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Abstract: Ambient Intelligence (AMI) represents a significant advancement in information technology
that is perceptive, adaptable, and finely attuned to human needs. It holds immense promise across
diverse domains, with particular relevance to healthcare. The integration of Artificial Intelligence (AI)
with the Internet of Medical Things (IoMT) to create an AMI environment in medical contexts further
enriches this concept within healthcare. This survey provides invaluable insights for both researchers
and practitioners in the healthcare sector by reviewing the incorporation of AMI techniques in the
IoMT. This analysis encompasses essential infrastructure, including smart environments and spectrum
for both wearable and non-wearable medical devices to realize the AMI vision in healthcare settings.
Furthermore, this survey provides a comprehensive overview of cutting-edge AI methodologies
employed in crafting IoMT systems tailored for healthcare applications and sheds light on existing
research issues, with the aim of guiding and inspiring further advancements in this dynamic field.

Keywords: internet of medical things; IoMT; ambient intelligence; AMI; artificial intelligence; AI;
healthcare

1. Introduction

In recent years, healthcare management systems have encountered increasing strain.
While healthcare services predominantly center around hospitals, chronic diseases remain a
formidable challenge worldwide. Cardiovascular diseases notably rank as a leading cause
of death in regions such as the EU [1]. This strain on healthcare has become particularly
apparent during pandemics such as COVID-19 and swine flu, with healthcare centers
sometimes stretched to their limits. Additionally, patients often require ongoing monitoring
post-surgery until their health stabilizes; however, current practices often entail frequent
and burdensome hospital visits, which can prove costly, inefficient, and inconvenient for
patients in need of routine checkups. Despite technological advances, many industrialized
nations are grappling with significant challenges regarding the quality and affordability of
healthcare services. Consequently, the sustainability of the healthcare sector is increasingly
questioned, necessitating the utilization of makeshift facilities and telehealth technologies
to ensure the continued viability of healthcare systems.

Amid these healthcare challenges, the exploration of information and communica-
tion technology (ICT) has emerged as a promising avenue for the implementation of
autonomous and proactive healthcare services. From consumer-driven healthcare services
through web-based platforms to electronic health records, ICT solutions have significantly
enhanced the accessibility and efficiency of healthcare delivery. Notably, smartphone ap-
plications such as Teladoc [2] offer online assessment services, connecting patients with
doctors and showcasing remarkable performance; however, these solutions often provide
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only brief glimpses of physiological conditions, and lack continuous monitoring over
extended periods.

The limitations of contemporary healthcare systems have spurred interest in alterna-
tive approaches aimed at promoting effective personalized care. Among these approaches,
Ambient Intelligence (AMI) and the Internet of Medical Things (IoMT) represent a paradigm
shift towards intelligent healthcare. AMI, renowned for its capacity to cultivate adaptable
and contextually aware environments, holds vast potential for revolutionizing healthcare
facilities into intelligent ecosystems that cater to the unique needs of individual patients [3].
Simultaneously, IoMT technologies can facilitate the utilization of interconnected medical
devices and sensors, providing unparalleled opportunities for real-time monitoring, data
collection, and remote patient management [4]. The integration of Artificial Intelligence
(AI) algorithms in AMI and IoMT systems enhances their capabilities by enabling advanced
data analytics, predictive modeling, and decision support functionalities. The benefits of
such integration can be briefly summarized as follows:

• Automated home monitoring services
• Reduced hospital and hospice occupancy
• Reduced healthcare cost
• Personalized healthcare services
• Predictive analysis for early disease detection

Collectively, these AI-powered technologies can usher in a new era of intelligent
healthcare that prioritizes patient-centered care while optimizing operational efficiency. In
response to these advancements, this paper endeavors to delve into the integration of AMI
and AI in the healthcare environment through the IoMT. The focus is on exploring how the
synergy between adaptive AMI environments and IoMT technologies, augmented by the
analytical capability of AI, can effectively address the prevailing challenges encountered
by healthcare systems with the goal of elevating the quality of patient care and ultimately
enhancing healthcare outcomes. Through an exhaustive examination of the pertinent
literature encompassing various components of AMI in communication, healthcare, and
cutting-edge technological advancements in AI, this study aims to shed light on the myriad
benefits, potential hurdles, and future trajectories associated with the utilization of AMI
and AI in healthcare via the IoMT.

1.1. Recent Surveys on AMI and Diseases

Table 1 outlines previous surveys conducted on the applications of AMI in healthcare,
highlighting their main objectives. The authors of [5] addressed the different sensors that
can capture varied sensory information, including depth sensors, thermal sensors, radio
sensors, acoustic sensors, etc., all of which can be deployed in hospital or daily spaces for
monitoring human activities. However, they did not cover methods for identifying abnor-
mal behavior, challenges in dataset acquisition, and the creation of artificial datasets when
needed. On the other hand, [6] accentuated case studies through abstract experimentation
without highlighting the technical information associated with data processing or model
deployment. The impact of AIoT was evaluated in [7] for the healthcare domain. The
authors performed a detailed exploration of various facets of IoT advancements specifically
tailored to the medical field; however, their approach lacked specificity in addressing spe-
cific diseases, and did not emphasize how AMI could handle emergency cases. Moreover,
the authors of [8] provided a detailed and comprehensive review of the techniques used
to profile activities of daily living (ADL) and detect abnormal behavior for healthcare
purposes. They defined abnormal behaviors and provided examples of abnormal behav-
iors/activities in the case of elderly people. In addition, they described different ambient
sensor types and deep learning (DL)-based methods for abnormal behavior detection.
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Table 1. Surveys on AMI and healthcare.

Key Identifier Main Objectives Limitations

Unobserved heathcare spaces [5]

Highlights the potential benefits of AMI
towards optimizing clinical workflows,
enhancing patient safety, and managing
chronic diseases in daily spaces and hospitals.

Lacks information on actuators, public
datasets, and analytical models

Home-based healthcare [6]

Examines standards and approaches for
incorporating AMI into home-based
healthcare, emphasizing the importance of AI
accountability and reliability within
AMI systems.

Lacks information on sensors, actuators, data
collection, data processing, communication
protocols, and model deployment

AIoT and healthcare [7]
Describes the different methodologies and
applications of IoT devices in the
healthcare domain.

Lacks information on actuators, data
collection methods, communication protocols,
data processing, and analysis framework

Elderly care [8]
Reviews different sensors, data types, and
methodologies for detecting abnormal
behavior in ambient assisted living

Minimal information on actuators and diverse
communication protocols

Biosensors [9]

Explores different machine learning (ML)
applications in healthcare, AI-based clinical
tools and start-ups, big data analytics and
biosensors, and computing technologies.

Lacks information on actuators, datasets,
communication protocols, and
analytical models

This paper provides a comprehensive exploration of various sensors along with their
usage, benefits and challenges. The contemporary literature addressing the accuracy limita-
tions of these sensors is thoroughly reviewed. Additionally, it includes a brief overview of
different communication protocols for the IoMT. A detailed explanation of various datasets
is provided, along with an investigation of contemporary research on the fundamental
AI principles of classification, segmentation, and detection within the context of AMI
applications in healthcare. The primary aim is to offer a comprehensive overview that can
facilitate broader integration between AI, AMI, and the IoMT.

1.2. Purpose of Study

The IoMT, together with its various components, encompasses a vast topic. This
comprehensive work aims to serve as a one-stop solution for researchers. The purpose of
this work can be summarized as follows:

• A comprehensive explanation of the AMI environment is provided, highlighting its
key components, functionalities, and capabilities in healthcare settings.

• Various IoMT sensors, including body-centric and ambient sensors, are explored while
discussing their invasive or non-invasive nature, usage, benefits, and applications in
facilitating intelligent healthcare solutions.

• Various types of actuators are discussed based on their relationship to the body and
environment, providing insights into their functions, challenges, and examples in
healthcare contexts.

• The communication protocols and technologies used in IoMT systems are delved into,
examining their role in facilitating seamless data exchange and interaction among
sensors, actuators, and other components in healthcare environments.

• The integration of the IoMT with AI algorithms is analyzed, specifically focusing on
image and video data as well as sensor data processing techniques.

• A comprehensive literature survey is presented in order to explore the diverse ap-
plications of AMI in healthcare, covering areas such as remote patient monitoring,
personalized healthcare delivery, smart medical devices, and telemedicine.
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• The challenges and limitations associated with the implementation of AMI in health-
care are analyzed, including issues related to data privacy, security, interoperability,
scalability, and user acceptance.

The rest of this paper is organized as follows. Section 2 describes the fundamentals
of AMI, including the key characteristics and environments. Section 3 provides brief
information on the roles of sensors and actuators in the IoMT. Section 4 discusses the
significance of communications in the IoMT, along with descriptions of different protocols
and their limitations. Section 5 focuses on the utilization of AI in the IoMT, covering
different datasets, preprocessing techniques, annotation methods, model training, and
outcome prediction. Section 6 explores the application of AMI in healthcare through two
specific case studies. Section 7 discusses the open challenges. Finally, concluding remarks
are provided in Section 8.

2. Fundamentals of AMI

AMI refers to a computing paradigm in which the environment supports the occupant
by adapting to their needs rather than inhibiting them. These intelligent environments
can perceive, process, and respond to human interactions seamlessly and unobtrusively.
Unlike traditional computing systems, which often require explicit inputs from users, AMI
systems operate in the background using sensors, actuators, and intelligent algorithms
to anticipate and adapt to users’ needs and preferences [10]. The key characteristics of
AMI include:

• Context-aware computing: Aims to gain a deeper understanding of the significant
contextual and situational information within ambient systems.

• Embedded systems: AMI applications primarily consist of embedded systems, in-
telligent sensing technologies, and actuators that can be deployed and operated
autonomously.

• Intelligence: Different AI algorithms enhance the analytical capabilities of AMI
systems to perceive, understand, and act.

• Personalized systems: Can be personalized and tailored to the needs and satisfaction
of each user.

• Anticipatory: Can anticipate and fulfill the needs of an individual without requiring
conscious intervention from the user.

• Ubiquitous: Enables the integration of invisible sensors into real-time environments,
facilitated by the miniaturization of embedded components for enhanced mobility.

• Transparency: Seamlessly integrates into daily lives, subtly blending into the back-
ground without disruption.

• Complaints and flexibility: AMI systems are highly adaptable and flexible, and are
capable of effortlessly adjusting to the diverse needs of individuals.

Within the realm of AMI, the creation of intelligent environments relies on synergy
between various components working harmoniously to enhance user experiences and
streamline everyday tasks. Figure 1 depicts the core components of AMI systems in health-
care, including the environment, intelligent sensing technologies, actuators, communication
media, and advanced AI algorithms. These components form the foundation of AMI envi-
ronments, enabling them to perceive, process, and respond to user interactions seamlessly
and intuitively.

The AMI environment comprises a dynamic ecosystem embedded with various sen-
sors, actuators, and a communication system that collaborates with AI algorithms to create
intelligent and context-aware spaces. These spaces can respond to users’ needs without
requiring explicit input from them. Users can benefit from the interactive functionalities
of these spaces without having to provide any explicit commands. Such environments
can be established by integrating AMI into homes, workplaces, healthcare facilities, and
public spaces to enhance user experiences, improve operational efficiency, and establish
what is known as “Smart Living”. Consequently, individuals in AMI assisted living (AMIL)
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are surrounded by intelligent gadgets that can sense their conditions while predicting and
potentially adapting to support them in their daily activities. In this paper, we primarily
focus on those environments relevant to human healthcare.

Figure 1. General architecture of AMI assisted living.

In healthcare, AMIL is utilized in various intelligent environments to enhance patient
care, optimize clinical workflows, and improve the healthcare system as a whole. The
different AMIL environments in healthcare are described below:

1. Hospital rooms: AMI is integrated into hospital rooms to establish intelligent and
patient-centric environments. For example, ref. [11] demonstrated the utilization
of AMI to track and monitor patients in intensive care units. Additionally, ref. [12]
proposed the use of AMI to predict patients’ length of stay, thereby aiding in the
prevention of emergency department overcrowding. Furthermore, AMI is able to
monitor patient health metrics and adjust environmental conditions such as lighting
and temperature within patient wards in order to ensure optimal comfort.

2. Clinics and outpatient facilities: AMI deployed in clinics or outpatient facilities
can streamline healthcare by minimizing clinical wait times [13]. Smart clinic en-
vironments utilize IoT sensors and AI algorithms to manage patient appointments,
optimize waiting times, and personalize care pathways based on individual patient
needs and preferences.

