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Abstract: Artificial intelligence (AI) is among the major emerging research areas and industrial
application fields. An important area of its application is in the preventive healthcare domain, in
which appropriate dietary intake reporting is critical in assessing nutrient content. The traditional
dietary assessment is cumbersome in terms of dish accuracy and time-consuming. The recent
technology in computer vision with automatic recognition of dishes has the potential to support
better dietary assessment. However, due to the wide variety of available foods, especially local dishes,
improvements in food recognition are needed. In this research, we proposed an AI-based multiple-
dish food recognition model using the EfficientDet deep learning (DL) model. The designed model
was developed taking into consideration three types of meals, namely single-dish, mixed-dish, and
multiple-dish, from local Taiwanese cuisine. The results demonstrate high mean average precision
(mAP) = 0.92 considering 87 types of dishes. With high recognition performance, the proposed
model has the potential for a promising solution to enhancing dish reporting. Our future work
includes further improving the performance of the algorithms and integrating our system into a
real-world mobile and cloud-computing-based system to enhance the accuracy of current dietary
intake reporting tasks.

Keywords: EfficientDet; dietary assessment; multiple-dish; food image recognition; mHealth; deep
learning; artificial intelligence

1. Introduction

By 2025, the increased healthcare costs from chronic diseases will become a significant
financial burden [1–3]. Maintaining healthy eating is a crucial behavior change strategy [4,5]
and is commonly associated with treating nutrition-related chronic diseases, such as obesity
and diabetes [6]. Applying diet and nutrition information for the prevention of chronic
diseases by the use of smart devices is becoming an effective approach to ameliorating
the negative effects of chronic diseases [7–9]. Furthermore, self-management in mobile
health (mHealth) applications have the potential to deliver effective and scalable dietary
interventions at a low cost [7,8,10–12]. However, among the many challenges to food intake
reporting via mobile devices are the high errors that have been addressed in many studies
that are subject to each individual’s memory and ability in reporting food ingredients and
the estimation of food size [13,14]. Therefore, the burden on participants’ intake reporting
needs to be reduced to a large extent.
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Recently, artificial intelligence (AI) techniques have been increasingly applied to food
and nutrition applications [15,16]. With the increased use of smart devices and the rise of
deep learning (DL) techniques [17,18], the opportunity of building AI-based food intake
reporting is becoming possible, involving a number of integrated issues, e.g., mobile or
wearable devices [19,20], food recognition technologies [21], food datasets [22,23], and
the contexts of use [24]. Food-recognition-related techniques have been developed for
supporting dietary assessment in identifying food items, food size, and features [24,25]. AI
technology raises the possibility of facilitating tasks in recognition performance in food
images [24]. However, major challenges remain unsolved.

Challenge 1: Low accuracy in recognition of local dishes. Research [25] compared the
recognition accuracy of ten commercial paid platforms, and the varying results between
different platforms demonstrate a wide range of differences from poor to excellent under
some realistic settings. Furthermore, many local dishes were often shown to have less
accurate results. For a wide variety of food types, such as local Asian cuisine, improvements
in local dish recognition are required.

Challenge 2: Limited work in recognition of multiple dishes. Existing works focus on
the images of a single dish with a single or mixed-dish ingredient. However, recognition of
multiple dishes is important in health-related application for the following reasons. Using
a dish-based service will require users to upload each dish photo of a meal which can be
time-consuming and less efficient. Further, food reporting is frequent and needs to be done
more than one time per day. A single-dish-based rather than multiple-dish-based upload
would pose issues in the usability of the health application [26].

Challenge 3: Recognizing the same food from a variety of appearances. Food items
suffer from inter- and intraclass variations. Interclass variation can be found when similar
foods (e.g., stir-fried cabbage and stir-fried cabbage carrot) look similar in terms of intensity
in single and mixed dishes. Intraclass variation can be found when the appearances of a
particular food item are different due to factors in image angles (top view or side view),
color intensity (caused by methods of cooking), occlusions from other food items, types of
background (e.g., bowls or plates), etc., [27].

