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Abstract—The applications that are deployed in the cloud to provide services to the users encompass a large number of
interconnected dependent cloud components. Multiple identical components are scheduled to run concurrently in order to handle
unexpected failures and provide uninterrupted service to the end user, which introduces resource overhead problem for the cloud
service provider. Furthermore such resource-intensive fault tolerant strategies bring extra monetary overhead to the cloud service
provider and eventually to the cloud users. In order to address these issues, a novel fault tolerant strategy based on the significance
level of each component is developed. The communication topology among the application components, their historical performance,
failure rate, failure impact on other components, dependencies among them, etc., are used to rank those application components to
further decide on the importance of one component over others. Based on the rank, a Markov Decision Process (MDP) model is
presented to determine the number of replicas that varies from one component to another. A rigorous performance evaluation is carried
out using some of the most common practically useful metrics such as, recovery time upon a fault, average number of components
needed, number of parallel components successfully executed, etc., to quote a few, with similar component ranking and fault tolerant
strategies. Simulation results demonstrate that the proposed algorithm reduces the required number of virtual and physical machines
by approximately 10% and 4.2%, respectively, compared to other similar algorithms.

Index Terms—Cloud computing, component ranking, fault tolerance, Markov decision process.
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1 INTRODUCTION

Huge amount of physical servers connected through very
high network bandwidth is the backbone of cloud comput-
ing environment. The pay-as-you-go model of cloud com-
puting provides the flexibility for users to access physical
servers on rented basis from cloud service provider (CSP).
The resources are provided through different service models
such Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [1], [2]. For
example, Microsoft Office 365 is implemented in SaaS model
to provide the MS office software through the web.

The applications that are specifically designed to deploy
in the cloud are referred to as cloud applications. Such
applications are accessed remotely through multiple web
pages [3]. Network bandwidth plays an important role
in providing the software functionalities to the users. In
order to simplify the cloud application at the development
stage, the entire cloud application is divided into multiple
small applications, known as cloud component. A cloud
application component is a part of the software package or
a module that encapsulates a set of interrelated functions or
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tasks. For example, in document editing cloud applications,
the module that is responsible for saving and exporting
the document in a specific format can be considered as
one cloud component. Each cloud component receives a set
of inputs and executes a set of predefined operations and
provides the output to either the user or to other dependent
components. In the case of ATM services provided by the
banks to its customer, reading the ATM card, communicat-
ing the desired remote database, printing the receipt, etc.,
can be considered as different dependent components.

On the other hand, fault tolerance is becoming an impor-
tant issue for the cloud research community. The CSP may
experience unexpected failure at any time while providing
the service through efficient scheduling mechanisms [4].
A fault may occur at the hardware level due to a power
outage or at the software level [5], which may occur due
to the ambiguous input to the cloud application. Different
mechanisms have been proposed in recent years to prevent
and handle the pre-failure and post-failure situations. Au-
thors in [6] present an extensive survey on fault tolerant
architectures in cloud computing.

Different fault tolerant mechanisms that are available in
the research community are recovery block, N-version program-
ming, parallel, and VM-restart [7]. In order to prevent un-
expected failure, the applications are executed on multiple
cloud servers. In the recovery block fault tolerant mecha-
nism, applications are executed sequentially for a certain
number of time until the desired output is obtained. In
contrast, the application is scheduled to execute on multiple
cloud servers concurrently in parallel fault tolerant strat-
egy until the first output is obtained [8]. Taking software
bugs into consideration, multiple equivalent applications
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are scheduled to run concurrently on multiple cloud servers.
All outputs are then compared and the most similar output
is provided to the user. As the failure may occur at the
virtual machine or cloud servers level, restarting the vir-
tual machine itself is one of the most popular and simple
fault tolerant strategies. In fault tolerance strategies, a large
number of resources are wasted, where multiple VMs are
engaged for a single component, especially for long-running
jobs [9]. Among all fault tolerant strategies, the time re-
quired to finish execution of the cloud application and the
amount of resource required are inversely proportional to
each other. In recovery block fault tolerant strategy, the time
required to finish the execution of application successfully
is more than that of the parallel fault tolerant strategy and
vice-versa.

Efficient fault tolerant strategies are mainly either time-
driven or resource-driven. In case of time-driven strategies,
the applications are executed multiple times until the re-
quired result is obtained. However, in the case of resource-
driven, multiple identical applications or similar applica-
tions are executed by allocating more resources. Based on
the critical level of the application, the CSP needs to provide
sufficient amount of resource or time. If the application is
time-constrained, CSP needs to provide more resource for
parallel execution of the identical applications and ensure
that the application is finished on time. However, if the ap-
plication is cost-constrained, the CSP provide minimum but
sufficient amount of memory to the application to execute
and obtain the result. In such cases, the CSP executes the
applications only upon failure. However, in the former case,
irrespective of the correctness of the result, the CSP needs to
allocate more than the required amount of memory.

In the current research era, a huge number of complex,
time-consuming algorithms are designed to carry out spe-
cific operations such as DNA sequencing in bioinformatics
involve very complex algorithms. As the current research
is heading toward simplifying the human life, the cloud
applications are becoming more complex and large in terms
of the number of cloud components involved in the cor-
responding applications. Components that are involved in
one cloud application are interconnected and dependent
on each other. Despite numerous advantages provided by
the cloud platforms, CSPs experience unexpected failures
in providing the services, which are the major research
issues. By connecting the unexpected failure issues to a large
number of complex inter-dependent cloud components, it is
observed that a single failure of any cloud component may
lead to the failure of the entire cloud application [10]. Failure
of cloud applications has a great impact on QoS which af-
fects the decision to take the cloud service from a particular
CSP [3]. On the other hand, providing service with a higher
degree of fault tolerance is a resource-intensive job for cloud
service providers, which further introduces extra monetary
overhead to the CSP and eventually to the cloud users.

1.1 Motivation

The large cloud applications are mainly consisting of a
large number of interconnected components, where each
component is responsible for providing separate function-
ality. However, the user may experience interruption due to

unexpected error or fault in the cloud application during
service period, which incurs huge monetary cost to the
cloud user as well as to the cloud service provider.

Cloud application may encounter faults due to several
reasons such as software bugs, erroneous input data, hard-
ware failures, etc. A fault may bring down the whole cloud
application or multiple components. For example, failure of
the components that pre-process the incoming raw CCTV
footage could hamper the whole real-time security system
in a cloud-based smart city solution. On the other hand,
some components are responsible for sending the processed
and compressed CCTV footage to the storage servers for
the backup purpose. Failure of such components would not
affect the real-time security system. This paper mainly con-
siders such cloud applications. In general, at any particular
time, a subset of components is active providing services to
the users. It is assumed that components are associated with
different priorities based on the functionalities. Applying
fault tolerant mechanisms to the whole cloud application
or all components without considering the functionality
of each component could be resource-intensive job and
therefore would be expensive.

The faults are handled by mainly two kinds of strate-
gies: replication and re-execution. In the replication strategy,
multiple identical components are scheduled to run con-
currently, which is a resource-intensive strategy. In the re-
execution strategy, the same component is executed again
only if the component failed while providing the services.
This strategy eliminates the additional resource demand.
However, this introduces additional time as the component
may need to start from either the beginning or from the last
saved restore point.