3. Smart home: Smart home monitoring plays a pivotal role in determining the efficiency
rate. For instance, daily activity monitoring could benefit healthy adults as well as
children, individuals with disabilities, and the elderly. Moreover, these environments
are effective when dealing with situations such as the COVID-19 pandemic [14].
Constant AMI-based monitoring systems can assist in daily living activities, monitor
health conditions, and provide personalized care and support services.

4. Rehabilitation centers: Smart rehabilitation could combine physical and cognitive
activities to provide better rehabilitating facilities that are less boring while still being
very effective in patient recovery. Moreover, AMI could aid in the treatment of
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individuals with Acquired Brain Injury (ABI) [15] by employing specialized devices
to regulate patients’ movements and certain physiological responses, such as changes
in heart rate, throughout the rehabilitation process.

5. Mobile healthcare units: With the advancement of the Internet of Vehicles, it has
become possible to integrate AMI into mobile healthcare units such as ambulances.
This allows for the delivery of medical services and critical care interventions while
on the move. Smart ambulances [16] can make real-time decisions based on traffic
conditions or hospital loading conditions, helping to minimize travel time and select
the best hospital for a specific medical emergency.

3. Sensors and Actuators in the IoMT

Sensors are the foundation of any IoMT environment. They collect data from the
physical IoMT environment and transfer them to communication gateways for storing and
analysis purposes. Typically, these sensors can be broadly classified into two categories:
body sensors (as shown in Figure 2) and ambient sensors (as shown in Figure 3) [17].
Body sensors collect physiological information such as heart rate, body temperature, blood
pressure, blood glucose information, oxygen saturation, etc. By leveraging advanced
computational methods, the collected data can be analyzed and interpreted to extract mean-
ingful insights and identify patterns indicative of specific activities or health conditions.
Ambient sensors, on the other hand, collect physical information such as gravity, room or
outside temperature, humidity sensor, motion sensor, etc. Detailed information on different
body sensors and ambient sensors, including sensor type, description, data type, benefits,
challenges, and integrations, is provided in Tables 2 and 3.

Figure 2. Different body-based IoMT devices.
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Figure 3. Various ambient IoMT devices.

Table 2. List of body sensors used in the IoMT.

Sensor Type Type Invasive? Usage Benefits Challenges Device
(If Applicable)

Heart Rate Monitor W No Monitors
heart rate

Early detection of
cardiac abnormalities

Subject movement can impact accuracy
due to noise from inertial force.

Smartwatches,
Fitness Trackers

Blood Pressure
Monitor W/NW No Measures

blood pressure
Manages hypertension
and cardiovascular risk

Weak signals lead to irrelevant
diagnoses. Requires proper calibration
and positioning. May cause arm
soreness, sleep disruptions, and
skin irritation.

Wearable devices,
Automated blood
pressure cuffs

ECG W No Records
heart activity

Diagnosis of
arrhythmias, heart
conditions, mental
stress identification

Demands electrode placement and skin
preparation. Incapable to detect heart
attack, high cholesterol, and stroke.

Wearable devices,
ECG machines

Blood Glucose
Monitor W/NW No Monitors blood

glucose levels
Diabetes management
and glucose control

Accuracy is affected by factors such as
hydration, anemia, site of testing,
environmental conditions, extreme
hematocrit values or
medication interferences.

Continuous blood
glucose monitors
(CBGM), glucose
meter, photoplethys-
mography (PPG)
device

Pulse Oximeter W/NW No Measures oxygen
saturation

Early detection of
hypoxemia and
respiratory issues,
detection of sleep apnea

Accuracy can be influenced by poor
circulation, skin pigmentation,
thickness, temperature, tobacco use,
and fingernail polish.

Wearable devices,
Medical oximeters,
fingertip pulse bar

Temperature Sensor W/NW No Measures body
temperature

Early detection of fever
and infections

Requires calibration. Accuracy varies
with environment

Wearable devices,
Smart thermometers

Accelerometer W/NW No Measures
acceleration

Activity tracking,
fall detection

Accuracy is affected by sensor
placement. Policies on zero count data
affect PA and sedentary
time estimation.

Wearable devices,
Motion trackers,
smartphones,
smartwatches

Gyroscope W No Measures
orientation

Motion tracking,
gesture recognition

Measurements drift over time.
Sensitive to external factors such as
vibration and shock

Smartphones,
smartwatches



Electronics 2024, 13, 2309 8 of 46

Table 2. Cont.

Sensor Type Type Invasive? Usage Benefits Challenges Device
(If Applicable)

EMG W No Measures
muscle activity

Diagnosis of
neuromuscular
disorders

Requires proper electrode placement
and skin prep. Accuracy is impacted by
posture changes and muscle forces,
leading to signal pattern discrepancies.

Wearable devices,
such as, Bio2Bit,
Bitalino EMG, Myo
Armband, EMG
machines

EEG W/NW No Records brain
activity

Diagnosis of epilepsy,
seizure and monitoring
brain activity

Sensitive to electrode placement and
patient discomfort. Electrodes measure
brain surface electrical activity, making
it hard to differentiate signals from the
cortex or deeper regions.

Headband
(MuseTM) and
headset-type
devices (DiademTM),
EEG machines

Respiratory Rate
Monitor W/NW No Measures

respiratory rate

Detects respiratory
distress and sleep
disorders

Accuracy is affected by patient’s
movement, sensitive to environmental
conditions like humidity and
temperature

Capacitive sensors,
Contactless portable
respiratory rate
monitor (CPRM)

Blood Gas
Sensor NW Yes Analyzes blood

gas levels
Diagnosis of respiratory
and metabolic disorders Invasive procedure and risk of infection

Blood gas analyzers,
HPTS-Based Carbon
Dioxide Sensor

Intra-ocular
Pressure Sensor W/NW Yes/No Measures eye

pressure

Diagnosis and
management of
glaucoma

Invasive procedure and risk of
infection. This non-invasive sensor is
limited to animals.

Tonometry devices,
implantable
MEMS sensor

W: wearable type, NW: not wearable type.

Table 3. List of ambient sensors which can be used in the IoMT.

Sensor Type Description Data Type Benifits Challenges Integrations

Light Sensor Measures light intensity Numerical Energy efficiency,
automated lighting

Calibration for different
light conditions

Smart home systems,
smartphones

Temperature Sensor Measures ambient
temperature Numerical Energy efficiency,

climate control Calibration for accuracy Smart thermostats

Humidity
Sensor

Measures humidity
levels Numerical Mold prevention,

HVAC optimization Calibration for accuracy Integration into
HVAC systems

Motion Sensor Detects motion,
infrared radiations Categorical Security, energy efficiency False alarms from pets or small

animals
Integration into
security systems

Proximity Sensor Detects presence or
absence of objects Categorical Energy efficiency,

automation
Accuracy in detecting objects of
different materials

Integration into
automated systems,
smart parking

Smoke Sensor Detects the presence
of smoke Numerical

Early smoke detection,
saves life through alerting,
minimizes fire damage
and loss

Triggers false alarms in case of
cooking smoke, dust particles,
limited coverage and sensitive to
environmental factors such as
high temperature,
humidity, airflow

Integration into
industrial business,
HVAC, buildings, and
accommodations

Sound Sensor Measures ambient
sound levels Numerical Noise monitoring, security

May struggle with noise
variability, overly sensitive
sensors may result in
false positives

Integration into smart
home systems

Gas Sensor Detects the presence
of gases Categorical Safety monitoring, air

quality

Susceptible to interference from
other gases in the environment,
detection limitation for certain
gases at low concentrations,

Integration into air
quality monitors

Air Quality Sensor Measures air quality Numerical Indoor air quality
monitoring

Inaccurate readings if not
regularly recalibrated, position
dependent.

Smart home systems,
environment monitoring

CO2 Sensor Measures carbon
dioxide levels Numerical Indoor air quality

monitoring Calibration for accuracy Integration into smart
HVAC systems

Water Quality Sensor Measures water quality Numerical Water pollution
monitoring Calibration for accuracy Integration into water

treatment systems

Magnetic Switch
Detects the opening of
doors and windows or
any entry points

Numerical

Easy installation, and
offers reliability and
durability, ensuring
consistent performance
over time.

Being binary switches offer
limited functionality, and can get
affected by external
environmental conditions such
as humidity

Smart homes, smart
offices, smart hospitals

HVAC: Heating, Ventilation, and Air Conditioning.
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3.1. Role of Body Sensors in the IoMT

Body sensors with assistance of various algorithms can be used to classify, detect or
recognize different activities or associated health problems. The body sensors are described
as follows:

3.1.1. Heart Rate Monitors

Heart rate monitors [17] can measure the heart’s activity by detecting electrical sensors
generated during each heartbeat. These sensors are commonly integrated into wearable
devices such as smart watches and fitness trackers. They can be used to monitor heart rate
variability, which provides insights into the autonomic nervous system’s function and can
be indicative of cardiovascular health. Heart rate monitors are valuable tools for detecting
abnormalities such as arrhythmias, which can indicate underlying heart conditions such
as atrial fibrillation or heart failure that signal the need for urgent medical attention.
Additionally, wrist-worn heart rate monitors can enhance the rehabilitation efforts of stroke
patients by monitoring exercise intensity during physical therapy sessions. The Fitbit
Charge 5 Fitness and Heart Rate Tracker, Wahoo Tickr X Heart Rate Monitor Chest Strap,
Garmin Forerunner 945 GPS Running Smartwatch with Heart Rate Monitor, and Apple
smart watches are among the commercially available devices for heart rate monitoring.

3.1.2. Blood Pressure Monitors

Blood pressure monitors [18] are sensors used to measure the force of blood against
the walls of arteries as the heart pumps blood throughout the body. These sensors come
in various forms, including wearable devices and home blood pressure cuffs. Monitoring
blood pressure levels is crucial for managing hypertension, a significant risk factor for
cardiovascular diseases such as stroke, heart attack, and kidney disease. Wearable sensors
that continuously monitor blood pressure levels can provide valuable data for optimizing
hypertension treatment and reducing the risk of associated complications. Additionally, a
study has shown that 77% of patients with IS have a systolic blood pressure >139 mmHg,
while 15% have a systolic blood pressure >185 mmHg [19]. Commercial devices include the
Omron HeartGuide Wearable Blood Pressure Monitor, QardioArm Wireless Blood Pressure
Monitor, iHealth Clear Wireless Blood Pressure Monitor, and several smartwatches.

3.1.3. Electrocardiogram (ECG) Sensors

ECG sensors [20] monitor and diagnose heart conditions by measuring the electrical
activity of the heart. These sensors are widely used in clinical settings, ambulatory moni-
toring, and home healthcare. One prominent example of an ECG sensor is the AliveCor
KardiaMobile EKG Monitor. This compact and portable device can be connected to a smart-
phone to record single-lead ECGs any time and anywhere. It detects arrhythmias, monitors
heart health, and facilitates remote cardiac monitoring. The device has a user-friendly
interface and seamless mobile integration, making it a convenient solution for proactive
heart health monitoring.

3.1.4. Blood Glucose Monitors

Blood glucose monitoring is essential for individuals managing diabetes. Sensors
can measure glucose levels in the blood, providing real-time glucose data that can help to
prevent dangerous fluctuations in blood sugar levels [18]. Continuous glucose monitoring
(CGM) devices are vital for reducing the risk of diabetic complications such as hyper-
glycemia and hypoglycemia. By providing real-time glucose data, these monitors empower
individuals to make informed decisions about their diet, exercise, and insulin dosage, in
turn improving their overall diabetes management and quality of life. Moreover, elevated
glucose levels have been correlated with larger final infarct volume and poorer clinical
outcomes. This association has been observed in patients undergoing acute reperfusion
therapies such as intravenous thrombolysis and endovascular therapy for IS as well as in
various studies.
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3.1.5. Pulse Oximeter

These sensors [17] are used for monitoring oxygen saturation levels in the blood.
They are particularly useful in assessing respiratory conditions such as chronic obstruc-
tive pulmonary disease (COPD), asthma, and sleep apnea. Moreover, pulse oximetry is
commonly used during anesthesia and critical care to measure oxygen levels and ensure
adequate oxygenation of tissues. By providing continuous readings of oxygen satura-
tion, pulse oximeters aid healthcare professionals in promptly identifying and addressing
respiratory abnormalities. These devices include the Masimo MightySat Fingertip Pulse
Oximeter, Nonin Onyx Vantage 9590 Finger Pulse Oximeter, and ChoiceMMed Fingertip
Pulse Oximeter, among others.