Challenge 4: Multiple dishes in a set-meal dish menu are changing and different. Thus,
a set meal with a single dish and mixed dishes served on a single tray can have many
possibilities. In addition, some dishes are not always available due to the seasons. New
combinations of a set meal can cause frequent updates of the food dataset [28].

Goals

The overall research purpose was to improve the effectiveness of AI meal-based
applications for use in food and nutrition services. We aimed to integrate ML innovations
of a realistic mobile health application [29] using mobile ICT and AI technology to allow
people to easily and accurately report their dietary intake under real conditions. To address
the aforementioned challenges in multiple-dish recognition, the low accuracy of some Asian
local foods, and the difficulties in recognizing mixed dishes, single dishes, and multiple
dishes, we proposed AI-enhanced multiple-dish food recognition using the EfficientDet-D1
deep learning (DL) model. The goals of our work can be listed as follows:

• Deep-learning-assisted multiple-dish food recognition model was developed that can
recognize food items automatically.

• The proposed DL model can work robustly in recognizing the single dishes, mixed
dishes, and multiple dishes of local Taiwan cuisines, which could be helpful for
deciding the appropriate healthy dietary intake.

• The performance evaluation and comparison with existing state-of-the-art recognition
models were conducted.

In this paper, though a multi-dish food recognition model was designed, a hypothetical
question could be asked: “How might we be able to efficiently recognize the multiple dishes
of local foods?” We aimed to resolve the aforementioned challenges, i.e., Challenges 1 and
2, by developing an AI-based multiple-dish food recognition model using the EfficientDet
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deep learning (DL) model to improve the accuracy of the local dish recognition. This
paper is organized as follows. Section 2 describes related works; Section 3 elucidates
the methodology of our proposed food recognition model using DL that includes data
collection, training, and evaluation procedures. Performance evaluation, results discussion,
and conclusions are given in Section 4, Section 5, and Section 6, respectively.

2. Related Works

Applying convolutional neural network (CNN) with different approaches has been a
main trend for dietary assessment. For example, the GoogLeNet CNN model was applied
to develop a mobile app called “Im2Calories” [30]. The process of dish recognition includes
food segmentation steps. Firstly, a Food101-Background dataset was used to determine the
presence of a food object on the food image. After food objects were identified, a multi-stage
classification process for image segmentation was implemented. Later, the system used
semantic image segmentation to produce correct labels on every food object on a plate. The
experiment trained and tested the obtained dataset of 2517 restaurants and used fixed-class
food image datasets such as Food-101, Food-201, Gfood-3D, and Nfood-3D. By using over
250,000 images to train the classifier on multiple datasets, the system was comprehensive
in detecting a large number of food categories with an accuracy of up to 76%. Moreover,
the model was especially suited for the fine-grain distinctions between categories such
as different hamburgers. This approach can be implemented to solve the challenges of
recognizing similar types of food with various appearances.

CNN-based Caffe framework [31] was applied on the proposed multiple-dish recogni-
tion model which was later implemented on a client–server architecture [27]. The system
involves users’ input to manually draw a bounding circle on a food item, which is time-
consuming. Therefore, developing an automatic food recognition model to draw bounding
boxes on each food item is necessary to reduce the food reporting time, which can enhance
the user’s experience.

Later, region mining algorithms were used to identify each food in a multiple-dish
setting. These food recognition processes were performed in the cloud which facilitates the
real-time integration between the mobile app and AI server. In the testing environment,
the system used the FooDD dataset [28] with an achieved accuracy of up to 94% for a
30-class dataset.

Initially, wearable devices have been utilized to recognize multiple foods through
physical activity such as eating [19,20]. In [19], spectrogram images were generated and
fed into pre-trained CNN AlexNet DL architecture. The adopted architecture was used to
develop a classification model that can recognize six food categories. For the same purpose,
a simple drink-and-eat classification model using CNN on raw accelerometer data has been
developed [20]. Using the classification approach, food recognition on ultrasonic Doppler
signal has been developed [21]. The proposed smartphone app was developed using CNN
and 30 food categories, which are mainly single-dish. However, Taiwanese local dishes
contain several mixed dishes. Based on our knowledge, most of the existing works have
only considered a small number of food categories. Meanwhile, some of the existing works
have involved a large number of food categories, which were from open datasets such as
Food-101, UECFood100, EUCFood256, etc., [22,23].