Besides, the problem of providing a huge amount of
resources to the cloud application, the placement of the
backup component plays a vital role in providing an ef-
ficient fault tolerance strategy. Primary components com-
municate among each other while providing the service to
the user. Furthermore, to provide uninterrupted service by
tolerating a higher degree of faults, primary components
communicate with their backup components in case of a
replication strategy. Upon failure of the primary component,
one of the backup components will act as the new primary
component and interact with other primary components.
The network latency between the primary and the backup
component may affect the QoS, which infers the importance
of placement of both components. Here, placement of the
component refers to the selection of a physical machine
for deploying the component. It is essential to consider the
communication or the placement of the backup components
as a major factor while designing the fault tolerant strat-
egy. Further, it is also not recommended to apply the re-
execution strategy onto all the components in order to save
the resources and minimize the service cost, as this would
incur higher degradation of service quality. The aforemen-
tioned scenarios of providing efficient fault tolerant service
by reducing the total amount of required resource without
compromising the service quality and placement of compo-
nent onto suitable PM motivates us to propose an efficient
fault tolerant mechanism.

As it is clearly mentioned in Section 1.1, providing fault
tolerant service to cloud application that consists of a very
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large number of cloud components is resource-intensive, in
this paper, we attempt to propose a novel resource-aware
strategy that provides fault tolerant services to the signifi-
cant selective components instead of the whole application.
Thus we focus on the design, analysis and evaluation of
certain important metrics and experimenting with any real-
life application is beyond the scope of this work and serves
as an immediate extension, as discussed in Section 7.

The rest of this paper is organized as follows. The related
literature survey is presented in Section 2. The concerned
problem is formulated in Section 3. The proposed solution
that includes the determination of most significant compo-
nent followed by the fault tolerant algorithm is presented
in Section 4. The proposed optimization policy for the total
numbers of replicas is presented in Section 5. Performance
evaluation and concluding remarks are made in Section 6
and 7, respectively.

2 RELATED WORKS

An intensive survey and comparison of the different fault
tolerant architectures are presented in [11], [12], [6]. It
is emphasized that despite numerous advantage of cloud
computing such as reduction of costs, efficient resource
utilization [13], leveraging the efficiency and compatibility
of software, increasing the storage capacity, etc., immature
fault tolerant mechanism plays an important role affecting
the decision to adopt cloud computing environment. The
survey in [6] classifies the fault tolerance architecture into
proactive and reactive architecture. The fault tolerance tech-
niques are applied in different stages of cloud computing,
such as in scheduling [14], [15], [16], [17], resource allocation
[18], [19], to improve the reliability [20], placement of virtual
network function in cloud network [21] etc.

In the scenario of mobile cloud computing, where the
entire computation or the part of the computation payload
is offloaded to powerful cloud servers, authors in [22] ad-
dress the offloading problem by taking the portability of
mobile device and connectivity issues of the mobile net-
work into consideration. The fault tolerant based offloading
mechanism is designed based on the genetic algorithm.
Despite numerous advantages of genetic algorithms, the
time-consuming process may provide the extra computation
overhead to the mobile device, and eventually this may lead
to the failure of proposed offloading mechanism. Similar
to [10], authors in [23] apply a similar concept to provide
fault tolerant service to different component of a cloud
application. The rank of a cloud component depends on the
reliability properties such as failure rate and failure impact.
The fault tolerant strategies are applied to the components
based on the reliability, response time, and resource cost.
However, it is observed that the component with higher
failure rate and failure impact in some component DAG
topology are given lower rank value, which contradicts the
proposed ranking concept.

Authors in [15] proposed the hybrid task scheduling
mechanism offering the fault tolerant service by integrating
the tradition backup and checkpoint technology and classi-
fying the tasks and VMs. However, the proposed scheduling
strategy allocates the resources among all tasks specifically

for the backup purpose without investigating the impor-
tance of the tasks. As a result, the resource required is
very high in order to implement the proposed scheduling
mechanism. Similarly, in [18], the proposed fault tolerant
mechanism allocates maximum amount of resource to the
tasks, which is a resource-intensive strategy for the cloud
service provider. Similarly, authors in [24] formulate the
cost-effective fault tolerant strategies in providing services
to the multiple tenants in cloud. The major pitfall of the pro-
posed fault tolerant strategy is that the historical behavior
of each service is not taken into account, which could have
given insight behavior of each service in terms of the failure
probabilities.

In order to handle the post-fault events, it is very much
essential to detect the fault in every physical server with no
delay, as described in [25]. Here, the authors proposed a re-
covery block’s acceptance test based fault detection scheme
for component-based cloud computing environment. The
proposed fault detection scheme is dedicated to only soft-
ware faults, transient hardware faults, and response-time
failures. However, the proposed idea does not address the
issue of power failure that may cause the failures of the
entire server.

Though cloud provider guarantees the resource demand,
however, in the data center performance anomalies or fail-
ure of expected performance is an upcoming issue, which
arises due to sharing of physical resources and multi-
tenancy as discussed in [19]. To debug the application fail-
ure, distinguishing the faults with global and local impact is
essential, as in [19]. Such classifications of faults provide
power to the system administrators and the application
developer to understand and diagnose the root cause of the
failure. Authors in [26], extend the fault classification work
as in [19] for automatic fault diagnosis of web applications
in cloud computing. Fluctuating workload, management of
large-scale application, and modeling the behavior of com-
plex application are some of the major factors that possess
greater challenges in fault diagnosis of web applications.
The behavior of access patterns is analyzed using corre-
lation analysis, which is used further to detect the faults.
However, finding the correlation between the workload and
the application may lead to a time-consuming process as
the frequency arrival of the application to the cloud service
provider is very high.

Authors in [27] proposed fault tolerant enabled stor-
age and processing of data in mobile cloud taking energy
consumption as a major parameter into consideration. As
running an application needs processing and storage capa-
bilities, authors address the issue of selecting a suitable node
that is a mobile device or a cloud, for processing and data
storage by following k-out-of-n computing approach. Here,
k and n determine the degree of reliability. However, the
proposed scheme does not address the issues generated due
to the mobility of peer mobile nodes.

Authors in [10] propose the ranking of the cloud compo-
nents in order to find out the significant component. A cloud
application comprises a set of components represented as a
directed acyclic graph. The ranking of the cloud component
depends on the number of components present in the cloud
application and the number of components that invoke
the corresponding component. As a cloud application is
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responsible for providing certain services that are consisting
of a large number of components, it is a hectic job to provide
the critical status to each component. Further, it is not
clear, which component should be given what kind of fault
tolerant service.

The major upcoming issue in resource allocation is to dis-
tribute the resources among different users with zero faults
or higher degrees of fault tolerance, as discussed in [28].
Authors in [28] propose a fault and power-aware reliable
resource allocation scheme that emphasizes the failure of
request occurs due to fluctuation in power consumption by
the requests. However, calculating the power consumption
while scheduling both data and compute intensive requests
is a cumbersome task.

Handling faults that occur during the execution of real-
time tasks in cloud environment requires an efficient fault
tolerant mechanism, as demonstrated in [29]. Though the
proposed elastic resource provisioning mechanism based
on primary-backup model improves the resource utilization
in the context of fault tolerant, the faults that occur at the
physical server level cannot be handled by the proposed
scheduling algorithms. Authors in [30] have proposed sim-
ilar fault tolerant scientific work-flow scheduling algorithm
considering the spot and on-demand instances on the cloud.

3 PROBLEM FORMULATION

Unlike the applications running in conventional personal
computers, applications that are deployed in the cloud
computing environment and are accessed remotely through
the web are known as cloud applications. These applications
are often collections of multiple dependent or independent
components known as cloud components. In the proposed
scenario, each component can either be in an active or
inactive state. The active state of a component refers to a
state in which the cloud component is engaged in providing
services to the cloud user directly or indirectly, which is
inactive otherwise. At any given time t, a component is said
to be an active component if the same component is in the
active state. Let, n number of active components from a total
ofN number of components, the relationship between n and
N can be written as 1 ≤ n ≤ N .