3.1.6. Temperature Sensor

Temperature sensors [17] play a crucial role in detecting changes in body tempera-
ture, which can signify the presence of fever, infection, or inflammatory conditions. The
ability to continuously monitor temperature using wearable devices and medical-grade
thermometers is critical for early detection and prompt intervention, which is key to man-
aging infectious diseases and preventing complications. Furthermore, temperature sensors
have a wide range of applications in environmental monitoring, food safety, and industrial
processes where precise temperature control is essential. Examples include the Withings
Thermo Smart Temporal Thermometer, iHealth No-Touch Forehead Thermometer, Kinsa
Smart Ear Thermometer, etc.

3.1.7. Accelerometer

Accelerometers [21] are sensors that can measure changes in movement and orien-
tation, including acceleration forces. These sensors have a wide range of applications
in healthcare, where they are used for monitoring physical activity levels and detecting
abnormal movement patterns. They are valuable in fall detection systems, especially in
the elder care context, where sudden changes in acceleration can signal a fall and allow for
timely assistance. Moreover, accelerometers play a crucial role in assessing motor function
and gait abnormalities in individuals with neurological disorders. Examples include the
Fitbit Charge 4 Fitness Tracker, Garmin Vivosmart 4 Activity Tracker, Xiaomi Mi Band 6
Fitness Tracker, etc.

3.1.8. Gyroscope

Gyroscopes play a critical role in measuring orientation and angular velocity. They
work in tandem with accelerometers to provide accurate motion tracking and spatial
orientation. Wearable devices and smartphones make extensive use of these sensors,
allowing features such as screen rotation and gesture recognition. In healthcare, gyroscopes
help to diagnose balance disorders and monitor movement disorders such as Parkinson’s
disease. Changes in orientation and movement patterns can be indicative of disease
progression. Examples include Apple Watches, Samsung Galaxy Watches, and the Huawei
Watch GT 3.

3.1.9. Electromyography (EMG)

EMG sensors [22] detect electrical activity in skeletal muscles, aiding in diagnosing
and monitoring neuromuscular disorders such as muscular dystrophy and carpal tunnel
syndrome. They are vital in rehabilitation, where they are used to assess muscle function
and guide therapy. Commercial devices such as the MyoWare Muscle Sensor and Delsys
Trigno Wireless EMG System are commonly used in these applications.

3.1.10. Electroencephalogram (EEG)

EEG sensors [22] are utilized to capture and analyze the electrical activity of the brain.
These sensors come in various forms, from portable consumer-grade headsets to sophisti-
cated clinical systems with multiple electrodes, enabling the monitoring and assessment
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of brain function in diverse applications. From diagnosing neurological disorders such
as epilepsy and sleep disorders to advancing brain–computer interface technologies for
assistive communication and rehabilitation, EEG sensors offer invaluable insights into
the intricacies of brain activity, fostering innovation and progress in both research and
healthcare realms. Examples include the NeuroSky MindWave Mobile EEG Headset,
among others.

3.1.11. Respiratory Rate Monitor

Respiratory rate monitors [17] track the number of breaths taken per minute, offering
crucial insights into respiratory health. In particular, they find applications in monitoring
respiratory conditions such as asthma, chronic bronchitis, and pneumonia. These monitors
detect changes in respiratory rate that can indicate symptom exacerbation or complications.
Continuous monitoring enables healthcare professionals to evaluate respiratory status,
make informed treatment decisions, and enhance patient care. Common examples of
these devices include the ResMed AirSense 10 AutoSet CPAP Machine and the Philips
Respironics DreamStation CPAP Machine.

3.1.12. Blood Gas Sensors

Blood gas sensors are devices designed to measure the levels of gases such as oxy-
gen (O2), carbon dioxide (CO2), and pH in the blood. These sensors play a crucial role
in assessing the respiratory and metabolic status of patients in clinical settings such as
hospitals, intensive care units (ICUs), and emergency departments. By providing real-time
measurements of blood gas levels, these sensors help clinicians to diagnose and monitor
conditions such as respiratory failure, metabolic acidosis or alkalosis, and shock. Examples
include the Radiometer ABL90 FLEX PLUS Blood Gas Analyzer, among others.

3.1.13. Intraocular Pressure Sensors

Intraocular pressure monitors are designed to measure the pressure inside the eye.
Elevated intraocular pressure is a significant risk factor for glaucoma, a group of eye
conditions that can lead to optic nerve damage and vision loss if left untreated. These
sensors are crucial for diagnosing and monitoring glaucoma as well as for assessing the
effectiveness of treatment interventions. One example of an intraocular pressure sensor is
the Sensimed Triggerfish.

Figure 2 illustrates popular IoMT wearable devices categorized by the region of the
body where they are used. In the head region, devices such as hearables, smart glasses,
and smart helmets can be worn. Hearables or smart earbuds provide functionalities
such as real-time translation, biometric monitoring, and voice-activated controls. Smart
glasses offer augmented reality (AR) experiences, navigation assistance, and hands-free
notifications, while smart helmets are equipped with features such as collision detection,
health monitoring, and communication systems for enhanced safety. For the upper limbs,
wearables include a variety of health monitoring devices, such as wearable ECG monitors
that track heart activity and detect anomalies. Temperature monitors continuously measure
body temperature, while gesture control devices allow users to control other devices
through hand movements. Fitness trackers monitor physical activity, sleep patterns, and
other health metrics, while smart watches offer multi-functional capabilities including
notifications, health tracking, and mobile payments. Smart rings, though smaller in size,
provide similar functionalities to smartwatches, often focusing on health metrics and
contactless payments. In the lower limbs, specifically the legs, wearable devices include
EMG monitors to measure muscle activity aiding in physical therapy and sports training.
Rehabilitation devices assist in recovery from injuries by providing data and support for
therapeutic exercises. Body composition analyzers measure metrics such as body fat and
muscle mass, helping users to maintain their fitness goals, while posture correctors alert
users to improper posture, promoting better spinal health. Compression devices improve
circulation and reduce swelling, which is particularly useful for individuals with conditions



Electronics 2024, 13, 2309 12 of 46

such as varicose veins. Activity trackers and GPS trackers monitor movements and location
providing valuable data for fitness and safety. Additionally, smart socks enhance activity
tracking and comfort, and are often equipped with sensors to monitor gait and balance.
Detailed information about body sensors, including sensor type, description, data type,
benefits, challenges, and integrations, is provided in Table 2.

3.2. Accuracy Improvement in Body Sensors

Body sensors are indispensable for monitoring individual health and providing crucial
feedback for overall wellbeing. However, achieving accurate measurements through wear-
able sensors is often hampered by deviations in accuracy during the automatic collection of
health vitals stemming from the various factors outlined in the challenges section of Table 2.
The application of AI offers powerful solutions to address these challenges, enhancing the
accuracy of body sensors through a range of advanced techniques tailored to each specific
sensor type.

However, prior to the application of AI algorithms, a common requirement is data
preprocessing to address the issue of noise prevalent in sensor data, which is a challenge for
all sensors. For instance, in heart rate monitors, noise impact can be mitigated using noise
removal or outlier detection algorithms such as first-order low-pass filters and wavelet
transformation algorithms [23] or the spectral filter algorithm for motion artifact and pulse
reconstruction (SpaMA) [24]. Two-stage algorithms can also be employed for noise artifact
elimination and spectral analysis [24]. Similarly, readings from blood sugar monitoring
devices such as PPGs are influenced by the testing site and environmental conditions.
These issues can be mitigated through filtering techniques such as the Butterworth fil-
ter, which operates within a frequency range of 0.5–8 Hz [25]. In CBGM, noise removal
approaches include adaptive iterative filtering and fast discrete lifting-based wavelet trans-
form (LWT) [26] as well as multi-filtering augmentation [27]. Pulse oximetry sensor data
often utilize adaptive filtering techniques [28], while accelerometer and gyroscope sensors
benefit from Butterworth high-pass filtering [29], complementary filters, and Kalman fil-
ters [30] for error assessment and enhanced accuracy. Artifacts can be effectively removed
from EEG sensors using graph signal processing [31]. Motion artifacts can be reduced
using analytical software tools [32], enhanced peak and valley detection algorithms [33], or
through Fourier transformation [34].

Among the most widely used ML algorithms for overcoming accuracy limitations in
body sensors are Bayesian models such as Gaussian naive Bayes (NB), probabilistic ap-
proaches, and nonparametric methods such as exemplar-based techniques, kernel methods,
decision trees (DT), random forests (RF), bagging, and boosting. Other commonly em-
ployed algorithms are logistic regression (LoR), linear regression (LR), linear discriminant
analysis (LDA), k-nearest neighbor (k-NN), and support vector machine (SVM) [29,35–39].
Additionally, advanced signal processing techniques such as ANOVA, chi-square, mutual
information, and ReliefF are utilized to enhance accuracy [40]. In the case of blood gas
sensors, accuracy can be increased through SMOTEENN sampling [41], kernel principal
component analysis (KPCA), and adaptive boosting [38]. Additionally, the accuracy of
respiratory rate monitoring can be enhanced through motion video magnification using the
Hermite transform and an artificial hydrocarbon network (AHN) following classification
of frames using Bayesian-optimized AHN [42].

Furthermore, DL approaches are often applied to enhance accuracy. For instance,
one-dimensional (1D) DL models such as GlucoNet are used for accurate blood glucose
level measurement [25], while intraocular pressure sensors benefit from automated feature
extraction using 1D CNNs [43]. DL-based algorithms, including deep neural networks
(DNNs), graph neural networks (GNNs), deep belief networks (DBNs), generative adver-
sarial networks (GANs), transformers, recurrent neural networks (RNNs), autoencoders,
attention mechanisms, and CapsNets, as well as reinforcement learning (RL), are options for
further improving accuracy [35,44]. Additionally, the accuracy of CBGM can be enhanced
using the multilayer perceptron (MLP) approach. In this approach, data are categorized
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into classes such as hypoglycemia, non-diabetic, prediabetes, diabetes, severe diabetes, and
critical diabetes. A patient-specific personalized model is then trained, with MLP used
in the final stage for accurate prediction of blood glucose concentration [45]. Moreover,
DL-based hybrid approaches have been applied for improving the accuracy of EMG by
combining CNN and long short-term memory (LSTM) models [46]. Multiple DL mod-
els can be combined in an ensembling approach to increase the predictive accuracy of
ECG-based sensor data [47].

3.3. Impact of Ambient Sensors in the IoMT

Ambient sensors play a critical role in monitoring the environment, enhancing safety,
and automating processes across various industries. These sensors provide real-time data
on environmental factors, enabling better decision-making, optimizing resource utilization,
and improving the overall quality of life. For example, light sensors [48] can detect and
measure the intensity of ambient light, allowing for automatic adjustments to lighting
levels in response to changing daylight conditions. This enhances energy efficiency while
contributing to the creation of a more comfortable and productive indoor environment.
Temperature sensors can maintain optimal thermal comfort by monitoring indoor and
outdoor temperatures, and can be utilized in heating, ventilation, and air conditioning
systems to regulate temperature levels for maximum comfort and energy efficiency [48].
To control indoor humidity levels, humidity sensors can measure the moisture content in
the air. This is particularly important for preventing mold growth, maintaining indoor air
quality, and ensuring the longevity of sensitive equipment and materials [48].

Motion sensors detect movement within a specified area, triggering actions such as
turning on lights or activating security alarms [49]. They are commonly used in security
systems, occupancy detection systems, and home automation applications to enhance safety
and convenience. The presence or absence of nearby objects can be identified through
proximity sensors, facilitating touchless control and automation in various devices and
systems [49]. They are employed in applications, ranging from automatic door-opening
systems to touchscreen devices and industrial machinery. Smoke sensors and gas sensors
are critical for detecting potentially harmful substances in the air, including smoke, carbon
monoxide, and other toxic gases. They are essential components of fire detection systems,
home security systems, and industrial safety equipment, helping to prevent accidents and
protect lives.