Another CNN-based approach, named faster region-based CNN (Faster R-CNN),
was applied—a three-step algorithm to recognize multiple dishes [32]. These steps in-
cluded region-based detection, food item detection, and food item classification. A diverse
dataset has been tested by combining Asian-style cuisine food image datasets such as
UEC-FOOD100 and UEC-FOOD256 and Western-style cuisines such as FOOD101. The
achieved accuracy was up to 71% for a 100-class dataset. Although the food image datasets
are of Asian cuisines, they do not cover the Taiwanese local dishes such as pork belly with
soy sauce, sweet potato leaves, etc. Similarly, implemented in smartphone devices, food
recognition in classification [22] and food types [23] has been proposed using FOOD101,
UEC-FOOD100, and UEC-FOOD256. The food classification model using a CNN model
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had an accuracy of 94% with a total of 29 food types comprising general food and fruits [22].
In a food detection model, You Only Look Once (YOLO) has been adopted using 256 food
types [23]. The food detection model achieved 76.36% mAP with an inference time of 15 ms.

The applications of CNN came out with various models. However, those studies were
performed in an experiment setting with a fixed-class large food image dataset. It might
not be suitable for the application in a real environment with frequent menu changes in
a restaurant. Therefore, in this study, we used a parsing approach to enable automatic
recognition of food items with multiple dishes. In addition, the fixed-class large food
image dataset had only a few template images per dish. Some studies [33–36] applied the
k-nearest neighbor (KNN) classifier as an alternative solution. For instance, a hierarchical
fine-grained model was used to recognize buffet-style multiple dishes [37]. The JISS-22
dataset was used and obtained from one specific restaurant. The achieved accuracy was
about 78% for a 50-class dataset.

The recent implementations of AI-based services created possibilities to support the
preventive healthcare system. First, the main trend of self-management of chronic dis-
eases or weight control was closely related to healthy eating that accounts for daily goal
management of a targeted calorie and balanced intake of macronutrients in protein, fat, car-
bohydrates, etc. For example, in a real-time example, AVA (eatwithava.com; accessed date:
14 February 2022) and Calorie Mama (www.caloriemama.ai; accessed date: 14 February
2022) provided automatic calorie calculation based on AI-based recognition of uploaded
food photos. Furthermore, “Foodvisor” served to recognize food items, estimate the serving
sizes, and monitor users’ eating habits [38]. “SnapCalorie” used Google Lens and Cloud
Vision API to recognize the food images and automatically calculate calories, fat, carbs, and
protein [39].

In [40], dietary intake reporting applications/systems involving food image recog-
nition could be built into either an automated or semi-automated approach. Most recent
research [27,30,41] built systems using an automated approach. However, a comparative
performance study [25] performed an experiment with samples of plain foods, processed
foods, drinks, and mixed dishes in a realistic setting using different containers, lighting,
and angles of perspective. The varying results between different platforms demonstrate
a wide range of differences from poor to excellent showing that applications following
an automated approach have yet to be appropriately utilized in a real environment. The
contributions of our work with respect to some of the related works are summarized in
Table 1.

Table 1. Summary of related works’ contributions.

Ref # Food Type/Task Contribution # of Considered
Food Items Performance

[22] Single-dish and fruits/
detection

Develop
application for

children
with visual

impairments

29 0.95

[23] Mixed-dish/
detection

Display food
nutrition factors 356 0.75

[30] Mixed-dish/
segmentation

Estimate food
size 201 0.25

[37] Multiple-dish/
detection

Develop
application for

buffet-style food
50 0.78

Our work
Single/mixed/

multiple-dish/set meal
detection

Improve dietary
intake reporting 87 0.92

eatwithava.com
www.caloriemama.ai
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3. Methodology