A component is said to be dependent if it requires the
output or the intermediate result of another component.
A Directed Acyclic Graph (DAG) is used as a mathemat-
ical tool to represent the dependencies among the active
components. One vertex in the DAG represents one active
component. An edge represents the dependency of one com-
ponent over another one. For example, Figure 1(a) shows
the dependencies of eight components, where component
c2 depends on the output of the intermediate results of the
component c1, and c5 requires the output or intermediate
results of component c3 and c4 and so on.

Based on the dependencies, a dependent component can-
not start its execution before the execution of the preceding
component. Figure 1(b) and 1(c) illustrate this situation.
In Figure 1(b), component c2 may start its execution af-
ter receiving the intermediate result from component c1,
whereas, in Figure 1(c), component c2 starts its execution
after receiving the final output from component c1. How-
ever, it is assumed that a dependent component may finish

its execution before or after the execution of the preceding
component. As shown in Figure 1, component c2 may finish
its execution before component c1 finishes its execution.
It is also assumed that a vertex cannot be isolated. In
other words, each component must be connected to at least
one other component. Among active components, multiple
components can be executed concurrently at any given
instant of time. For example, component c2, c5, and c6 can
be scheduled to run concurrently as no dependency exists
among themselves.

Multiple cloud applications are hosted by cloud service
providers, where a vast number of cloud components are
involved in providing the service to the cloud users. The
cloud application is considered as the input in this research
article. Based on the functionality, cloud components are
compared and different weights can be assigned to each
component in order to calculate their importance level. For
example, in ATM withdrawal system, different components
are responsible for different operations such as components
for cash dispatching, receipt printing, communicating re-
mote database, etc. In such a scenario, the importance level
for the component responsible for remote database commu-
nication is higher than the component that is responsible
for printing the withdrawal receipt. The component with
higher importance level, i.e., higher weight is considered
as the most significant component. Formally, a component is
said to be the most significant cloud component, if it is
sufficiently important to be worthy of providing the fault
tolerant service. The most significant cloud components are
determined programmatically.

In this work, mainly two aspects of fault tolerant services
are focused. Firstly, providing an efficient mechanism to
rank components thereby determining the most significant
cloud components and secondly, apply a fault tolerant
mechanism to the cloud components based on their ranks
so that the dedicated resources required to provide fault
tolerant service can be minimized. Let us take an example
to illustrate the latter aspect. Let, A, B, and C be the three
components that are running concurrently with a maximum
degree of fault tolerance of 4. The degree of fault tolerance
indicates the number of faults that can be tolerated. We
assume that one VM is used to host exactly one component.
Considering the number of components and the maximum
degree of fault tolerance, we can conclude that a total of 15
VMs are required to run A, B, and C and their correspond-
ing replicated components concurrently. Let the importance
level of component A be ranked as ”High”, component
B be as ”Medium”, and C be ranked as ”Low”. It is this
importance of a component that translates to its rank value
in our proposed algorithm. With such knowledge regarding
the importance of each component and the corresponding
failure probability, the resources can be distributed unevenly
among all components for fault tolerant service. 6 VMs can
be assigned to component A, 4 VMs can be assigned to
component B, and 2 VMs can be assigned to component C
for fault tolerant service. As a result, a total of 12 VMs can
be used to provide the fault tolerant service. Further, the
degree of fault tolerant can be increased for the components
with higher importance level. As discussed in this example,
the number of faults of component A that can be tolerated
is increased to 6.
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The above example illustrates the goal of this paper,
where a fault tolerant strategy needs to be developed
that should rank the cloud components and employ a
component-specific fault tolerant strategy based on the rank.
The following section discussed in detail the procedure to
rank the components and the fault tolerant strategy.

c1 c3 c4

c2 c5 c6

c7

c8
t1 t4 t8 t12

c1

c2

t16 t1 t4 t8 t12

c1

c2

t16

(a) (b) (c)

Fig. 1. An example of DAG

4 THE FAULT TOLERANT STRATEGY

We believe that providing fault tolerant service to cloud
application that consists of huge number of cloud compo-
nents is resource-intensive and hence inefficient in terms of
monetary cost. In order to address this issue, we propose
a novel Rank based Resource-aware Fault Tolerant (RRFT)
strategy, which provides fault tolerant services to selected
significant components instead of the whole application.
The proposed RRFT solution has two stages. Firstly, de-
termining the most significant component and secondly,
providing the fault tolerant service to each component based
on their rank value, which indicates the importance of the
component.

4.1 Determination of most significant component
Here, the components of a cloud application are represented
as a DAG with no isolated vertex. In other words, at
any given time, each component must be connected to at
least one other component. We use the group relationship
model as a mathematical tool followed by the probabilistic
approach in order to find the most significant cloud compo-
nents of an application. The goal of using group relationship
model is to derive the dependency of one active component
on all others that belong to the same cloud application. Let,
A be the cloud application to which the fault tolerant service
needs to be applied. G = (C,E) is the DAG of the set
of components C that belongs to cloud application A. E
represents the dependencies among the components present
in C . The set C consists of N components, represented by
ci, 1 ≤ i ≤ N . Let, Gat = (Cat , E

a
t ) be the DAG of set of

active cloud components Cat and their dependencies Eat of
the application A at time t. Cat = {ĉ1, ĉ2, . . . , ĉn} consists of
n number of active components. The relation between the
sets Cat and C can be written as Cat ⊆ C at any given time
t.

The DAG Gat can be transformed to the adjacency matrix
τt as given below.

τt = [vij ], 1 ≤ i ≤ n, 1 ≤ j ≤ n (1)

Where,

vij =

 1 if the component j depends on component i;
0 if there is no dependency of component i on j;
0 if i = j

The adjacency matrix is derived by looking at the edge
set Eat that contains the value 1, 0. The adjacency matrix
is used to calculate the dependency of component i over
component j, where, i 6= j,∀j ∈ Cat . The dependencies
that are present in edge set Eat are called one-hop depen-
dency. In order to derive the multi-hop dependencies among
components, the distance matrix τdt is calculated from the
adjacency matrix τt as derived below.

τdt =


d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dn1 dn2 . . . dnn

 (2)

Where,

dij =


dij minimum number of intermediate

components or minimum number of
hops from component i to j.

0 If there is no path from component i to j.
0 If i = j.

for 1 ≤ i ≤ n, 1 ≤ j ≤ n

The significant value of an active component ĉj , 1 ≤ j ≤
n, can be derived by calculating the column sum of distance
matrix τdt . Mathematically,

Ψ(ĉj) =
n∑
i=1

dij , dij ∈ τdt , 1 ≤ i ≤ n, 1 ≤ j ≤ n (3)

The component with minimum significant value Ψ(ĉj)
is considered the most influential component. This is due
to the fact that several components depend on the out-
put of such components. For instance, the components
c2, c5, c6, c7, and c8 depend on the output of the com-
ponents c1, c3, and c4 as shown in Figure 1. Hence, the
components c1, c3, and c4 could be considered as the most
influential components. This indicates that The failure of
such component has an impact on a maximum number of
other components and therefore has a higher impact on
the whole cloud application. The significant value of an
active component is further used in the calculation of failure
impact of the respective component. The failure impact of one
component F (ĉi) is calculated as the sum of the significant
values of the components ĉj , 1 ≤ j ≤ n, i 6= j that satisfies
the conditions dij > 0. Mathematically,

F (ĉi) =
n∑
j=1

Ψ(ĉj), i 6= j, dij > 0, 1 ≤ i ≤ n (4)

Along with the failure impact, the historical performance
is also taken into account to calculate the accumulated failure
impact of a component, F̈ (ĉi). The failure rate of a component
is represented as λ(ĉi),∀ĉi ∈ Cat . The value of failure rate
and failure impact as calculated in Equation 4, is multiplied
in order to obtain the value of F̈ (ĉi), as in Equation 5.