Sound sensors monitor ambient noise levels, generating valuable data for noise pol-
lution monitoring, acoustic environment analysis, and sound-based applications such as
voice-controlled devices and smart speakers [50]. Air quality sensors, CO2 sensors, and wa-
ter quality sensors [48] measure pollutants and contaminants in the atmosphere and water
sources, respectively. These sensors are essential for monitoring environmental pollution,
assessing indoor air quality, and ensuring the safety of drinking water. Finally, magnetic
switches offer detection capabilities for changes in magnetic fields, enabling diverse appli-
cations such as security systems, door/window sensors, and industrial automation. They
provide reliable detection of opening and closing events, contributing to enhanced security
and efficiency in various environments.

Figure 3 provides brief information on different ambient sensors used to create smart
environments. These smart devices include smart infusion pumps and medicine dispensers,
which transform patient dosage delivery systems by minimizing errors; additionally, smart
thermostats, lights, locks, cameras, doors, home assistants, smoke detectors, beds, plugs,
doorbells, and water flow detectors offer automated control, enhancing energy efficiency
and ensuring security in homes, businesses, hospitals, and other settings. Detailed descrip-
tions along with benefits, challenges, and integrations are provided in Table 3.

3.4. Influence of Actuators in the IoMT

Actuators translate electrical impulses into physical actions or movements, facilitating
various functions that contribute to an individual’s wellbeing. In essence, actuators respond
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to instructions based on the data acquired by sensors, which are then processed and
computed to execute the desired actions. For instance, sensors such as blood glucose
monitors measure the body’s blood glucose levels, while actuators respond by regulating
insulin levels. These actuators can be categorized into body-centric actuators [51] and
environment-centric actuators. Body-centric actuators can be further classified into therapy
(therapeutic), diagnosis (diagnostic), and treatment actuators [52]. Several body-centric
actuators are described in Table 4. The main challenge for these body-centric actuators is to
ensure safety and compatibility with the human body.

Table 4. List of actuators used in healthcare.

Organ Name Invasive? Description

Heart
Pacemakers Yes Implantable devices that regulate the heart’s electrical activity.

Cardioversion Devices Yes Devices are used to deliver electrical shocks to restore normal
heart rhythms.

Lungs Respiratory Ventilators No Machines that support or control a patient’s breathing.
Nebulizers No Devices that deliver liquid medication in a fine mist for inhalation.

Stomach
Gastric Stimulators Yes Implantable devices used to stimulate the stomach muscles for

various conditions.

Fecal Occult Blood Test (FOBT) No Used to detect blood in the stool, often used for colon
cancer screening.

Limbs Orthopedic Devices (e.g., exoskeletons) No Wearable or assistive devices that support limb mobility and
strength.

Prosthetic Limbs No Artificial limbs designed to replace lost or amputated limbs.

Skin Transdermal Drug Delivery Systems No Devices that administer drugs through the skin for
systemic effects

Brain

Deep Brain Stimulation (DBS) Devices Yes Implantable devices that deliver electrical stimulation to specific
brain regions.

Intracranial Pressure Sensors Yes Implantable sensors used to monitor pressure within the brain.

Electrocorticography (ECoG) Electrodes Yes/No Electrodes placed on the brain’s surface to record activity for
research and treatment.

Responsive Neurostimulation (RNS) Devices Yes Implantable devices that monitor brain activity and deliver
electrical stimulation to prevent seizures.

Eyes Retinal Implants Yes Implantable devices that restore vision by stimulating the retina.
Elastic inflatable microactuators No Allows 360 visualization of different sections of the retina

Ears Cochlear Implants (Implanted Components) Yes/No Implantable devices that provide auditory stimulation to
individuals with hearing loss.

In addition to body-centric actuators, which directly interact with the human body,
other types of actuators play crucial roles in various healthcare applications. Surgical
robot actuators, for instance, enable precise and controlled movements during surgical
procedures, enhancing surgical outcomes and patient safety. Drug delivery pump actuators
regulate the flow rate of medication administration, ensuring accurate dosage delivery
to patients [51]. Similarly, infusion pump actuators facilitate the controlled infusion of
fluids into patients’ circulatory systems, which is vital for administering medications
and nutrients. Radiology table actuators enable precise positioning of patients during
imaging procedures, ensuring optimal imaging quality while prioritizing patient comfort
and safety. Rehabilitation robot actuators support physical therapy and rehabilitation
exercises, providing varying levels of resistance and assistance to patients undergoing
rehabilitation [51]. Despite their indispensable roles, these actuators pose challenges
related to accuracy, compatibility, safety, and integration with existing healthcare systems.
Addressing these challenges is paramount to harnessing the full potential of these actuators
in improving healthcare delivery and patient outcomes.

These environment-centric actuators operate outside the human body and interact
with features of the external environment such as medical devices, equipment, and facilities.
They can be described as follows:
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1. Linear actuators: Linear actuators such as adjustable hospital beds, patient lifts, and
wheelchair lifts are used in various healthcare applications. They enable smooth and
precise linear motion, facilitating patient positioning and mobility assistance.

2. Rotary actuators: Rotary actuators are employed in medical devices such as robotic
surgical systems and diagnostic equipment. They provide rotational motion, allowing
for precise positioning of medical instruments and imaging components [53].

3. Pneumatic actuators: Pneumatic actuators utilize compressed air to generate motion
and force. They are utilized in medical devices such as pneumatic compression
sleeves for deep vein thrombosis prevention and pneumatic assistive devices for
patient transfers and mobility aids [51].

4. Electrical actuators: Electrical actuators are used in medical imaging equipment such
as MRI machines and CT scanners. They enable precise control of moving parts within
these devices, contributing to high-resolution imaging and diagnostic accuracy [53].

5. Piezoelectric actuators: Piezoelectric actuators are employed in medical devices for
precise positioning and manipulation at the microscale. They find applications in areas
such as micromanipulation for surgical procedures, microfluidics for drug delivery,
and nanotechnology for cellular manipulation [51].

6. Hydraulic actuators: Hydraulic actuators use pressurized fluid to generate motion
and force. They are utilized in medical devices such as hydraulic patient lifts, op-
erating room tables, and hydraulic assistive devices for rehabilitation and physical
therapy [53].

4. Significance of Communications in IoMT

The communication layer in IoMT systems serves as a foundation for enabling seam-
less connectivity, data exchange, and interaction between distributed devices, sensors,
and systems within an ambient intelligent environment. This layer encompasses various
communication technologies, protocols, and standards tailored to the specific requirements
of IoMT applications. In other words, the communication medium layer is responsible for
managing the underlying communication infrastructure, protocols, and technologies to ensure
smooth connectivity, efficient data transmission, and reliable operation of IoMT systems.

4.1. Wireless Connectivity Services

The IoMT relies heavily on wireless connectivity technologies, with essential features
including low latency, scalability, cost-effectiveness, flexible data transmission for varied
data sizes, adaptable coverage areas, and optimal power consumption, along with the best
possible network technologies [54]. In general, communication connectivity can be broadly
categorized into short-term communication protocols and long-term communication pro-
tocols based on the distance they serve [55]. Short-term communication technologies, in-
cluding Wi-Fi (IEEE 802.11 [56]), Bluetooth (IEEE 802.15.1 [56]), Zigbee (IEEE 802.15.4 [56]),
and Z-Wave, enable efficient communication over shorter distances within physical en-
vironments such as homes, offices, and industrial facilities. Long-term communication
technologies, including cellular networks such as 4G LTE (Long-Term Evolution) and 5G,
provide wide-area coverage for mobile devices, IoT applications, and virtual entities in the
metaverse. Additionally, Wide-Area Networks (WANs), comprising satellite communica-
tion and terrestrial networks, extend communication coverage to connect devices, systems,
and virtual entities across expansive geographic areas, including both physical and virtual
spaces within the metaverse. The different networking interfaces in AMI are as follows:

• Wi-Fi: Wi-Fi is a wireless communication technology based on the IEEE 802.11 stan-
dard that enables devices to connect to a local area network (LAN) and communicate
with each other and the Internet. Wi-Fi is commonly used in sensor networks for
applications such as smart homes, smart cities, and industrial automation.

• WiMax: WiMax is a wireless broadband tech based on IEEE 802.16 standard [57]. It
supports data rates from a few Mbps to tens of Mbps, and enables point-to-multipoint
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and mesh network topologies for broadband access. WiMax finds applications in
urban and rural internet access, cellular network backhaul, and last-mile connectivity.

• Bluetooth: Bluetooth is a short-range wireless communication technology that enables
devices to connect and communicate over short distances. Bluetooth is commonly used
in sensor networks for applications such as wearable devices, healthcare monitoring,
and personal area networks (PANs).

• Zigbee: Zigbee is a low-power and low-data-rate wireless communication protocol
based on the IEEE 802.15.4 standard. Zigbee is commonly used in sensor networks for
applications such as smart homes, industrial automation, and smart cities due to its
low power consumption and mesh networking capabilities.

• Z-Wave: Z-Wave is a wireless communication protocol designed for home automation
and smart home applications. Z-Wave operates in the sub-GHz frequency range
and is optimized for low-power devices and reliable communication in residential
environments.

• Thread: Thread is a low-power mesh networking protocol designed for smart home
applications. Thread operates on the IEEE 802.15.4 standard and provides IPv6
connectivity, enabling devices to communicate directly with each other and with
the internet.

• LoRa (Long Range): LoRa is a long-range and low-power wireless communication
technology designed for applications that require long-distance communication and
low power consumption. LoRa is commonly used in sensor networks for applications
such as smart agriculture, environmental monitoring, and asset tracking.

• Cellular Networks: Cellular networks (4G LTE, 5G) are wide-area wireless communi-
cation networks that provide mobile connectivity and internet access to devices over
large geographical areas. Cellular networks such as 4G LTE and 5G are commonly
used in sensor networks for applications such as smart cities, transportation systems,
and remote monitoring.

• MBWA (Mobile Broadband Wireless Access): MBWA provides high-speed internet
access to mobile devices using technologies such as 3G, 4G (LTE), and 5G. It supports
high data rates and enables seamless mobility support for users. MBWA finds applica-
tions in mobile internet access, video streaming, online gaming, IoT connectivity, and
other mobile applications.

• Optical Wireless Communications (OWC): OWC utilizes unguided visible, infrared
(IR), or ultraviolet (UV) light to transmit signals, primarily for short-range communi-
cation purposes [58]. OWC systems operating within the visible band of 390–750 nm
are referred to as visible light communications (VLC). VLC systems use light-emitting
diodes (LEDs), and find applications in wireless local area networks, wireless per-
sonal area networks, and vehicular networks. Terrestrial point-to-point OWC systems,
known as free space optical (FSO) systems, operate in the 750–1600 nm IR spectrum
and provide high data rates. OWC systems operating in the UV spectrum function at
frequencies of 200–280 nm.

• Power Line Communication (PLC): PLC uses electrical wiring for data transmission.
It enables communication over power lines with data rates ranging from a few hun-
dred bps to tens of Mbps. PLC is used for point-to-point and point-to-multipoint
communication in smart grid management, home automation, remote metering, and
indoor networking.

4.2. Mesh Networking Technologies

Mesh networking technologies are indispensable for IoMT systems, as they facilitate
the formation of self-configuring mesh networks among devices. In the IoMT context, mesh
networks are characterized by a non-hierarchical topology in which multiple devices or
nodes coexist, cooperate, and offer comprehensive coverage over a wider area. Protocols
such as Zigbee and Thread are commonly employed to implement mesh networks, enabling
direct communication between devices without the need for centralized infrastructure.
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Through mesh networking, devices can communicate with each other via multiple hops,
leveraging dynamic routing and self-healing capabilities. This enhances network coverage,
scalability, and reliability in IoMT environments [59]. Mesh networks typically adopt
either full mesh or partial mesh topologies. In a full mesh topology, every node is directly
connected to every other node, while in a partial mesh topology only certain nodes are
directly connected. The choice between a fully or partially meshed network depends on
factors such as overall network traffic. Although mesh networks offer increased stability,
extended coverage range, and improved security, they also entail higher costs, complexity,
scalability challenges, and potentially increased latency for the nodes.