The designed multiple-dish food recognition model is detailed and explained in
this section. Three types of meals—single-dish, mixed-dish, and multiple-dish—were
considered as input. These inputs were divided, labeled, trained, evaluated, and tested.
The overall workflow of the proposed model is shown in Figure 1.
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3.1. Data Acquisition and Labeling

For this study, the dataset of food images was taken with smartphone and collected
in a real environment, i.e., at the cafeteria of Chang Gung Health and Culture Village.
Following our previous study [29], we categorized the meals into mixed-dish, single-dish,
and multiple-dish, as shown in Figure 2. Accordingly, we collected 31 mixed-dish food
items, 27 sets of multiple-dish, and 56 single-dish food items with the corresponding images
such as 447, 556, and 1326 images, respectively. We cropped manually each food item in
each multiple-dish image and combined them with the set of mixed-dish and single-dish
sets. Each multiple-dish meal contains 4 to 6 dishes, which are a random combination
of single and/or mixed dishes. Image cropping on set meals was conducted to obtain
additional single-dish and mixed-dish images. In addition, blurred or low-quality images
were excluded. After cropping, the total number of images for mixed-dish and single-
dish became 847 and 1557, respectively. Finally, a total number of 4733 food images were
collected, which contained 87 food items, as shown in Figure 2.

For model training and testing purposes, we divided the total food image dataset into
80:20 ratios. Accordingly, we had 3786 and 947 images for training and testing, respectively.
The data did not overlap between the training and testing sets. Each food image on our
dataset was labeled following our previous study [29] which described a food category
i.e., single- or mixed-dish, with cooking method i.e., stir-fried, followed by food ingredient
name. For instance, “pan-fried pork” is in the category of “single-dish”, the cooking
method of “pan-fried”, and the food ingredient of “pork”. Next, we applied abbreviation
for each food image with format food category followed by cooking method and food
ingredient name. For instance, “Single-Dish Boiled Okra” was abbreviated as “Single-Dish”
to “SD”, “Boiled” to “BO”, and “Okra” to “Ok” which results in “SDBOOk”, and “Mixed-
Dish Stir Fried Cabbage with Carrot” was abbreviated as “Mixed-Dish” to “MD”, “Stir
Fried” to “SF”, and “Cabbage with Carrot” to “CCr” which results in “MDSFCCr”. A
summary of types of dishes is given in Table 2. For detection purposes, we labeled each
food item using bounding box techniques. We drew the coordinates of top left and bottom
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right using open-source software LabelImg (v1.8.4) and annotated them with the defined
class abbreviations.
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Table 2. Type of dish information summary.

Food Type Cooking Type Abbreviations Total Items

Single-dish

Stir-Fried SDSF 24

Boiled SDBO 4

Braised SDBR 16

Steamed SDST 4

Pan-Fried SDPF 8

Mixed-dish
Stir-Fried MDSF 20

Braised MDBO 7

Boiled MDBO 4

3.2. Deep-Learning-Based Food Recognition Model

To design AI-based multiple-dish food recognition model that can work in a real-time envi-
ronment, a model is required to work fast with better accuracy of result under the circumstance
of heterogeneous data found in single dishes, mixed dishes, and multiple dishes. Therefore, we
adopted EfficientDet-D1 with EfficientNet-B1 as the backbone. EfficientDet detector architecture
with EfficientNet was selected because previous research has shown better performance in
comparison to other state-of-the-art object detection architectures [42,43]. Essentially, adopted
EfficientDet comprised three steps in feature extraction, bidirectional feature pyramid network
(BiFPN), and detection classification heads. For feature extraction, we adopted EfficientNet-B1
network from pre-trained ImageNet. The backbone comprised seven blocks {p1, p2, p3, p4, p5,
p6, and p7}. Table 3 shows the details of each block.

Table 3. EfficientNet-B1 block details.