F̈ (ĉi) = λ(ĉi) ∗ F (ĉi), ∀ĉi ∈ Cat (5)

Furthermore, the information regarding the failure prob-
ability P (ĉi) of a component ĉi,∀ĉi ∈ Cat is essential in
order to determine the most significant component. It is
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assumed that the component ĉi will remain active for hi
time units and failure of the components follow the Poisson
distribution [31]. Considering the aforementioned informa-
tion, the failure probability of a component can be calculated
as follows.

P (ĉi) =
λ(ĉi) ∗ hi
eλ(ĉi)∗hi

(6)

Here, it is assumed that hi is known. However, the
average of hi can be taken into account, if the active time
duration hi of component ĉi is unknown. The average active
time duration can be calculated by taking the ratio of total
active time and number of time the component ĉi becomes
active from inactive state. Taking the value of accumulated
failure impact as given in Equation 5, and failure probability
as derived in Equation 6, the most significant value of each
component is calculated as derived below.

Ω(ĉi) = F̈ (ĉi) ∗ P (ĉi), ∀ĉi ∈ Cat (7)

As the complexity of developing cloud application in-
creases, the complexity of monitoring the behavior of each
component’s execution and providing the fault tolerant
services also increases. The most significant value of a
component is not enough to determine whether the com-
ponent should be given higher priority while providing
the fault tolerant service. The most significant value Ω(ĉi)
depends on various factors such as the number of times
the component failed over its active time duration, number
of dependent components, etc. However, the calculation of
Ω(ĉi) does not consider the fact that a single failure of
any component may lead to the failure of the whole cloud
application.

In order to address this issue, the conventional joint
probability distribution approach is applied. The historical
information regarding the failure of the cloud application
due to failure of a specific component can be obtained
from the performance history of each component and the
cloud application. Let, fi be the total number of times
component ĉi failed. Further, let fsi be the total number of
times the whole cloud application is failed due to the failure
of component ĉi. Using the value of fi and fsi , the mean
application failure due to the failure of component ĉi, λsi ,
can be derived as follows.

λsi =
fsi
fi
, 1 ≤ i ≤ n (8)

Using Equation 8 and Equation 6, the cloud applica-
tion failure probability due to the failure of component ĉi,
P̈ (ĉi|A) can be derived as

P̈ (ĉi|A) = P (ĉi)

[
1

x!
(λsihi)

xe−λ
s
ihi

]
(9)

where, hi is the time duration of the active component
ĉi. It is assumed that the failure of the components follows
Poisson distribution. By putting the value of x = 1 and
the value of P (ĉi) in Equation 6, the Equation 9 can be re-
written as

Ω(ĉi) P̈ (ĉi|A)
ĉ2 = 0.115 ĉ3 = 0.922
ĉ4 = 0.0674 ĉ2 = 0.617
ĉ1 = 0.023 ĉ4 = 0.514
ĉ3 = 0.008 ĉ1 = 0.455

(a)

Rank (βi) Component (ĉi)
β2 = β3 = 1 ĉ2, ĉ3
β4 = 2 ĉ4
β1 = 3 ĉ1

(b)

TABLE 1
An example of ranking the component

P̈ (ĉi|A) =

[
λ(ĉi)hi
eλ(ĉi)hi

]
∗
[
λsihi
eλ

s
ihi

]
=

(hi)
2λsiλ(ĉi)

ehi(λ(ĉi)+λs
i )

(10)

Considering the values calculated in Equation 7 and 10,
components are sorted individually. For the sake of better
understanding on how Ω(ĉi) (Equation 7) and P̈ (ĉi|A)
(Equation 10) values are used to rank all the components,
an example is given in Table 1. It is assumed that the
values given in Table 1(a) are already calculated. The first
column contains the value of Ω(ĉi), which represents the
most significant value of each active component. The second
column contains the cloud application failure probability
due to the failure of each component. The value in the first
column (Ω(ĉi)) and second column (P̈ (ĉi|A)) are indepen-
dent of each other. Based on the value of Ω(ĉi) and P̈ (ĉi|A),
four components, ĉ1, ĉ2, ĉ3, and ĉ4 are sorted separately in
descending order, as shown in Table 1(a). In both sorted list,
component ĉ2, and ĉ3 are at the top, and hence assigned
with the rank value β2 = β3 = 1, where the notations
β2 and β3 represent the rank of component ĉ2 and ĉ3,
respectively. Rank value 2 is assigned to the component ĉ4
(i.e. β4 = 2). Here, as component ĉ2 is already assigned
with rank value 1, another rank value cannot be assigned.
Similarly, rank values are assigned to other components, as
given in Table 1(b). It is observed that the rank value of two
components can be the same and must be treated equally
while providing the fault tolerant services. Component with
small rank value is treated as the higher priority component
and hence, maximum resource should be assigned to those
components in order to tolerate the higher degree of faults.

4.2 Fault tolerant service: Hybrid k*

With the given component list and corresponding ranks, our
goal is to provide fault tolerant service consuming mini-
mum amount of resources to each component based on their
rank. As discussed earlier, the service provided by the CSP
may encounter unexpected interruption due to the failure of
the component itself, the corresponding VM, or the failure
of corresponding physical machine. Replication is one of the
most popular fundamental methods to handle the faults. In
the case of failure, identical components are scheduled to
run either concurrently or sequentially. For example, two
identical components, r̂11 and r̂21 can be created from the
active component ĉ1. Those identical components can be
scheduled in two ways. Firstly, both identical components
can be scheduled on different VMs or the VM, where the
active component ĉ1 is scheduled. So, any fault that occurs
on any one component can be tolerated, as the results can
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be obtained from other components, which are running con-
currently. Secondly, the components can be scheduled to run
sequentially. If one component is failed to provide the result,
the other identical component can be scheduled to run. In
both parallel and sequential execution, the requirement of
resource and time is a trade-off. The amount of resource
required to run the identical components in parallel order
is more than the resource required to schedule the identical
components in sequential order. However, the time required
in parallel execution is less than that of the sequential one.

While providing the fault tolerant service, two major
factors need to be taken into account: (a) number of replicas
or identical instances of the primary component, (b) the
order of execution of the replica components. Considering
those two factors, an efficient resource aware fault tolerant
mechanism, called Hybrid k* is proposed in this paper. As
the name hybrid suggests, the order of the execution of
main or primary component and its corresponding replica
components vary among all active components. For exam-
ple, for one cloud application, the execution order of one
component, say ĉ1, and its replica components are parallel,
whereas the execution order of another component, says
ĉ2, and its replica components are sequential. On the other
hand, k* indicates the number of replicas k for all active
components at any particular time varies.

Let, r̂ji be the jth replica component of ĉi. Furthermore,
in general, the cloud applications are associated with a hard
deadline. To meet the deadline and to provide a higher
degree of fault tolerance, the replica components must run
concurrently. The amount of resources can be minimized by
scheduling less significant replica components in sequential
manner. It is very challenging task to determine the order of
execution of the replica component. Let, Θp

i be the boolean
variable to indicate if the replicas of primary component ĉi
are running concurrently.

Θp
i =

 1 if the replicas of primary component ĉi
are scheduled to run concurrently;

0 Otherwise

Similarly, Θs
i is the boolean variable that indicates if

the replicas of the primary component ĉi run sequentially.
Mathematically,

Θs
i =

 1 if the replicas of primary componentĉi
are scheduled to run sequentially;

0 Otherwise

Considering the goal to minimize the required resources,
the multi-criteria objective function for scheduling parallel
executions of the replicas would be as follows.

minP =

[
ki ∗Rxi
P (ĉi)

ki

]
(11)

Where, the term ki represents the number of replicas
used to provide the fault tolerant service to the primary
component ĉi. Rxi is the amount of resources of type x
required by the component ĉi. The resource type x can either
be CPU or memory. Hence, the objectives in Equation 11 can
be summarized as follows. Firstly, to minimize the amount
of resources required by the primary and corresponding

replica components. Secondly, to minimize the failure prob-
ability of the component ĉi.