4.3. Edge Computing/Fog Computing Technologies

Edge computing is seamlessly integrated into the communication layer of IoMT
systems thanks to their ability to process data closer to the source, enabling faster response
times, reduced latency, and enhanced overall system efficiency. Edge or fog computing
supports real-time data processing and analysis, facilitating rapid decision-making and
response to dynamic changes for both physical and virtual entities [60]. Additionally, edge
computing reduces the need to transmit large volumes of raw data to centralized servers or
cloud platforms, thereby alleviating network congestion and minimizing bandwidth usage.
Fog computing, on the other hand, extends the capabilities of edge computing by providing
a hierarchical architecture that includes intermediate fog nodes between edge devices and
centralized cloud servers. Fog nodes act as intermediaries for data processing and storage,
allowing for more efficient resource utilization and dynamic allocation of computational
tasks based on local requirements.

4.4. Metaverse

IoMT systems within the metaverse leverage advanced AI algorithms to analyze user
behaviors, preferences, and interactions, enabling personalized experiences and intelligent
decision-making. These AI-driven capabilities enhance user immersion and engagement
within virtual environments while optimizing resource allocation and system performance.
The metaverse serves as a virtual layer overlaying physical spaces, offering immersive
experiences for work, play, and socialization. Within this virtual realm, users interact with
digital representations of physical objects and environments, facilitated by XR technologies
such as augmented reality (AR) and virtual reality (VR). Digital twins powered by real-
world data enable predictive modeling and simulation of physical objects and spaces within
the metaverse, enhancing realism and functionality [61].

4.5. Security and Privacy Mechanisms

Security and privacy mechanisms are essential for protecting data integrity, confiden-
tiality, and privacy in both physical and virtual environments. Encryption, authentication,
access control, and secure communication protocols (e.g., TLS/SSL) are implemented to
mitigate risks associated with unauthorized access, data breaches, and cyberattacks in AMI
systems, including those operating within the metaverse [61]. Cryptography plays a crucial
role in ensuring data security by enabling secure communication despite potential threats.
Encryption algorithms transform input (plain-text) into encrypted output (cipher-text)
using keys. Symmetric key encryption methods include block cipher, which operates on
single data blocks by breaking down the message into blocks for individual processing
with a cryptographic key, and stream cipher, which encrypts and decrypts shared data
using symmetric key mechanisms. Asymmetric key encryption, also known as public-key
encryption, uses two different keys, one for encryption and another for decryption, in
contrast to symmetric key encryption, where the same key is used for both encryption
and decryption.
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4.6. Communication Protocols

In general, communication protocols specify the rules and conventions for transmitting
data over communication networks, thereby ensuring efficient and reliable communication.
Communication protocols are crucial for modern interconnected systems, as they allow
devices and applications to exchange data seamlessly. While there are many protocols
available, a few stand out for their unique features. HTTP (Hypertext Transfer Protocol)
is the foundation of the World Wide Web, and is used for client–server communication
over the internet. For IoT and constrained environments, CoAP (Constrained Application
Protocol) is lightweight and efficient, making it ideal for resource-constrained devices.
AMQP (Advanced Message Queuing Protocol) and MQTT (Message Queuing Telemetry
Transport) are messaging protocols, with AMQP prioritizing enterprise-grade reliability
and MQTT focusing on lightweight publish–subscribe messaging. XMPP (Extensible
Messaging and Presence Protocol) is used for real-time communication and fosters instant
messaging and presence information exchange. COBRA (Common Object Request Broker
Architecture) provides a framework for distributed object communication, while ZeroMQ
offers a flexible socket-based messaging approach for high-performance applications. In
industrial automation, DDS (Data Distribution Service) and OPC UA (Unified Architecture)
ensure interoperability and real-time data exchange within distributed systems. Finally,
DPWS (Devices Profile for Web Services) facilitates standardized communication for devices
in a web services environment, helping to achieve interoperability in heterogeneous systems.
Each of these protocols serves specific communication needs, collectively forming a diverse
ecosystem essential for modern information exchange. These different communication
protocols are explained briefly in Table 5:

Table 5. List of communication protocols in the IoMT.

Protocol Description Features Limitations Transport QoS Security Application Real-
Time

HTTP

Most popular IoT protocol
in the application layer.
Facilitates easy access to
users through www
and hypertexts.

Easy access to users,
Utilization of
lower memory

Not optimized for
mobile devices [62] TCP, UDP Best effort SSL, TLS Web

applications Yes

CoAP

Demonstrates reliability by
continuously issuing
acknowledgment
messages. Supports
numerous asynchronous
messages/languages.

Reliable, supports
asynchronous
messages

Slow network [63].
Does not include
encrypted features

UDP Best effort DTLS Constrained
environments No

AMQP

Architecture standardized
in 2011 by OASIS. Includes
data exchange, queue, and
binding elements.

Wide message
structures/
broadcasts,
supports various
schemes

Not suitable for
resource-
constrained
usages [64]

TCP At most once
delivery SSL, TLS Message

queuing No

MQTT

Introduced in 1999 for
distributed sensors.
Provides three levels of
QoS.

Lightweight, easy
to implement

Limited scalability,
security
constraints [64]

TCP, UDP
At most once,
at least once,
exactly once

SSL,TLS
IoT, telemetry,
M2M commu-
nication

Yes

XMPP

Open standard protocol
supporting synchronous
and asynchronous models.
Utilizes XML streaming
model.

Stable, highly
customizable for
SG applications

Not suitable for
constrained devices,
unreliable QoS [65]

TCP Best effort TLS

Instant
messaging,
presence,
collaboration

Yes

CORBA

Client and server can act
as objects through ORB
contact. Supports a vast
number of languages.

Platform-free
interconnection,
supports multiple
languages

Complex
implementation
and
deployment,lack of
extensibility
support [66]

TCP Best effort SSL Distributed
applications Yes

ZeroMQ

Asynchronous protocol
providing a queue to share
messages. Suitable for
high-volume data
throughputs.

Asynchronous,
suitable for
constrained devices

Broker-less, no
message
persistence [67]

TCP, IPC Best effort TLS
Messaging,
distributed
systems

Yes
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Table 5. Cont.

Protocol Description Features Limitations Transport QoS Security Application Real-
Time

DDS

Non-intermediate
information exchanging
protocol with no risk of
bottleneck failure.

Eliminates the need
for participants’
information,
suitable for
extended QoS and
large systems

Too heavyweight
for embedded
systems (high
resource use,
latency, and
network
overhead) [67]

UDP, TCP Various QoS
policies

DTLS,
SSL

Real-time
systems, IoT,
robotics

Yes

OPC UA

Result of combinational
works of automation
industries. Contains
transport and data models.

Does not share
device’s
information,
suitable for
resource-
constrained
practices

Requires firewall
configurations,
complex and
resource
intensive [68]

TCP Best effort SSL

Industrial
automation,
SCADA
systems

Yes

DPWS

Characterizes hosting and
hosted services. Suitable
for resource-constrained
implementations.

Resource
constrained
implementations,
supports hosting
and hosted services

strong dependency
on local router DNS
information [69]

HTTP, UDP,
TCP Best effort SSL Web services,

IoT No

SSL: Secure Sockets Layer; TLS: Transport Layer Security; DTLS: Datagram Transport Layer Security, TCP:
Transmission Control Protocol; UDP: User Datagram Protocol; IPC: Inter-Process Communication; SCADA:
Superior Control And Data Acquisition; QoS: Quality of Service; M2M: Machine-to-Machine.

5. Utilization of AI Analysis in the IoMT

TAI analysis techniques make up an important part of foundation for the IoMT,
facilitating systems to become intelligent; AI-powered systems possess the ability to process,
interpret, and extrapolate actionable insights from the extensive datasets acquired from
both environmental and user interactions. These AI techniques use either ML, DL, or
RL algorithms to perform predictive analytics, pattern recognition for normal/anomaly
detection, activity recognition, sentiment analysis, and behavior analysis. In turn, these
techniques empower IoMT systems to discern user preferences, anticipate their needs, and
provide personalized and context-aware services. By integrating the aforementioned AI
analysis techniques, IoMT devices can deliver optimal user experiences, making AI a vital
component of modern-day smart environments.

AI systems typically process data acquired from various sources, such as IoT sensors
and devices, which may include images, videos, and text. However, these raw data often
contain irrelevant information, noise, or missing values which must be addressed to prevent
inaccuracies and misdiagnoses. Consequently, data preprocessing to enhance data quality
and reliability is a critical initial step. In supervised learning paradigms, data annotation is
a fundamental part of analysis. This process involves delineating the Region of Interest
(RoI) to facilitate accurate interpretation of normal and abnormal conditions. Annotation
is crucial during the model training phase, as it provides the ground truth necessary for
learning. During the testing phase, the model’s performance is evaluated on preprocessed
data, eliminating the need for further external labeling.

The rapid advancement of AI has led to the emergence of a wide array of models, each
with distinct capabilities; therefore, selecting and training the most appropriate model is a
meticulous process preceding final model derivation. After training, the model undergoes
fine-tuning and cross-validation to enhance its accuracy further. Rigorous testing is then
performed to ensure the model’s robustness and generalization. Upon validation, the
final model is deployed in real-world scenarios to predict and detect abnormalities. For
example, in neuro-imaging analysis, AI models can directly identify abnormalities and
present the results in image format on a monitor screen. In other applications, such as
cardio-version devices, outputs are delivered through actuators that restore normal heart
rhythm when arrhythmias are detected. This comprehensive AI analysis procedure is
illustrated in Figure 4, with the details briefly described in the subsequent sections.
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Figure 4. General workflow of AI.

5.1. Dataset Description

IoMT and AI, both being data-driven approaches, necessitate large datasets for model
training prior to deployment. These datasets serve as foundational resources for compre-
hending and leveraging the capabilities of interconnected devices and sensors. Acquiring
these data represents a laborious task that demands ample time. Therefore, existing datasets
can be leveraged to train initial models before deployment. In this section, various publicly
available open datasets suitable for model training are showcased. As described in Table 6,
these datasets encompass sensor data. These sensor data consist of popular datasets, includ-
ing the sensors from which they were collected together with the application area [70,71].
Moreover, some publicly available medical image datasets [72] are described in Table 7.

Table 6. List of available sensor datasets.

Dataset Name Used Sensors Application Area

UCIHAR [70] Smartphone, Accelerometer, Gyroscope, Magnetometer Locomotion

WISDM [70] Smartphone Accelerometer Locomotion

OPPORTUNITY [70] Accelerometer Household activity recognition

UniMiB SHAR [70] Smartphone Accelerometer Fall detection

PAMAP2 [70] Accelerometers, Magnetometers, Gyroscopes, and
Heart Rate Monitors Activity recognition

SCUT-NAA [70] Tri-axial Accelerometer

HASC [70] iPhone, iPod touch, WAA series (ATR) Basic activity recognition

AmLRepository: Ubisense, SmartFirst
phase, SmartSecond phase [70]

RFID tags, localization sensors, accelerometers,
gyroscopes, magnetometers, infrared motion capture
sensors

Activity monitoring

UC Berkeley WARD [70] Accelerometers, Gyroscope Activity recognition

USC-HAD [70]
Accelerometer, Gyroscope, Magnetometer, Galvanic
Skin Response, Pulse Oximeter, Electrocardiogram,
Barometric Pressure

Fitness monitoring

MIT PlaceLab Dataset [70] Accelerometer, Wireless Heart Rate Monitor Household activity recognition

CMU-MMAC [70] Accelerometers, Gyroscopes, Magnetometer Activity recognition, smart environment
monitoring, cooking activity recognition

Singlechest [70] Accelerometer Activity monitering

Real-DISP [70] Accelerometer, Gyroscope, Magnetic Sensor Robust activity monitoring
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Table 6. Cont.

Dataset Name Used Sensors Application Area

DaphNetFoG [70] Accelerometer Monitoring PD patient’s walk, detection of
freezing gait

ActRecTut [70] Accelerometer Robust activity monitoring

Nursing Activity [70] iPod, Accelerometer Nursing activity monitoring in the hospital

HASC Corpus [70] Smartphone, Smartwatch, Smartglass, Accelerometer Basic activity recognition

CASAS KYOTO [70] Accelerometers, Gyroscope Household activity monitoring

CASAS ARUBA [70] Accelerometers, Door sensors, and Temperature
sensors Household activity monitoring

HASC BDD [70] Accelerometer, Gyroscope Dancing activity recognition

AmL Energy Expenditure [70] Gyroscopes, Magnetometers, Accelerometers Activities of daily living

Parkinson Disease [70] Accelerometer, Compass Ambient light, Audio sensors Monitoring Parkinson disease

SKODA [70] Accelerometer Car maintenance activity monitoring

PPS Grouping [70] Accelerometer, Gyroscope, Magnetometer, GPS,
Microphone Walking group formation detection

HCI Accelerometer Leg action recognition

DSADS [70] Accelerometer, Gyroscope, Magnetometer Fitness monitoring

MHealth [70] Accelerometer, Gyroscope, Magnetometer Activity recognition

UjAml cup [70] Smartwatch, Gyroscope, Magnetometer, other binary
sensors Household activity monitoring

Sussex Huawei Locomotion
Dataset [70]

Smartphones Accelerometer, Gyroscope,
Magnetometer Activity recognition

WHARF [70] Accelerometer Household activity monitoring

KU-HAR [70] Smartphone, Accelerometer, Gyroscope Activity monitoring

EmotionSense [71] Smartphone sensors (e.g: GPS, accelerometer,
microphone) Emotion recognition,mental health monitoring

Table 7. List of available datasets for image/video processing in healthcare.