Block # Input Filter Kernel Size Stride # # of Repetitions Output Filter

p1 32 3 1 1 16

p2 16 3 2 2 24

p3 24 5 2 2 40

p4 40 3 2 3 80

p5 80 5 1 3 112

p6 112 5 2 4 192

p7 192 3 1 1 320
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After extracting the features from seven different scales, those features were passed to
BiFPN blocks for the scaling. For backbones B1, with the scaling configurations including
∅ = 1, the configurations were input size = 640, number of channels = 88 and number of
layers = 4 for BiFPN, and number of layers for box or class = 3, where ∅ was compounded
coefficient. In formal style, the BiFPN new width scale and depth were calculated as given
in Equations (1) and (2).

New width scale = 88.
(
1.35∅

)
, (1)

New depth scale = 4 +∅, (2)

Moreover, for the box or class prediction and input resolution, the formal way of
scaling was defined as given in Equations (3) and (4).

New box or class prediction scale = 3 +∅/3, (3)

New input resolution = 640 +∅.128, (4)

3.3. Procedures of DL Model

Taking the training set with a total of 3786 images, we designed the training and
tuning model using k-fold cross-validation which was used in [44]. The training dataset
was divided approximately equal to k = 5 subsets, {s1, s2, . . . , sk}. In each round of
training, k-1 total number of subsets was selected as a training set, where a subset sk was
selected as testing. The tuning was performed in each round of training. After finding
the optimized model in each round of training, we verified the robustness of the designed
model using the testing set. The optimized model was achieved by finding the optimal
values of image dimension = 640 × 640, total number of epochs = 300, total number of steps
= 867, learning rate = 0.001, and batch = 20. Moreover, the final optimized model was used
further for testing. The 947 images of testing set were used to evaluate the robustness of
our derived model.

4. Experimental Results

The training, tuning, and testing were experimented on Ubuntu v18.04.3. For the
multiple-dish food recognition model, we used TensorFlow framework v1.14. The ex-
periments were performed by using Python programming language along with some
Python libraries such as Pandas v0.24.2, OpenCV v4.5.1.48, Numpy v1.16.2, etc. All of these
configurations were operated on GPU TITAN RTX 24 GB × 4 with 256 GB memory.

4.1. Evaluation Metrics

In this section, the performance of our adopted AI-based food recognition model is
presented by comparing it with two existing recognition architectures, i.e., single-shot
detector (SSD) one-stage detector with Inception V2 and Faster R-CNN two-stage detector
with Inception ResNet V2 backbones. For the real-time experiment, SSD was reported to be
powerful and outperformed You Only Look Once (YOLO) V4 tiny architecture in detecting
green and reddish tomatoes [45]. Moreover, Faster R-CNN had better performance in
comparison to SSD [46]. Therefore, these two architectures were selected for comparison
with our proposed model. The factors for performance comparison were chosen in terms
of accuracy, precision, recall, F1-score, and then mAP. The comparison was performed
for all rounds of training. Thus, the standard deviation (SD) values were also derived.
Furthermore, for a more in-depth analysis, a precision–recall curve of our model was drawn.
Additionally, we analyzed the AP value considering different types of dishes, localization
loss, and inference time.

To measure the performance of the proposed model, we used the intersection over
union (IoU) metric. This metric is a commonly used metric for object detection or recogni-
tion models. Based on this metric, three parameters could be derived: true positive (TP),
false positive (FP), and false negative (FN). Based on these parameters, we calculated four
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basic metrics: accuracy, precision, recall, and F1-score. The formal calculation of these
metrics is addressed in Equations (5)–(8).

Accuracy =
TP

TP + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(8)

Finally, we calculated the average precision (AP) for all 87 classes and then derived
the mean AP (mAP) as the overall performance which can be also plotted in a precision–
recall curve by taking the IoU threshold = 0.5. As shown in Equation (9), we analyzed the
localization loss using focal loss (FocalL), where pt is the probability of predicted class and
optimal value of gamma γ = 1.5. In addition, the inference time of the designed model
is observed.