Similarly, considering the minimization of the time, the
multi-criteria objective function for scheduling sequential
executions of the replicas would be as follows.

minS =

[
ki ∗ 4i
P (ĉi)

ki

]
(12)

Where, 4i represents the time required to start a replica
of component ĉi on its failure. In sequential execution, the
total amount of resources required by the primary and all
the replica components is equal to the amount of resource
required by only the primary component. By minimizing
the value of ki, the extra required time can be minimized.

Two major parameters, i.e., permissible failure probabil-
ity (5) and threshold on number of replica components
(µ) are introduced to allow minimum fairness in provid-
ing fault tolerant service among components. Permissible
failure probability of a component ĉi, represented by 5,
indicates the minimum failure probability allowed for any
primary or replica component not to create further replicas.

Combining the objective functions mentioned in Equa-
tion 11 and 12, the objective function to minimize resource
requirements and the time can be derived as follows:

Objective

min d́i = Θp
i

[
ki ∗Rxi
P (ĉi)

ki

]
+ Θs

i

[
ki ∗ 4i
P (ĉi)

ki

]
,∀ĉi ∈ Cat (13)

The objective function mentioned in Equation 13 of all
active components at time t can further be derived to
formulate the objective function of the cloud application A
as follows:

min Ă =
[
d́1 d́2 d́3 . . . d́n

]T
(14)

Constraints:

if βi < βj , Θp
i ≤ Θp

j , or Θs
i ≥ Θs

j (15)

if βi = βj , Θp
i = Θp

j , or Θs
i = Θs

j (16)

Θp
i + Θs

i = 1, 1 ≤ i ≤ n (17)

P (ĉi)
ki < 5 (18)

ki ≥ µ (19)

1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j (20)

1) Constraint (15) ensures that the replicas of a higher-
ranked component must be scheduled to run con-
currently in order to meet the deadline of the com-
ponents. Further, the rank of the component, whose
replicas are scheduled to run in sequential order,
must be less than the rank of the component, whose
replicas are scheduled to run in parallel order.

2) Constraint (16) ensures that replicas of the compo-
nents with the same ranks must be scheduled to run
either in parallel or in sequential order. The replicas
cannot be scheduled to execute in a different order.

3) Constraint (17) ensures that the replicas of a compo-
nent ĉi are running in either parallel or sequential
order.
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4) According to Constraint (18), the number of replicas
must be determined in such a way that the failure
probability with ki number of replicas must be
less than the threshold value decided by the cloud
service provider.

5) We believe that component having failure proba-
bility less than 5 and with no replica may fail
unexpectedly. To avoid such situations, we deduced
constraint (19), which ensures that a minimum num-
ber of replicas decided by the objective function
must be greater than or equal to the threshold
value µ. However, the value of µ should be decided
by the cloud service provider by observing either
the historical information or through a dedicated
mechanism.

In this paper, the primary components with higher rank
are given highest priority to schedule their backup compo-
nents in a parallel manner. Mathematically,

Θp
i = 1,∀ĉi, βi > βj , 1 ≤ j ≤ n, i 6= j (21)

For a sequence of components ĉ1, ĉ2, . . . , ĉn, let the rank of
the components be β1 > β2, . . . , βn. The rank of a com-
ponent is directly proportional to P (ĉi), λ

s
i , F̈ (ĉi), P̈ (ĉi|A)

etc. This infers that failure of a component ĉi with rank
βi would have higher impact on the entire application as
compared to the failure of a component ĉi−1 with rank
βi−1, if βi > βi−1. In order to reduce the failure impact of
both the components ĉi and ĉi−1, the backup components
can be scheduled to run in a concurrent manner. However,
this would bring additional resource overhead and the cost
for providing fault tolerant service. In order to restrict the
amount of resources to be used for fault tolerant service and
the cost or in the case of limited resource availability, one
of the components needs to be given higher priority to use
the limited resources. In such scenarios, it is essential to give
higher priority to component ĉi over ĉi−1 as βi > βi−1. This
approach can be extended and applied to all the component
sequence given above. Hence, for the above component
sequence, with given ĉi and its rank βi, if execution order
is parallel, then for all the components ĉ1, ĉ2, . . . ĉi, the
execution order of the corresponding back up components
must be parallel.

4.3 Component placement
The data center consists of a huge number of physical ma-
chines connected in fat tree topology. Upon arrival of a cloud
application, the cloud service provider carries out specific
procedures and selects the suitable physical machines for
hosting the incoming cloud applications. In the proposed
scenario, the placement of cloud component refers to the
selection of suitable physical machines (PMs) for hosting the
cloud components. Multiple cloud components are mostly
involved in interacting with each other to exchange the
intermediate results among them. The primary components
are replicated to provide higher degree of fault tolerant
services. The replica components are placed either onto
the same or different PMs. Upon failure of one primary
component, other primary components are connected to one
of the replica components of the failed primary component.
Placement of the replica onto a PM that is far away from

other components leads to performance degradation. Fur-
ther, failure of a PM may have a greater impact on the cloud
application, if multiple primary and replica components are
placed onto the same PM. This motivates us to propose a
placement protocol to reduce the impact of a PM failure on
the specific cloud application.

In order to achieve the goal of reducing the impact of PM
failure, the placement of components (primary and replicas)
must follow the rules discussed below.

Rule 1: One component on one PM.
n∑
i=1

κ(Sj , ĉi), ∀ĉi ∈ Cat (22)

Where κ is the boolean variable indicating if the component
ĉi is scheduled to run in a PM Sj . Mathematically,

κ(Sj , ĉi) =

{
1 if component ĉi is placed onto PM Sj ;
0 Otherwise;

According to the rule mentioned above, there is no
restriction on allocating multiple components from one
cloud application on single PM. Failure at PM level leads
to the failure of all virtual machines running on that PM
and therefore, it leads to the failure of multiple primary
components. Spreading the primary components among all
available PMs will reduce the impact of a single PM.

Rule 2: Replica component must be in different PM than
that of the PM of respective primary component.

ω(r̂ji ) 6= ω(ĉi), 1 ≤ i ≤ n, 1 ≤ j ≤ ki (23)

ω(ĉi) represents the PM, where the component ĉi is placed.
The replica component r̂ji and its corresponding primary
component ĉi cannot be scheduled to run in the same PM.
As discussed earlier, the failure of a PM leads to the failure
of all virtual machines running on that PM and hence, the
failure of all primary and replica components. The replica
component must be available to provide the uninterrupted
service in case of failure of primary components, which can
only be done by assigning different PMs for all the replicas
of a single primary component.

Rule 3: No multiple replica from single primary compo-
nent onto same PM.

ω(r̂ji ) 6= ω(r̂ui ), 1 ≤ j ≤ ki, 1 ≤ u ≤ ki, j 6= u (24)

Similar to Rule 2, in order to reduce the impact of PM
failure onto single cloud application, the failure of single PM
must have the impact on utmost one component and hence,
multiple replicas cannot be scheduled onto single PM.

Rule 4: Primary and the replica components must be in
the same pod. Pod in a data center generally refers to a small
container with multiple physical machines and one access
switch. To minimize the recovery time of a components’
execution from any failure, the backup component must be
placed with minimum distance from the location of primary
component, but in different PM.