Organ Description

Brain

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [72]
Brain MRI Dataset (Kaggle) [72]
Open Access Series of Imaging Studies (OASIS) [72]
Autism Brain Imaging Data Exchange (ABIDE) [73]
Brain tumor segmentation challenge (BraTS) [74]

Eye

Digital Retinal Images for Vessel Extraction (DRIVE) [72]
Standard Diabetic Retinopathy Database Calibration (DIARETDB0 and DIARETDB1) [75]
Messidor-2: Diabetic Retinopathy Database [75]
Retinal Vessel Image set for Estimation of Widths (REVIEW) [75]
DUKE [76]
OPTIMA [76]

Face

Wildest Faces [77]
Wider face [77]
Facial Paralysis Dataset [78]
CK+ [79]

Teeth UFBA-UESC Dental Images Dataset [80]
Ctooth dataset [81]

Spine

SpineWeb Dataset [82]
MEASURE 1 [83]
PREVENT [83]
National Health and Nutrition Examination Survey (NHANES II) [83]

Neck Digital Database Thyroid Image (DDTL) [84]

Chest
NIH Chest X-ray Dataset [85]
Kaggle Chest X-ray Images (pneumonia) [85]
Mendeley Chest X-ray Images (pneumonia) [86]
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Table 7. Cont.

Organ Description

Heart Automated cardiac diagnosis challenge dataset (ACDC) [87]

Lungs Lung Nodule Analysis 2016 Challenge (LUNA 16) [88]
The Cancer Genome Atlas - Lung (TCGA-Lung) [89]

Breast

Digital Database for Screening Mammography (DDSM) [72]
CBIS-DDSM (Curated Breast Imaging Subset of DDSM) [72]
Breast ultrasound image (BUSI and BUS) [84]
INbreast Dataset [90]
Breast Cancer Semantic Segmentation (BCSS) [91]

Colon
2015 MICCAI Gland Segmentation challenge (GlaS) [92]
Colorectal Adenocarcinoma Glands (CRAG) [92]
RINGS [92]

Skin
DermNet [72]
International Skin Imaging Collaboration (ISIC) Archive [93]
Diverse Dermatology Images (DDI) [94]

Bone Musculoskeletal Radiographs (MURA) [95]
Bone Age Assessment Dataset [96]

Joint
KneeMRI Dataset [72]
Osteoarthritis Initiative (OAI) [97]
Shoulder MRI Dataset [98]

Hand
Hand Gesture Recognition Database (HGDB) [99]
Handwritten Digit Dataset (MNIST) [100]
American Sign Language (ASL) Alphabet Image Dataset [101]

Foot Human Foot Keypoint Dataset [102]
Footwear Impression Database (FID) [103]

Others

Synapse multi-organ segmentation dataset (Synapse) [87]
Camelyon16 [89]
Ultrasound-guided regional anesthesia (UGRA) [104]
Carpal tunnel diagnosis (CTS) [104]
Robust Medical Instrument Segmentation 2019 challenge (ROBUST-MIS) [105]

5.2. Data Preprocessing

An AI system initially preprocesses acquired image or text data using common tech-
niques such as normalization and scaling. Image data often exhibit significant variations
in pixel intensities due to factors such as lighting conditions or exposure settings, which
can adversely affect model performance, particularly in medical imaging. Therefore, pixel
intensities are normalized and scaled and edge detection techniques are applied to enhance
or highlight object boundaries for better analysis.

Image enhancement methods include contrast enhancement techniques such as his-
togram equalization and contrast-limited adaptive histogram equalization (CLAHE), both
of which improve contrast by redistributing pixel intensity values. Edge enhancement
techniques emphasize object boundaries to make them more discernible, while unsharp
masking and brightness correction through logarithmic or gamma adjustment are com-
monly used to improve visual quality. Noise removal techniques reduce unwanted random
variations in pixel values. Common methods include Gaussian filtering, which smooths
images, and median filtering, which effectively removes salt-and-pepper noise by replacing
each pixel value with the median of the neighboring pixels. Advanced techniques such
as bilateral filtering preserve edges while reducing noise, and wavelet-based denoising
decomposes the image into different frequency components to remove noise selectively.

The raw image data may be collected from different sensors, resulting in varied image
resolutions. In the case of DL-based image analysis, models have specific image resolution
requirements, which can range from 224 × 224 to 512 × 512 or larger depending on the model.
Thus, all collected raw images must undergo resizing to ensure uniform resolution. Addition-
ally, images may contain nonessential regions, especially in neuroimaging, where surrounding
tissue areas may not be relevant to the analysis; removing these nonessential regions allows
models to focus on the critical tissue parts, making automated cropping necessary. Moreover,
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in real-life situations abnormal data typically appear less frequently than normal data. To
address this imbalance, data augmentation techniques are employed to increase the number of
training samples and enhance data variability during training. This ensures that the model is
exposed to a wider range of scenarios and can generalize better to unseen data.

Textual data preprocessing is essential for ensuring the accuracy and efficiency of AI
models. Missing values in numerical or categorical data can be dealt with by replacing
them with the mean, median, mode, or user-defined parameters. Categorical data may
require encoding techniques such as one-hot encoding, label encoding, or developer-specific
algorithms to transform them into a format suitable for analysis [106]. Dimensionality
reduction techniques such as principal component analysis (PCA) or LDA are employed
to mitigate the “curse of dimensionality”, enhancing computational efficiency. Outliers in
text data are addressed using methods based on the Z-score or interquartile range (IQR).
Additionally, windowing techniques can be applied to maintain time dependency in text
datasets, with the size of the time window being either static or dynamic [8].

Balancing text data is crucial for addressing class imbalances. One common approach
is oversampling, where instances of the minority class are duplicated or synthetically
generated using techniques such as SMOTE (Synthetic Minority Oversampling Technique).
Undersampling involves reducing the number of instances in the majority class to match
the minority class, though it risks losing valuable information. Data augmentation can also
be employed, in which new text samples are created through paraphrasing, translating, or
substituting words with their synonyms to increase the dataset’s diversity. Algorithmic
approaches adjust class weights during training to penalize misclassification of the minority
class more heavily, encouraging the model to learn from these instances. Combining these
preprocessing methods can significantly enhance a model’s performance and robustness. By
integrating these preprocessing techniques, AI models can better handle the complexities
and variations inherent in textual data, leading to more accurate and reliable outcomes.

5.3. Data Annotation

After the preprocessing, dataset annotation is another important stage. In the annota-
tion stage, the necessary labeled information is defined to enhance the understanding and
usability of the data, which is particularly important for supervised learning. For image
data, annotation involves labeling objects, regions, or attributes within images, enabling
algorithms to recognize and interpret visual elements accurately for tasks such as object
detection, segmentation, and classification. For instance, in brain tumor detection, bound-
ing boxes or masks are generated, allowing the machine to learn the features associated
with tumors and identify them during the testing phase. Similarly, annotation of text data
involves labeling text segments with semantic or syntactic information, facilitating tasks
such as sentiment analysis, named entity recognition, and document classification. For
instance, the authors of [107] used labels such as the category-specific number of docu-
ments, number of documents that do not belong to any category, etc., to categorize text
documents. Named entity recognition (NER) labeling identifies and categorizes entities
within text, such as the names of persons, organizations, and locations. Annotation of
the data enables more effective AI model training and evaluation, enhancing the accuracy,
robustness, and generalization of the resulting model in real-world applications Several
popular data annotation methods and the related software are described in Table 8.

Table 8. Different image annotation techniques and related software.

Annotation Technique Tools

Line Labeling LabelMe [108], VGG Image Annotator (VIA) [109], CVAT [110]
Landmark Labeling LabelImg [111], DeepLabCut [112], CVAT [110], VIA [109]
Key Point Labeling COCO Annotator [113], LabelMe [108], CVAT [110], Supervisely [114]
Class Labeling Labelbox [115], RectLabel [116], Supervisely [114], CVAT [110]
Semantic Labeling LabelMe [108], VIA [109], CVAT [110]
Bounding Box LabelImg [111], Labelbox [115], YOLO Mark [117], CVAT [110]



Electronics 2024, 13, 2309 24 of 46

5.4. Model Selection and Training

Model selection is a critical aspect of IoMT systems, playing a pivotal role in optimiz-
ing performance and resource efficiency in terms of the total number of parameters, floating
point operations, and generalization capabilities. The selected model must strike a balance
between accuracy and computational efficiency, especially in resource-constrained settings
such as smart homes and wearable devices. Additionally, the AI model must perform well
in diverse conditions to ensure its robustness in practical applications. The interoperability
of the model is critical in IoMT contexts, where the AI model’s decisions should be suffi-
ciently understandable and explainable to establish user trust and acceptance. In essence,
the choice of the model directly impacts the reliability, scalability, and effectiveness of AMI
systems, making it a crucial factor to consider during the design and implementation of
such systems.

The analysis of images/videos is a multifaceted task, ranging from activity recognition,
sentiment analysis, and behavior analysis to predictive analysis. These tasks rely on
fundamental processes such as classification, segmentation, and detection. The integration
of classification, detection, and segmentation techniques exhibits tremendous potential
for augmenting the understanding and interaction of AI systems with their surroundings.
Classification algorithms enable the identification and categorization of entities, events,
or phenomena within the environment, providing important context for decision-making
processes. By accurately classifying elements such as objects, sounds, and environmental
conditions, AI systems can respond more intelligently to a wide range of situations. This in
turn facilitates tasks such as smart hospital management, home automation, calorie intake
monitoring, and personalized assistance.

5.4.1. Role of Classification Models

This section summarizes recent research on classification models, particularly in the
healthcare context. A concise overview of these models is provided in Table 9, with areas
for future exploration indicated as well.

Table 9. Contemporary literature on the application of classification algorithms in healthcare.

Model Name Brief Descriptions Aspects to Address

LG-GNN [73]

Developed a local ROI-GNN with a self-attention-based
pooling module to preserve brain region embeddings and
detect biomarkers. Followed by a subject-GNN employing an
adaptive weight aggregation block to generate multi-scale
feature embeddings.

Further enhancements may be achieved by
incorporating non-imaging data like genetic
and intelligence quotient information.

MuRCL [89]

Formulated the initial stage as contrastive learning to create
negative/positive feature sets from patch-level WSI features.
These sets are input to RL, where the agent updates selection
based on online rewards for slice-level aggregation.

Significant training time and GPU resources
may be required for model training.

EfficientNet [118] Modified the last layer of EfficientNet by adding global average
pooling, batch normalization, dense layers, and dropout layers.

The model exhibits longer inference time (41 s)
than others and increases parameters
compared to original EfficientNetB4 due to
additional dense layer.

Ensembled classification
model with Bayesian-
optimized classifiers [119]

Ensembled nine pre-trained classification models (InceptionV3,
Xception, Darknet19,Darknet53, DenseNet201, EfficientNetB0,
NASNet Mobile, Resnet50, ResNet101) for initial feature
extraction, followed by deep feature extraction through dense
layers and Bayesian-optimized classification layers.

The model demonstrates significantly higher
model parameters and FLOPs.

MobileNetv3 [120] Hypertuned the model while keeping the original network
structure intact

The model may exhibit potential biases
in prediction.