FocalL = −(1 − pt)
γ log(pt) (9)

4.2. Results of Performance Metrics

In Table 4, our model in the defined configuration of hyper-parameters has the accuracy
and precision achieved > 0.80, whereas SSD Inception V2 and Faster R-CNN Inception
ResNet V2 could only achieve maximal performance < 0.60. The result in the table shows
that our model detected dishes more accurately than the other two under the 87 classes.
This result is also supported by 0.97 of recall and 0.93 of F1-score, which were higher than
other object detectors of SSD and Faster R-NN. In addition, the average of SD performance
of the model from all the metrics was 0.01 in comparison to SSD Inception V2 and Faster
R-CNN Inception ResNet V2, which were 0.035 and 0.05, respectively.

Table 4. Comparison in terms of accuracy, precision, recall, and F1-score metrics.

Architecture
Evaluation Metrics ± SD

Accuracy Precision Recall F1-Score

Our Model 0.87 (±0.01) 0.88 (±0.01) 0.97 (±0.01) 0.93 (±0.01)

SSD Inception V2 0.53 (±0.03) 0.6 (±0.03) 0.56 (±0.04) 0.56 (±0.04)

Faster R-CNN
Inception ResNet V2 0.54 (±0.02) 0.64 (±0.04) 0.53 (±0.09) 0.57(±0.06)

4.3. Results of Mean Average Precision

To evaluate how precisely the predicted bounding box located and classified the
dishes in comparison to ground truth, we further compared the model by using mAP for
all rounds of training. As shown in Table 5, our model recognized the food items with
an mAP = 0.90 and lower value of SD = 0.01 from all the rounds. As shown in Table 5,
overall mAP performance for all rounds was > 0.80 which was the same performance we
observed in accuracy, precision, recall, and F1-Score. SSD had the lowest performance with
mAP = 0.57 followed by Faster R-CNN with mAP = 0.64. It was observed that SSD and
Faster R-CNN failed in detecting the multiple dishes.
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Table 5. Comparison of mAP metrics.

Architectures R1 R2 R3 R4 R5 mAP ±SD

Our Model 0.88 0.90 0.91 0.91 0.89 0.90 ±0.01

SSD Inception V2 0.63 0.55 0.56 0.59 0.53 0.577 ±0.04

Faster R-CNN
Inception ResNet V2 0.51 0.75 0.77 0.63 0.55 0.646 ±0.1

For a more in-depth analysis, we also used precision–recall curve, AP, and localization
loss metrics on the model after all rounds. Figure 3 depicts the precision–recall curve of
all 87 classes. The curve shows the trade-off between precision and recall for different
confidence values predicted by our designed model. As a result, the model had a higher
precision of up to 0.7 of recall which gradually decreased with the increasing value of recall.
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Based on the precision–recall curve, we tried to estimate the area under the curve
(AUC) using AP. The AP was measured for all 87 classes. Due to the large number of
classes, we calculated the average AP for all types of dishes, as shown in Table 6. Due to
the high number of classes or number of food items, the single-dish category still had high
AP = 0.88 for all 56 classes, whereas mixed-dish had much better AP = 0.96. Moreover, the
localization loss of the designed model was calculated. As shown in Figure 4, our model
loss calculation was the lowest <0.1 in comparison to SSD Inception V2 and Faster R-CNN
Inception ResNet V2.

Table 6. AP value of all types of dishes.

Type of Dishes Total Number of Food
Items Avg AP mAP

Single-dish + included in
multiple-dish 56 0.88

0.92
Mixed-dish + included in

multiple-dish 31 0.96
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4.4. Results on Model Speed

To implement the function of food recognition, e.g., using a front-end mobile app
and a back-end server, the derived model had to be of better time efficiency for a real-
time application. As shown in Figure 5, the model had the lowest value of inference
time, i.e., 4 s/image. The value in SSD was =5 s/image, and in Faster R-CNN, it was =21
s/image. With this relatively low inference time, EfficientDet could be more efficient to be
implemented in a real-time mobile application.
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4.5. Results on Different Dataset