4.4 RRFT Algorithm

Considering the components’ rank as discussed in Section
4.1, k* number of backup components and the correspond-
ing order of execution of the components as discussed
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Algorithm 1: Rank-based Resource aware Fault Toler-
ant algorithm

Input: Set of n active components in DAG form.
1 Calculate the distance matrix τdt for all components

using Equation 2;
2 Calculate the failure impact F (ĉi) for all components

using Equation 4;
3 Calculate accumulated Failure Impact F̈ (ĉi) using

Equation 5;
4 Obtain the failure probability P (ĉi) of all components

;
5 Calculate the most significant value ω(ĉi) of all

components using Equation 7 ;
6 Calculate P̈ (ĉi|A) using Equation 10 ;
7 Rank the active components based on the value

calculated in Step-5 and 6 ;
8 CT = sort all active components based on their rank

calculated in Step - 7;
/* Determine number of components and

the execution order. */
9 foreach Component c in CT do

10 Determine the number of backup components and
their corresponding order of execution using
Equation 14 ;

11 end
/* Placement of all active and backup

components. */
12 foreach Component c in CT do
13 Choose suitable PM by following rules mentioned

in Section 4.3;
14 end

in Section 4.2, and the placement of the components as
discussed in Section 4.3, we propose Rank-based Resource
aware Fault Tolerant (RRFT) strategy for cloud application,
which analyzes the characteristics of each component and
determines the fault tolerance strategy. The details of the
proposed RRFT is presented in Algorithm 1.

As discussed earlier, the cloud application consisting of a
set of active components is the input to the RRFT algorithm.
Each component is analyzed and is ranked based on the
dependencies among each other, as given in Line 1 to 7. In
order to rank the components, the distance matrix of all the
components is calculated as given in Line 1. The distance
matrix is further used to calculate the failure impact of all
components as given in Line 2. The failure impact of a
component indicates the impact of one component failure
onto the other one. For example, the failure of the root
component has the highest impact onto all other compo-
nents, whereas, the failure of a leaf component at the bottom
level of the DAG has no impact onto other components.
The failure impact and the failure rate of the component
are used to calculate the accumulated failure impact of the
components as given in Equation 5, which is further used to
calculate the most significant value of each component, as
given in Line 5. In order to calculate the most significant
value, the failure probability is used. It is assumed that
the failure rate of the components is known to the cloud
provider from the historical data. It is observed that the

failure of a single component may lead to the failure of the
entire cloud application. Such historical information can be
used to predict the probability of application failure due
to the component’s failure, as calculated in Line 6. The
components are ranked as given in Line 7 based on the value
calculated in Line 5 and 6.

A component’s rank indicates its importance over other
components. Following the ranking of the component, the
number of backup components required by each primary
component is determined, as given in Line 9. Besides,
determining the number of components, the order of ex-
ecution is also determined. The order of execution of the
backup components can either be parallel or sequential. The
backups of the components with higher rank are scheduled
to run in parallel, whereas the order of execution of the
backup components of the components with lower rank is
scheduled to run in sequential manner. It is also essential
to place the components onto suitable physical machines.
Placement refers to creating the VMs with the correspond-
ing components onto the suitable physical machines. The
placement of the backup components is determined in Line
12.

5 TOTAL NUMBER OF REPLICA OPTIMIZATION

In order to determine the number of replicas for each pri-
mary active component as discussed in Section 4.2, we for-
mulate the problem using discrete-time three-dimensional
Markov Decision Process (MDP) model as depicted in Fig-
ure 2. MDP models are useful when the whole system is a
discrete-time stochastic control process. It is also applied in
addressing different research challenges of cloud computing
such as resource management [32], QoS [33], resource and
service failure management [34], etc. As we need to make
the decision on the type and number of replicas for each
component, which is dynamic in nature due to the respec-
tive failure probability, it is highly essential to model the
problem with a tool that can take the fully observable states
of this controlled systems into consideration.

Based on the failure probability of a component, the
number of states is decided. A state represents either a
primary or a backup component. A component with higher
failure probability may have a larger number of states that
may run either in parallel or sequential manner. The MDP
can be represented as 3-tuple {Ŝ, U, α̂}, where Ŝ represents
the state space, U represents the action set that needs to
be performed in every state, and α̂ represents the set of
transition probabilities between two adjacent states.

5.1 State space

As discussed earlier, the state of a component represents the
execution order of either a primary component or a backup
component, which may run either in parallel or sequential
order. In the proposed MDP model, the state of a component
ĉi, 1 ≤ i ≤ n is represented as ŝji (c̈

j
i , ö

j
i , b̈

j
i ). Ŝ is the set

of states for all primary and backup components. A state
captures three essential information. Those are (a) the status
of the component, (b) order of execution of corresponding
components, and (c) number of backup components. Here,
the value of superscript j is dynamic and the maximum
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Fig. 2. Proposed Markov decision process model

value of j for each component may vary depending on
the failure probability of the component. Value of j = 0
represents that the state is for the primary component. How-
ever, value of j ≥ 1 indicates that the state is for a backup
component. For example, state ŝ01 represents the primary
component of component ĉ1, whereas the state ŝ21 represents
the 2nd backup component of the component ĉ1. The status
of an active component ĉi could be running, rejected or
finished, which is represented as c̈ji . Mathematically,

c̈ji =

 1 If component ĉi is in running state.;
2 If component ĉi is rejected.;
3 If component ĉi is finished its execution.;

(25)
The order of execution of a replica component is repre-

sented as öji of the active component ĉi. Mathematically, the
value of öji can be written as follows.

öji =


0 If the replica components are scheduled to run

concurrently.
1 If the replica components are scheduled to run

sequentially.
−1 Otherwise.

(26)
The order of execution öji for the order component is -1.

For example, the value of öji of the components c1, c3, and
c4 in Figure 1 is −1. This indicates that such primary active
components need to be scheduled at the very beginning
and do not depend on any other components. The replica
components can be scheduled to run concurrently, repre-
sented by 0, or sequentially, represented by 1, as shown
in Figure 2. However, as discussed earlier, the execution
order of replica components of the primary components
must follow the Constraint 15. In other words, replicas
of higher-ranked primary component must be scheduled
to execute concurrently and the replicas of lower-ranked
primary component must be scheduled to run sequentially.

Eventually, the number of replica components is con-
sidered as the third dimension of a state. The number
of replicas of the component ĉi is represented as b̈ji . For
example, the state ŝ22(1, 1, 2) indicates that two replicas of
the component ĉ2 are scheduled to run sequentially.

5.2 Action space
The set of actions that is available at every state is repre-
sented as U . Any one of the three actions can be taken
at each state, such as (a) Create new backup denoted as u1,
(b) Reject the component, denoted as u2, and (c) Execute the
component, denoted as u3. Based on the failure probability
of the components, actions are applied to the states. For
example, applying the action u3 with the success probability
α1 onto the state ŝ01(1,−1, 0), the resultant state would be
Ŝ0
1(3, 1, 0). Similarly, applying the action u1 onto the state
Ŝ0
1(1,−1, 0), the resultant state would be Ŝ1

1(1, 0, 1).

5.3 State transition probability
It is assumed that αi be the success probability of the pri-
mary active component ĉi, 1 ≤ i ≤ n with no corresponding
replica components. Mathematically, the transition probabil-
ity from the state ŝ0i (1, ö

0
i , 0) to ŝ0i (3, 1, 0) with the action u3

is αi.

