1AE28s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib1A1EBADF84DA82A335CDF07498E1AE28s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib1A1EBADF84DA82A335CDF07498E1AE28s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3AE7049EC186B337130F59B24A496D39s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3AE7049EC186B337130F59B24A496D39s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib3AE7049EC186B337130F59B24A496D39s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib072D164E465709EB92F38BDE8F172D43s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib072D164E465709EB92F38BDE8F172D43s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib072D164E465709EB92F38BDE8F172D43s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2F9D57E58437E8DD128EF5FE15F4BCA4s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2F9D57E58437E8DD128EF5FE15F4BCA4s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib2F9D57E58437E8DD128EF5FE15F4BCA4s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCCBB5D2EAA6592584A6363A8DA3D4AA6s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCCBB5D2EAA6592584A6363A8DA3D4AA6s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibCCBB5D2EAA6592584A6363A8DA3D4AA6s1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibD129D907D52D221D0F1C7381F218020Fs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bibD129D907D52D221D0F1C7381F218020Fs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib09B98DE55ACFA4DA5B8011ECC1F00DDEs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib09B98DE55ACFA4DA5B8011ECC1F00DDEs1
http://refhub.elsevier.com/S0743-7315(21)00165-9/bib09B98DE55ACFA4DA5B8011ECC1F00DDEs1

	Dynamic fault tolerant scheduling with response time minimization for multiple failures in cloud
	1 Introduction
	1.1 Motivations
	1.2 Main contributions

	2 Related works
	3 System model
	3.1 Preliminaries
	3.2 Cloud system model
	3.3 Scheduler characteristics
	3.4 Task allocation model
	3.5 Fault model
	3.6 Energy model
	3.7 Load balancing

	4 Elastic pull-based dynamic fault tolerant (E-DFT) scheduling
	4.1 Task filtering and scheduling of primaries
	4.2 Scheduling of backups
	4.3 Example of E-DFT

	5 Performance evaluation
	5.1 Simulation setup
	5.2 Simulation results

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