In order to justify the robustness of our proposed detection model, we analyzed the
performance by using the open dataset. Since we considered the local Taiwanese cuisine for
detection, local Indian cuisine [47] was considered to implement and compare our model.
We implemented our food recognition model on the single-dish images obtained from the
Kaggle dataset [48]. This dataset comprises 10 food items with 100 numbers of images.
Those 10 items are Rasgulla, Modak, Misi_roti, Kalakand, Imarti, Gulab_jamun, Chikki,
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Bandar_laddu, Aloo_tikki, and Adhirasam. Training and testing data division followed
the same procedure as described in Section 3.1. As shown in Figure 6, it is observed that
the performance of our model using our dataset has similar performance with the open
dataset. Based on the test set, our model implemented on the images of the open dataset
can achieve an accuracy (ACC) = 0.8, precision (PRE) = 0.84, recall (REC) = 0.941, F1-score
(F1-S) = 0.88, and mAP = 0.8. These results prove that our model can be implemented to
recognize a variety of single-dish images of other countries’ cuisines.
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Considering the testing set of images from the open dataset, detection of some of the
single-dish food types of Indian cuisine is shown in Figure 7. It is observed that our food
detection model can accurately recognize the single dishes Imarti, Chikki, and Rasgulla
with a higher confidence score.
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4.6. DL-Based Food Recognition

Based on the model, the predicted results are presented in the testing set. The results
are presented in three different dish types, i.e., single-dish, mixed-dish, and multiple-dish
meals as shown in Figure 8a–c, respectively. Each dish in Figure 8 has a bounding box with
a colored square and the top-left label on the box describing the abbreviation of the dish
name with a specific confidence score ranging from 0.00 to 1.00.
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Figure 8. Recognition results of the three dish types: (a) single-dish; (b) mixed-dish; (c) multiple-dish.

Figure 9 shows three different food items in the type of single-dish. The model is able
to recognize correctly the dish name with the information on the type of dish, e.g., single-
dish, way of cooking, e.g., stir-fried, and food item, e.g., kelp buds. For instance, “SDSFKBu”
was “Single Dish Stir Fried Kelp Buds”, “SDBRPTss” was “Single Dish Braised Pig Trotters
with Soy Sauce”, and “SDSTRc” was “Single Dish Steamed Rice”. The confidence score
was 1.00.
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As for the mixed dishes shown in Figure 10, the three mixed-dish items were “MDS-
FCCwCraBF” standing for “Mixed Dish Chinese Cabbage with Carrot and Black Fun-
gus”, “MDBOSolChSo” for “Mixed Dish Boiled Sesame Oil Chicken Soup”, and “MDSFB-
SwCraBF” for “Mixed Dish Stir Fried Bean Sprout with Carrot and Black Fungus”. Each
dish had a confidence score of 0.99, 1.00, and 1.00, respectively.
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For multiple dishes, we tested different sets that had different numbers of dishes (T).
The model recognized multiple dishes with a total number of T = 3, T = 4, T = 5, and T = 6
dishes, as shown in Figure 11a–d, respectively. As a result, all the prediction results have a
confidence score larger than >0.5. For instance, as shown in Figure 11b, the designed model
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recognized correctly “SDSTRc” and “SDPFChBs” for single-dish and “MDSFCCwCraBF”
and “MDSFBwCraBF” for mixed-dish with an average confidence score of = 0.99. In
Figure 11, prediction results appear for each dish where the same prediction class did not
repeat for the same dish.
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5. Discussion

The contribution of this paper was to propose a model for recognizing various types
of meals, such as single-food dishes, mixed-food dishes, and multiple-dish meals in homes,
restaurants, and school cafeterias. Especially multiple dishes on a plate or tray [49] were
common in many food reporting cases. Further, food reporting was often frequent. How-
ever, the existing applications of image recognition did not directly support the recognition
of multiple-dish images. Therefore, an identification scheme was desirable in detecting
and recognizing multiple dishes from a single image. The accuracy and timely response of
food intake were critical and closely related to health-related applications in calorie calcu-
lation that are a key sub-function for health self-management application. The following
addresses preformation of the proposed model, the potential application of the model, and
the limitation.