LG-GNN: Local-to-Global Graph Neural Network; ROI-GNN: Region of Interest-based Graph Neural Network;
GNN: Graph Neural Network; MuRCL : Multi-instance Reinforcement Contrastive Learning; FLOPs: Floating
Point Operations; WSI: Whole-Slide Imaging.
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Other popular classification models include AlexNet [121], which achieved a signif-
icant success in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This
has led to the development of other popular models such as the Visual Geometry Group
Network (VGGNet) [121], which embraces simplicity through a uniform architecture char-
acterized by small 3 × 3 convolutional filters, providing a sturdy framework for image
recognition tasks. The VGGNet researchers experimented with the number of convolu-
tional layers, resulting in variants such as VGG16 and VGG19, with 16 and 19 layers,
respectively. CNN architectures have continued to unfold with the advent of Residual
Networks (ResNets) [121], followed by inception modules such as Inception V3 [121], Incep-
tion V4 [121], and InceptionResNetV2 [121]. Meanwhile, refined iterations of the ResNet
architecture, including ResNet50V2 [122], ResNet101V2 [122], and ResNet152V2 [122],
have emerged, incorporating enhancements such as identity mappings and bottleneck
blocks that further solidify their prowess in image classification. Feature reusability and
feature propagation are further enhanced with the inclusion of densely connected blocks in
DenseNet [121], where each layer receives inputs from all preceding layers. The inception
architecture has been further extended by Xception, in which the standard convolutional
layers are replaced by depthwise separable convolutional layers.

5.4.2. Role of Segmentation Models

Segmentation plays a pivotal role in understanding complex environments. The pro-
cess of segmentation can be broadly categorized into semantic segmentation, instance
segmentation, and panoptic segmentation [123]. Semantic segmentation enables systems to
recognize various elements within a scene, such as people, furniture, or vehicles, facilitat-
ing context-aware decision-making. In other words, semantic segmentation categorizes
each contents of an image into ‘things’ or ‘stuff’. Instance segmentation enhances this by
allowing systems to identify and track specific objects or individuals, that is, they highlight
individual instances of ‘things’. Thus, instance segmentation enables personalized interac-
tions and tailored responses. Panoptic segmentation further enriches the understanding by
combining both semantic and instance-level information, empowering IoMT systems to
interpret scenes comprehensively and adaptively respond to dynamic environments. This
segment provides a brief discussion about the application of semantic segmentation algo-
rithms (Table 10), instance segmentation algorithms (Table 11), and panoptic segmentation
algorithms (Table 12) in the healthcare context.

Semantic segmentation models such as FCN [123], SegNet [123], UNet [123], and
DeconvNet [123] have significantly advanced segmentation capabilities through innovative
architectures and learning strategies. FCN, a pioneering architecture, demonstrated end-to-
end learning for pixel-wise segmentation, utilizing both downsampling and upsampling
paths to capture contextual information and recover spatial semantics. UNet, widely used
in medical imaging, employs an encoder–decoder structure to extract features and derive
semantically meaningful information. SegNet and DeconvNet also follow this architecture,
emphasizing feature extraction and upsampling for effective segmentation. FusionNet [123],
a variant of UNet, incorporates “summation-based skip connections” to create a deeper
network, resulting in enhanced data abstraction capabilities. FuseNet [123], on the other
hand, introduces cross-modal fusion to capture enhanced local and global characteristics
from images, which is particularly beneficial in complex scenarios. E-Net [123] utilizes
filter factorization to reduce network complexity while maintaining performance. These
architectural innovations contribute to improved semantic segmentation performance
across various applications.
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Table 10. Contemporary literature on the application of semantic segmentation in healthcare.

Model Name Brief Descriptions Aspects to Address

FAM-U-Net [76]

Integrated Multiscale Feature Extraction (MFE) module and Deep
Aggregation Pyramid Pooling Module (DAPPM) to extract the most
pertinent features for fluid detection from Optical coherence tomography
(OCT) images. Additionally, Convolution Block Attention Module
(CBAM) is utilized in the skip connection paths of UNet to enhance
the segmentation.

Information related to model parameters or
FLOPs are missing.

MEF-UNet [84]

Designed a selective feature extraction encoder with detail and structure
extraction stages to capture lesion details and shape features accurately.
Introduced a context information storage module in skip connections to
integrate adjacent feature maps and a multi-scale feature fusion module in
the decoder section

Information related to model parameters or
FLOPs are missing.

MISSFormer [87]
Incorporated local and global context, along with global-local correlation
of multi-scale features, into a position-free hierarchical U-shaped
transformer architecture.

Incorporating enhanced local context for small
RoI could enhance segmentation performance.
Information related to model parameters or
FLOPs are missing.

DRD-UNet [91] UNet incorporated with pyramiidal block with dilated convolution,
residual connection and dense layer resulting in a total of 130 layers

The model has high computational complexity
(15.40 M) which is greater than baseline UNet
on the same dataset by 7.71 M

Act-AttSegNet [93]

Incorporated attention gate in SegNet’s skip connection and proposed a
Fuzzy Energy-based ACM for vector-valued image segmentation,
integrating neural network with ACM by utilizing predicted
segmentation masks to remove manual contour initialization

Information related to model parameters or
FLOPs are missing.

Dense-PSP-
UNet [124]

Using Dense-UNet as backbone, incorporated pyramid scene parsing
module in the skip connections for extracting multiscale features and
contextual associations.

Limited data size may lead to poor
generalization of the model, increased risk of
overfitting, and compromised performance
when applied to larger datasets.

BowelNet [125]

Conducted joint localization of five bowel segments: duodenum,
jejunum-ileum, colon, sigmoid, and rectum with V-Net, and fine-tuned it
using an ensemble multi-task segmentor to leverage meaningful
geometric representations.

Segmentation quality can be enhanced by
incorporating key points, anatomical
information, attention mechanisms, and
dilated convolutions.

SDNet [126]
Introduced two single-task branches to individually handle teeth and
dental plaque segmentation, along with incorporating category-specific
features through contrastive and structural constraint module.

M-Net [127]
Two SegNet models with distinct pooling strategies, namely max pooling
and average pooling, are ensembled and concatenated using a shared
softmax classifier.

The model has high computational and storage
complexity due to the presence of two SegNet

MSFF Net [128]
Enabled multi-scale feature fusion, spatial feature extraction,
channel-wise feature enhancement, refinement of segmentation borders,
and focused attention.

Information related to model parameters or
FLOPs are missing.

ACM: Active Contour Model; SDNet: Semantic Decomposition Network; PSP: Pyramid Scene Parsing; DRD:
Dilation, Residual, and Dense Block FAM-UNet: Multiscale Feature Aggregation and Double-Attention Mixed
UNet; MSFF: Multi-Scale Feature Fusion Net; FLOPs: Floating Point Operations; WSI: Whole-Slide Imaging.

Table 11. Contemporary literature on the application of instance segmentation in healthcare.

Model Name Brief Descriptions Aspects to Address

IAFMSMB Net [92]
Utilized Instance Aware Filters and a multi-scale Mask
Branch to generate a global mask and employed Conditional
Encoding to enhance intermediate features.

The model struggled to separate small targets with
unclear boundaries, reducing segmentation accuracy,
especially when dealing with overlapping aggregations.
Also, the denoising process often removed small objects,
impacting segmentation quality. The multi-step
denoising approach and the diffusion model resulted in
slow inference times

CoarseInst [104]

Weakly supervised framework with box annotations includes
coarse mask generation, self-training for instance
segmentation, and lightweight encoder with cascade
attention block for improved feature information

Information related to model parameters or FLOPs
are missing.
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Table 11. Cont.

Model Name Brief Descriptions Aspects to Address

M-YOLACT++ [105]

Utilized ResNet-101 as the backbone network, followed by a
multi-scale feature fusion (MSFF) module with cris-cross
attention and convolutional block attention modules to
aggregate contextual information from feature maps across
all scales.

The absence of information regarding model parameters
or FLOPs is noted. Incorporating prospective data could
provide further insights into the model’s generalizability.

SibNet [129]

Utilized seed map to reduce overlap between instances,
aiding counting and generating an instance segmentation
map that accurately depicts individual instances’ arbitrary
shapes and sizes, even under occlusion.

The model can be extended to count fractional items and
has been considered for homogeneous food counting,
where each item corresponds to one food, preventing the
identification of multi-dish foods.

SPR-Mask
R-CNN [130]

Combined ResNet101 with Feature Pyramid Network (FPN)
to extract a multi-scale feature map, along with RoIAlign
method for processing features at different scales.

Improvemt is required for small oran identifcation such
as endothyroid vessel. It cann not differentiate
annotomically symmetrical structures such as left and
right thyroid lobes.

MSS-WISN [131]
Incorporated a feature extraction network to enhance feature
expression and a feature fusion network to emphasize salient
features, mitigating the impact of scale variations.

Information related to model parameters or FLOPs
are missing.

DSCA-Net [132]

Incorporated hierarchical feature extraction module in the
encoder and feature attention mechanism in the decoder
network and deep scale feature fusion in both encoder
and decoder.

The model has higher computational complexity
(32.50 M) in comparison to ResUNet++ (20.42 M).

FoodMask [133]
Utilized FPN as a backbone for feature extraction, integrating
clustering concepts for food instance counting, segmentation,
and recognition.

The food counting technique is not class-agnostic, posing
challenges for its application across a wide variety
of foods.

M-YOLACT++: Modified YOLACT++; MSS-WISN: Multi-Scale and Multi-Staining White Blood Cell Instance
Segmentation Network; IAFMSMB Net: Instance-Aware Filters and Multi-Scale Mask Branch; DSCA-Net: Double-
Stage Codec Attention Network.

Table 12. Contemporary literature on the application of panoptic segmentation in healthcare.

Model Name Brief Descriptions Aspects to Address

Hybrid-PA-Net [74] Panoptic segmentation head integrates pixel-wise classification
from GCNN-ResNet50 with instance output of PANet.

Incorporating prospective data could provide further
insights into the model’s generalization.

PanoforTeeth [80]

Dual-path transformer block integrates various attention
mechanisms including pixel-to-memory feedback attention,
pixel-to-pixel self-attention, and memory-to-pixel and
memory-to-memory self-attention. It also incorporated a stacked
decoder block for aggregating multi-scale features across various
decoding resolutions.

The model is computationally expensive and lacks
generalization as it is trained on a
single-center dataset.

ms-SP Net [81] Utilized ms-SP along with connection between multi-scale
features and spatial RoI characteristics The model is parametric.

VertXNet [83] Combined UNet and MaskRCNN with their own ensemble rule
for the generation of unified segmentation results.

The method lacks an end-to-end approach as both
UNet and MaskRCNN were trained separately. The
ensemble rule was manually crafted, lacking
generalization. Effective localization of ‘S1’ and ‘C2’
vertebrae directly influences vertebra localization.

ms-SP: Multi-Scale Spatial Pooling.

Numerous advancements have been made in the field of instance segmentation, where
the goal is to not only classify objects but to delineate individual instances within an
image. Models such as DeepMask [134], SharpMask [134], and Multipath Network [134]
have pioneered the use of DL for instance segmentation, leveraging techniques such as
fully convolutional networks (FCNs) and instance-specific feature learning. Additionally,
Instance FCN introduces a specialized architecture for instance segmentation tasks, further
improving accuracy and efficiency [134]. More recent models such as FCIS [123], Mask
RCNN [123], and MaskLab [123] have refined instance segmentation through innovations
such as fully convolutional instance segmentation (FCIS) and region-based methods such
as Mask RCNN, which combine object detection with instance segmentation for improved
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performance [123]. Examples of the contemporary literature on instance segmentation
algorithms are provided in Table 11.

Panoptic segmentation, which aims to provide a unified understanding of a scene
by simultaneously segmenting both ‘stuff’ and ‘things’, has seen notable advancements
through various models. In 2019, semantic segmentation and instance segmentation were
combined in [134] to cover both ‘stuff’ and ‘thing’ classes, introducing a novel panoptic
quality (PQ) metric to evaluate segmentation performance. The Occlusion-Aware Net-
work (OANet) in [134] uses a feature pyramid network to extract feature maps from input
images, applying two separate branches: one for semantic segmentation, and another
using Mask R-CNN for instance segmentation. The outputs from both branches are pro-
cessed by a novel spatial ranking module, yielding the final panoptic segmentation. The
unified panoptic segmentation network (UPSNet) [134] addresses panoptic segmentation
by employing a ResNet and FPN-based Mask R-CNN backbone to extract convolutional
feature maps, which are then fed into three sub-networks for semantic segmentation, in-
stance segmentation, and panoptic segmentation. Following the initial panoptic models,
specific task-oriented models have also emerged. For example, PanoforTeeth [80] was de-
signed for automatic segmentation of dental images through the integration of a dual-path
transformer block, while Hybrid-PA-Net [74] uses a graph convolutional neural network
(GCNN) with ResNet50 and PANet to perform brain tumor segmentation. Examples from
the contemporary literature on applications of panoptic segmentation in the healthcare
field are described in Table 12.