Pr(ŝ0i (3, 1, 0)|ŝ0i (1, ö0i , 0), u3) = αi, 1 ≤ i ≤ n (27)

From Equation 27, it can be derived that the failure
probability of the component ĉi. In order to reduce the
failure probability of a component, multiple replicas can
be scheduled to run either in parallel or sequential order.
Hence, the probability of creating the initial replica can be
calculated as 1− αi. Mathematically,

α1
i = Pr(ŝ1i (1, öi, 1)|ŝ0i (1, ö0i , 0), u1) = 1− αi, 1 ≤ i ≤ n

(28)
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Here, α1
i represents the transition probability from the

state ŝ0i to the state ŝ1i . In general, the notation αji represents
the transition probability from the state ŝj−1

i to the state
ŝji , 1 ≤ j. As discussed earlier in Section 4.2,5 is defined as
the minimum permissible failure probability. The number of
replica components depend on the value of 5. The condi-
tion to apply the action u1 onto any state can be written as
follows.

Pr(ŝj+1
i (1, öji , b̈

j+1
i )|ŝji (1, ö

j
i , b̈

j
i ), u1) > 5 (29)

In other words, a new replica component (i.e. to state
ŝj+1
i (1, öji , b̈

j+1
i )) needs to be created (from the state

ŝji (1, ö
j
i , b̈

j
i )) of the component ĉi, by applying the action u1,

if the failure probability of the component is greater than5.
From Equation 28 and 29, and with the given value of

öji , the order of execution of the replicas of the primary
active component ĉi, the number of replica components can
be determined from the following relation.

(1− αi)ki ≤ 5 (30)

Where, ki is the number of replica components of the
primary active component ĉi. Further, using Equation 30,
the value of ki can be derived as follows.

(1− αi)ki ≤ 5
=⇒ ki ∗ log(1− αi) ≤ log(5)

=⇒ ki = dlog(1−αi)(5)e (31)

In the following subsection, we will present a numerical
example to illustrate the workings of our proposed MDP.

5.4 Markov model example

Fig. 3. An example of proposed MDP model

In order to illustrate the proposed MDP model presented
in Figure 2, let us assume a cloud application with three
components ĉ1, ĉ2, and ĉ3. Component ĉ2 and ĉ3 depends
on ĉ1 and ĉ2, respectively. The initial state for component ĉ1
can be written as ŝ01(c̈01 = 1, ö01 = −1, b̈01 = 0). Similarly,
for the component ĉ2 and ĉ3, the states can be written
as ŝ02(1, 1, 0) and ŝ03(1, 1, 0), respectively. The value of ö02
and ö03 for component ĉ2 and ĉ3 is 1 as both components
run sequentially after the component ĉ1. Let, the failure
probability of the component ĉ1, ĉ2, and ĉ3 be 0.19, 0.08, and
0.05, respectively, and the value of minimum permissible
failure probability 5 be 0.007.

For the above scenario, the MDP is presented in Figure
3. In Figure 3, the transition probability from the state

ŝ01(1,−1, 0) to state ŝ11(1, 0, 1) is 0.19. State ŝ11(1, 0, 1) repre-
sents the first backup component of the primary component
ĉ1 and is scheduled to run in parallel. The failure probability
of the first backup component is calculated to be 0.036,
which is still greater than the permissible failure probability
5 = 0.007. As a result, the second backup component is
created and is represented as the state ŝ21(1, 0, 2). Since, the
failure probability of the state ŝ21(1, 0, 2) is calculated to be
0.002, which is less than5, no further backup component is
created. Similarly, the failure probability of the component
ĉ2 is 0.08, which is greater than the value of 5. In order
to reduce the failure probability, another backup compo-
nent ŝ12(1, 1, 1) is created, which is scheduled to run in a
sequential manner. The state ŝ03(3, 1, 0) represents that the
component ĉ3 has finished its execution.

5.5 Policy optimization

Using the proposed Three-dimensional MDP model as dis-
cussed above, we optimize the policy of determining the
total number of replica components for all primary active
components. Mathematically,

Minimize K =

n∑
i=1

ki, 1 ≤ i ≤ n (32)

where, K is the sum of number of replica components
for all primary active components. In order to optimize the
value of K, it is necessary to minimize the value of ki for
each component. However, the policy must follow the con-
straint mentioned in Constraint 15. In other words, replicas
of the component with the highest rank must be scheduled
to run in parallel and the replicas of the component with
lower rank must be scheduled to execute in sequential
manner. This will support our belief that most significant
components must finish their execution with higher degree
of fault tolerant without violating the deadline. On the other
hand, replicas of the lower rank components are allowed to
take longer time in case of any failure as the failure of lower
rank components has a trivial impact on other components.

6 PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed RRFT
strategy, the proposed component ranking and placement
scheme is implemented on MATLAB platform. The cloud
applications are generated randomly and are presented in
matrix array. The cloud applications with varied numbers
of components are generated using different probabilis-
tic approaches such as arrival of cloud application from
users that follows the Poisson distribution. We compare
our component ranking method against two popular rank-
ing algorithms, i.e., FTCloud [10] and ROCloud [23]. In
FTCloud, component invocation structure and invocation
frequencies parameters are used to rank the most significant
components. Another version of the algorithm combines
the application designer knowledge to find the critical and
non-critical component and the system structure to rank
the cloud components. On the other hand, the algorithm
proposed in ROCloud uses failure rate and the failure
impact as the reliability properties of the components. The
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extended version of ROCloud considers the hybrid applica-
tions, which consists of components that can be migrated
to the public cloud and some components that can be
scheduled to run in private cloud.

Further, the proposed component placement algorithm is
evaluated and compared with random placement method.
The cloud application is presented in DAG, which indicates
that the adjacency matrix does not contain any circle. The
failure rate of the components follows Poisson distribution
in the simulation. The active time of the components is
assumed to be known, which is assigned randomly in the
simulation. In order to reduce the impact of a single failure
of a physical machine, one PM is assigned to host one
component from one cloud application. The number of com-
ponents in each cloud application is randomly distributed,
ranging from 4 through 16. In such scenarios, the minimum
number of required PMs will range from 4 through 20.
The probability that two components are connected could
range from 0.5 through 0.8. The memory and CPU re-
source requirement of the components follows the random
distribution ranging from 1000MB through 2000MB and
from 1 through 4, respectively. Similarly, the memory and
CPU capacity of the PMs are distributed randomly, ranging
from 16000MB to 32000 and 16 to 32, respectively. Taking
above-mentioned performance matrix, following simulation
results are obtained.

6.1 Simulation Results
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Fig. 4. Number of required VMs.

The performance of the proposed scheme is compared
with ROCloud2 and FTCloud2 algorithm, as discussed be-
fore. The comparison results are shown in Figure 4 and 5.
The results shown in Figure 4 reveal the total number of
VMs required for a certain number of cloud applications.
The number of cloud application varies from 100 to 1000. It
is observed from the simulation result that the total number
of VMs required for 100 cloud applications is 996, 1090, and
1107 for the proposed RRFT algorithm, ROCloud2, and FT-
Cloud2 algorithms, respectively. However, the number in-
creases to 9010, 10205, and 11317 for 1000 numbers of cloud
applications in case of RRFT, ROCloud2, and FTCloud2
algorithms, respectively. This shows approximately a 10%
reduction in the required number of VMs when the number
of cloud applications is 1000. It is expected that the RRFT