5.1. Evaluation of the Model

The proposed model was shown to positively enhance its efficiency and accuracy in
comparison to two major architectures, i.e., SSD Inception V2 and Faster R-CNN Inception
ResNet V2. Moreover, the input from a human in data producing and preprocessing created
human–AI interaction which helps AI to learn in a sustainable way. AI technology could
gradually improve the richness of information and accuracy. Next, the proposed model
extracted features with convolutional networks (CNNs) from a pre-trained EfficientNet-B1
for the backbones. Then, the extracted features were used further for the multiple-dish food



Electronics 2022, 11, 1626 14 of 17

recognition model by adopting EfficientDet-D1. The use of a three-step parsing method
accelerated training and produced efficient results, as shown in Table 4. Although the
trained food images have a limited number, the system is able to recognize three dish
categories with relatively high accuracy. In overall performance, the design model can
recognize all types of meals, namely single-dish, mixed-dish, and multiple-dish meals, with
an accuracy = 0.87, precision = 0.88, recall = 0.97, and F1-score = 0.93.

The improved accuracy and confidence in our model could be explained by the
following two reasons. Firstly, in the parsing step, we had the system identify its major
attributes, i.e., in our research, we trained the model to identify the meal classified as single-
dish, mixed-dish, or multiple-dish. Furthermore, the selection of EfficientDet architecture
as the detector showed high-speed and highly accurate detection in comparison to SSD and
Faster R-CN. This can be supported by the value of mAP = 0.92 with the lowest average
inference time < 5 s. However, the result might be changed under a wide variety of tested
dishes. Therefore, further investigation is needed to test with more types of food. Moreover,
further research is needed to account for all possible meal reports, such as reporting bento-
and buffet-like meals containing a range of single and mixed dishes.

5.2. Potential Implementation

The proposed model could be implemented into an automatic or semi-automatic ap-
plication framework. Given the limited dishes to be recognized, we built an app prototype
to include the automatic multiple-dish food recognition model into an existing framework.
The implementation was to build an AI-enhanced version of our previous dietary intake
app [24]. The user flow of the AI-enhanced application for multiple-dish food recogni-
tion architecture was followed. Firstly, the user took the photo, and the system obtained
multiple-dish data under two-tier architecture. The server API was implemented in Python.
The architecture allowed photos to be sent from the app to the AI server and received the
responded data from the AI multiple-dish server. The feedback from the photo image was
presented to the user. The responded data are the recognized results in which possible
answers are provided for each dish of a meal. The user is presented with a possible dish
name that requires the user’s selection of the proper dish name. For a new dish unable to
be identified from the AI server, manual input by means of voice or text input is required,
which additionally allows the user to add or edit its food attribute (e.g., cooking method,
portion, sugar level, and salt level).

Based on our initial trial in the use of the application, one of the challenges in uploading
the meal-based photo was in users’ intake behavior. Some families might start to eat before
all dishes have finished being cooked. Therefore, it might not be possible to photograph
all the dishes of a meal at one time. Therefore, the application should also provide partial
meal or even single-dish reporting functions to accommodate different users’ needs. For
correct reporting of type and quantity of intake, further enhancement in AI-image detection
should include left-over food images. Moreover, the volume of the food needs to be taken
into consideration in calculating the amounts of macronutrients.

6. Conclusions

This paper presented an AI-based multiple-dish food recognition model to support
meal-based image recognition. The proposed algorithm accurately recognized multiple
dishes with 0.92 mAP where the recognition was performed faster with inference time <5 s.
As the uploading of intake photos would be conducted for each meal daily, the usability
of the application needs to be considered. This paper also attempted to demonstrate the
possible application in mHealth. The model proposed in this paper attempted to reflect
a realistic user scenario that has potential to support appropriate dietary intake in terms
of efficiency in one-time meal reporting. In addition, the model showed potential for a
promising solution for the recognition of multiple dishes of local cuisines. It was observed
that the current approach has potential in recognizing the multiple dishes of single- and
mixed-dish types of food. An automatic food recognition model was developed, which can
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recognize the food with bounding boxes on each food item to reduce the food reporting
time and enhance the user experience. Our future work includes further improving the
performance of the model and integrating it with the mobile app to facilitate the real-time
integration between the mobile app and AI server and to enhance the accuracy of current
measurements of dietary intake.
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