algorithm would give similar result even after deploying
more than 1000 cloud applications. In the simulation setup,
the number of components per cloud application ranges
from 4 to 16.
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Similarly, the number of PMs used to host a certain
number of cloud applications is shown in Figure 5. The
value along Y-axis shows the average number of PMs used
to host certain number of cloud applications. For example,
the average number of PMs used to execute 100 numbers
of cloud applications is 9.5 in the case of proposed RRFT
algorithm. However, in case of ROCloud2 and FTCloud2
algorithm, the average number of PMs used is 9.9 and
10.3, respectively, which is at least 4.2% more than that of
RRFT algorithm. The required number of PMs increases to
9.7, 10.2, and 10.9 for 1000 number of cloud applications
while executing the RRFT, ROCloud2, and FTCloud algo-
rithm, respectively.
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Under the proposed scheme, the components are sched-
uled to run under both parallel and sequential orders. The
components that are more likely to fail are scheduled to run
in a parallel manner along with their corresponding backup
components. In other words, the higher-rank backup com-
ponents are scheduled to run in parallel manner and rest
of the components are scheduled to run in the sequential
manner. The effects of order of executions of the backup
components on amount of resource requirement and the
recovery time are shown in Figure 6 and 7. Figure 6 shows
the effect of the execution order of backup components
onto the number of required VMs. In the simulation, 5
backup components are scheduled for each component in
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case of parallel and sequential order of execution. It is found
that for 100 cloud applications, each consisting of 4 to 16
number of components, a minimum of 24, maximum of
96, and an average of 51.11 numbers of VMs required per
application, when the backup components are scheduled to
run in concurrent manner. However, the number of VMs
falls to an average of 10.22 numbers of VMs, when all
the backup components are scheduled to run in sequential
manner. The minimum and maximum numbers of VMs
required in sequential manner are 4 and 16, respectively,
which is equal to the minimum and maximum number of
components present in a cloud application. In hybrid mode,
the additional requirement of resources in terms of number
of VMs is higher than that of the sequential order but lesser
than that of the parallel order as backup components are
scheduled to run in both parallel and sequential mode.
The minimum, maximum, and the average number of VMs
required for 100 numbers of cloud applications are 9, 96,
and 32.57. In the simulation setup, the backup components
of at least one component are scheduled to run in concurrent
manner, and hence a minimum of 9 numbers of VMs is
required for the proposed hybrid order of VM execution.

The order of execution also has an impact on recovery
time. The recovery time is defined as the time required
to recover the service from the corresponding component
failure. In case of the parallel execution of the backup
components, the recovery time is very less, which ranges
from 0 to 2 seconds for the number of components ranging
from 100 to 1000, as shown in Figure 7. However, in case
of sequential execution of backup components, the recovery
time is very high as one component needs to restart from
the very beginning of its failure. The recovery time for
sequential execution of the backup components ranges from
3sec to 9.12sec for 100 components to 1000 components.
According to the proposed algorithm, the order of execution
of backup components is hybrid. Hence, it is observed that
the recovery time for same number of components ranges
from approximately 2.3sec to 5.84sec.
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The impacts of permissible failure probability (5) on
the additional resource requirement and recovery time are
investigated and the results are presented in Figure 8 and
9. The backup components are created based on the value
of (5). Backup components are not created for components
with the failure probability less than (5). Hence, the com-
ponent with higher value of (5) requires more number of

backup components. This is also reflected in the simulation
result presented in Figure 8.
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The amount of required resources decreases when the
value of (5) increases as discussed in Figure 8. Hence, it
is obvious that the recovery time would decrease with the
increase in permissible failure probability (5). The value of
(5) ranges from 0.001 to 0.1. It is observed that the recovery
time also decreases from approximately 5.25sec to 1.6sec,
when the value of (5) increases. The results in Figure 8 and
9 are obtained by keeping the number of cloud components
to 500.
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Fig. 9. The impact of permissible failure probability on recovery time.

In the proposed Hybrid k* fault tolerant strategy, the
backup components are scheduled to run in both parallel
and sequential order. Further, the number of backup com-
ponents also varies based on the value of 5. In Figure 10,
average number of components along Y-axis refers to as
the sum of number of primary and backup components.
For 100 number of cloud applications, the average number
of backup components scheduled to run in parallel and
sequential order is 25.59 and 25.51, respectively. However,
when the number of cloud application increases to 1000, the
average number of backup components running in parallel
and sequential order is 26.76 and 23.30, respectively. It is
observed that the number of backup components running
in parallel and sequential order are almost similar. Here, the
number of primary components for each cloud application
ranges from 4 to 15, with an average of 10.

Considering the placement strategy as one of the per-
formance metrics, the effect of random placement and the
proposed component placement scheme onto the impact of
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PM failures are compared and presented in Figure 11. A
single PM failure may bring down multiple primary and
backup components. The number of PM failures ranges
from 10 to 100. The average percentage of resource affected
is calculated by obtaining the ratio of number of VMs failed
and the total number of VM currently allocated to each
cloud application. During the simulation, the number of
cloud applications is set to be 1000. When the components
are placed onto random physical machines, it is observed
that the percentage of the resource affected is very high as
compared to that of the proposed component placement
scheme. The percentage of resource affected ranges from
22% to 67%, when the components are placed randomly.
However, the percentage of resource failure ranges between
10% to 53% when the components are placed by following
the proposed component placement scheme, which is at
least 20% lesser over the random placement of the compo-
nent.
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As a subset of the backup components is scheduled
to run in parallel order, it is essential to examine if those
backup components are executed successfully. The percent-
age of backup components that are running concurrently
and have finished their execution successfully is presented
in Figure 12. In other words, the values in Y-axis represents
the percentage of concurrently scheduled backup compo-
nents that are executed successfully and unsuccessfully. It is
observed from the simulation results that the percentage of
backup components executed successfully ranges between
95% to 98%, when the number of cloud components ranges
between 100 and 1000. Hence, the percentage of compo-
nents that are unable to finish the execution ranges from 5%

to 2%.
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Fig. 12. Percentage of parallel backup components successfully exe-
cuted.

Similarly, the percentage of backup components that
are scheduled to run in sequential order and are executed
successfully is examined and presented in Figure 13. It is ob-
served that approximately 66% of the backup components
are successfully executed when the number of cloud com-
ponents is 100. The percentage increases to approximately
78%, when the number of cloud components increases to
1000. We can conclude here that with an increase in the
number of cloud components, the percentage of failure
execution of sequentially scheduled backup components
decreases. However, the percentage value along Y-axis will
remain saturated when the number of cloud application
increases further.
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Fig. 13. Percentage of sequential backup components successfully ex-
ecuted.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed an important problem of pro-
viding fault tolerant services to the cloud components based
on their ranking. As providing fault tolerant services could
be resource-intensive, our objective was to minimize the
amount of additional resources required to provide the fault
tolerant services. It is assumed that the cloud applications
comprise multiple cloud components. The significance or
importance level of all cloud components with respect to
a particular cloud application is different. Hence, we first
proposed a mechanism to find out the most significant
component, based on which ranking of the component is
done. Following the ranking mechanism, Hybrid k* fault
tolerant strategy is proposed with the objective to provide
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the maximum degree of fault tolerant to the components
with higher rank values and to provide minimum amount of
additional resources to the components with lower rank val-
ues. Besides, a component placement strategy is proposed
with the objective to find a suitable PM for each primary
and backup component. The objective of proposing the
component placement strategy is also to reduce the impact
of single PM failure onto single cloud application.

The proposed scheme is evaluated with the similar com-
ponent ranking and fault tolerance strategies. It is observed
that the proposed RRFT algorithm reduced the required
number of VMs and PMs by approximately 10% and 4.2%,
respectively. With the proposed placement strategy, the
percentage of virtual resource affected due to failure of a
PM is found to be at least 20% lesser than that of random
placement strategy. However, extending the current version
of the algorithm by considering other parameters such as
makespan, user priority, cost of each components etc. and
experimenting the extended version of the proposed algo-
rithm in real environment would be the part of our future
works as it is hard to build a simulated environment with
exact configuration of real environment. In addition to this,
we will also divert our focus to investigate the difference
in characteristics of VMs and containers and make the
proposed algorithm more applicable to the micro-service
and container-based cloud application.
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