5.4.3. The Role of Object Detection Models

Object detection involves identifying objects and providing their precise location within
an image. Methods for object detection can generally be categorized into one-stage and
two-stage methods. One-stage detectors directly predict the bounding boxes and class labels
for objects in a single step. They are typically faster, but may sacrifice some accuracy compared
to two-stage detectors. Two-stage detectors, on the other hand, first propose RoIs in a region
proposal network (RPN), then refine these proposals to detect objects. They often achieve
higher accuracy, but may be slower due to the additional processing step. Examples from the
contemporary literature on object detectors in the healthcare domain are provided in Table 13.

Table 13. Contemporary literature on the application of object detection in healthcare.

Model Name Brief Descriptions Aspects to Address

YOLOv6 [88] YOLOv6 model weight was optimized using particle
swarm optimization.

The model employs a softmax classification layer to
classify lung cancers. This layer’s performance can be
compared with popular classifiers like SVM, Naive
Bayes, and k-NN.

RetinaNet [135] The anchor size was changed to 8,10,10 and 15,14,14, respectively
The model needs additional training with
post-circulation data and noisy data to address variations
during image acquisition.

YOLOv8 [136] The model underwent hyperparameter tuning while preserving the
original network properties.

The study’s single-institution basis limits generalizability.
Improving model performance may involve integrating
tumor information and multi-phase CT data.

YOLOv5 +
UNet++ [137]

YOLOv5 detected renal cysts, which served as input for UNEt++ to
predict saliency maps and salient landmarks.

The study’s restriction to a single institution and limited
imaging device variation restricts generalizability.

CRDet [138]
Employed a multi-scale feature extraction network with shunted
self-attention and FPN, utilizing circular representation for
improved morphological feature utilization of granulomas.

The model’s training and evaluation were conducted on
a small dataset of 50 patents, potentially impacting
its generalization.

CASMatching +
RetinaNet [139]

Utilized a two-stage pipeline: first, identifying stenotic
morphological indices via RetinaNet, and second, employing a
regression model to predict indices using the novel 2DIoU loss.
CASMatching then predicts a match score for normal and stenotic
regions for quantifying the degree of stenosis through regression.

They focused on single stenosis within a single DSA slice
and did not account for multiple stenoses, common
artery stenosis, or complete occlusion cases.

SVM: Support Vector Machine; k-NN: k-Nearest Neighbors; CASMatching: Carotid Artery Stenosis Matching;
2DIoU: Direction Distance-IoU; YOLO: You Only Look Once.
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5.4.4. Role of ML Models

The IoMT relies heavily on sensor data analysis, utilizing a network of embedded
sensors across devices and environments to collect data on physical parameters such as
temperature, humidity, light, sound, and motion. These data undergo analysis using
various ML and statistical techniques to extract meaningful insights and patterns. Models
such as time series analysis, anomaly detection, and classification algorithms are employed
to detect abnormal events, predict trends, and recognize user activities. These insights
drive automated actions and personalized services, thereby seamlessly enhancing user
experiences. As depicted in Figure 5, popular models for sensor data analysis can be broadly
classified into two approaches, namely, ML-based approach and DL-based approach.
Statistical models, including measures such as the mean, median, and standard deviation,
provide fundamental tools for understanding sensor data distribution and characteristics,
while ML-based approach such as LR explore relationships between variables to aid in
predictive modeling. The k-NN approach [140] classifies or regresses sensor data based on
data point similarity, which is useful for tasks such as anomaly detection and predicting
sensor readings based on nearby instances. SVMs [141,142] offer robust classification and
regression capabilities. DT and RF [141] provide interpretable models suitable for complex
data. Neural networks, including RNN and LSTM, uncover intricate patterns in sensor
data using DL. Popular LSTM variants [143] include vanilla LSTM, bidirectional LSTM,
stacked LSTM, peephole LSTM, multivariate LSTM, and attention-based LSTM. Similarly,
popular RNN variants [144] encompass vanilla, bidirectional, univariate multi-to-one (Uni-
MO), univariate many-to-many (Uni-MM), multivariate many-to-one (Multi-MMO), and
multivariate many-to-many (Multi-MM) RNNs. Time series models such as autoregressive
integrated moving averages (ARIMA) [145] and hidden Markov models (HMMs) [146]
excel in analyzing sequential data for forecasting and anomaly detection.

Among of the popular DL-based approaches are Radial Basis Function Neural Net-
works (RBFNNs), which leverage radial basis functions in their hidden layers to effectively
handle function approximation and pattern recognition tasks across domains [147]. Au-
toencoders (AE) are unsupervised neural network architectures used for learning efficient
representations of input data through minimizing reconstruction error, and find applica-
tions in dimensionality reduction, data denoising, and anomaly detection. Popular variants
include stacked AE and Denoising AE. Boltzmann Machines (BM) are stochastic RNNs fea-
turing binary-valued neurons and bidirectional information flow. Trained using contrastive
divergence, BMs find use in feature learning, dimensionality reduction, and generative
modeling [148]. Various sensor data analysis models are depicted in Figure 5.

Figure 5. A pictorial representation of popular models used for sensor data analysis.
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6. Applications of AMI in Heathcare

AMI is revolutionizing healthcare by creating intelligent environments for the IoMT
that can adapt to the needs of patients and healthcare providers. The integration of
advanced sensors, actuators, and AI together with AMI technology enables remote patient
monitoring, telemedicine, virtual consultations, clinical decision-making, assisted living
for the elderly, and many more opportunities. The IoMT has led to the generation of
electronic health records, allowing seamless sharing of patient data among healthcare
providers and enabling collaborative care and proactive patient monitoring. Moreover, it is
helping to reduce medical errors, lower healthcare costs, and improve patient outcomes.
This section outlines various applications of the IoMT that contribute to the creation of
ambient ecosystems, including remote monitoring, telehealth, smart hospitals, fall detection,
clinical decision-making support, and assisted living for the elderly (described in Figure 6).
These applications leverage AMI technology to enhance patient care, streamline clinical
workflows, and optimize healthcare delivery. The different applications include:

1. Remote Monitoring: AMI with IoMT enables continuous remote monitoring of
a patient’s vital signs, medication adherence, and overall health status, allowing
healthcare providers to intervene promptly in the case of emergencies or changes in
the patient’s condition.

2. Telehealth: The smart IoMT facilitates virtual consultations, remote diagnostics, and
telemonitoring, enabling healthcare professionals to deliver medical services and
consultations to patients in remote areas.

3. Smart Hospitals: AMI technology can create intelligent hospital environments that
optimize resource utilization, automate routine tasks, and enhance patient comfort
by adjusting environmental conditions such as lighting, temperature, and air quality.
Additionally, smart environments enable the monitoring of patient movement and
interactions to identify and mitigate infection risks, helping to prevent hospital-
acquired infections and improve patient safety.

4. Fall Detection: AMI sensors and actuators can detect falls and other emergencies
in real time, automatically alerting caregivers or emergency services and providing
assistance to the affected individuals. This may significantly reduce the mortality rate
by minimizing long-term injuries, especially for people living alone.

5. Clinical Decision Making: Together with AI, advanced IoMT devices can deliver
automated imaging/health record analysis, which may help to alleviate the burden on
doctors and expedite treatment strategies. AMI systems can analyze patient data from
various sources, including electronic health records, medical devices, and wearable
sensors, in order to provide clinicians with timely insights and recommendations for
diagnosis, treatment planning, and care management.

6. Assisted Living: AMI technology supports independent living for elderly and dis-
abled individuals by monitoring their activities, detecting emergencies, and providing
assistance while respecting their privacy and autonomy.

Figure 6. A pictorial representation of the applications of AMI in heathcare.
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Examples from the contemporary literature on AI in healthcare are described in
Table 14.

Table 14. Contemporary literature on the applications of AI in healthcare.

Objectives Methods Dataset Performance

To monitor and measure all patient and
caregiver activities within an ICU bed
space [11].

YOLOv4
ICU video from Box Hill
Hospital between March
2019–May 2020

Automatic classification of Autism
spectrum disorder and Alzimer’s
disease [73]

LG-GNN ABIDE, ADNI Acc: 81.75%, Sen: 83.22%, Spe: 80.99%,
AUC: 85.22%, F1: 82.96%

Automatic brain tumor
segmentation [74] Hybrid-PA-Net BraTS 2021 and BraTS 2019 Acc: 98.7% [BraTs 2021], 99.3%

[BraTs 2019]

Detection of abnormal retinal fluids
from the Spectral Domain OCT
images [76]

FAM-U-Net RETOUCH, OPTIMA,DUKE DSC : 0.887 (RETOUCH), 0.786
(OPTIMA), 0.821 (DUKE)

Automatic segementation of teeth on
panoromic radiographs [80] PanoforTeeth UFBA-UESC Dental

Images Dataset

Acc: 97.25%, Specificity: 97.65%,
Precision: 95.13%, Recall: 93.92%, F1:
93.47%, mean average precision: 71.5%.

Automatic segmentation of tooth [81] ms-SP Net Ctooth dataset
mean IoU: 87%, F1: 98.9%, Acc: 98.5%,
recall: 93%, precision: 94.5%,
DSC: 94.5%

Automatic segmentation of vertebral
bodies in lateral cervical and lumbar
spine X-ray images [83]

VertXNet MEASURE 1,
PREVENT,NHANES II Dice: 0.90

RoI segmentation from ultrasound
images [84] MEF-UNet BUSI, DDTL and BUS

IoU: 0.7221 (BUSI: benign), 0.6308 (BUSI:
malignant), Dice: 0.5762 (DDTL), 0.7115
(BUS), 0.7672 (BUSI: benign), 0.7278
(BUSI: malignant)

Multiclass segmentation incorporating
transformer-based techniques [87]. MISSFormer Synapse, ACDC, DRIVE DSC: 81.96% (Synapse), 91.19% (ACDC).

Acc: 96.03%

Automatic detection and classification
of lung cancer [88] YOLOv6 LUNA 16 Challenge Acc: 82.79%

Automatic classification of whole slice
image patches [89] MuRCL Camelyon16, TCGA-Lung and

TCGA-Kidney
Acc: 91.32% (Camelyon16), 89.19%
(TCGA-lung), 86.26% (TCGA-Kidney)

Multi-class semantic segmentation of
breast cancer tissue [91] DRD-UNet BCSS Challenge Acc : 0.81

Gland instance segmentation in
histology images [92] IAFMSMB Net GIaS, CRAG, RINGS Dice: 0.906 (CGRAG), 0.939 (GlaS A),

0.889 (GlaS B), 0.904 (RINGS)

Skin lesions segmentation from
dermoscopic images [93]. Act-AttSegNet ISIC 2017 Challenge dataset,

PH2
Acc : 0.935, Dice: 0.872, Sen: 0.897,
Spe: 0.968

Real-time instance segmentation for
ultrasound median nerve images with
weak supervision [104].

CoarseInst UGRA and CTS Average precision : 49.8%

Real-time instance segmentation of
precise surgical instrument [105] ROBUST-MIS Multi instance dice: 0.46

Automatic identification of COVID19
slices from X-Rays [118] EfficientNetB4 Own lungs X-ray dataset Acc: 100%

Automatic classification of brain
tumors [119].

Ensemebled
classification model
(InceptionV3, Xception,
Darknet19, Darknet53,
DenseNet201,
EfficientNetB0,
NASNet Mobile,
Resnet50, ResNet101)
for feature extraction
with bayesian
optimized classifiers

Brain tumor MRI dataset Acc: 97.15%, Recall: 97%
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Table 14. Cont.

Objectives Methods Dataset Performance

Automatic classification of brain
tumors [120]. MobileNetv3 Brain tumor dataset from

Kaggle Acc: 99.75%

Real-time live ultrasound
segmentation [124] Dense-PSP-UNet CLUST challenge on liver US

tracking
DSC: 0.913 ± 0.024 , IoU: 0.84, Sen: 0.929,
Spe: 0.979

Segmentation of Bowel in CT
images [125] BowelNet Own CT dataset

DSC: 0.764 (duodenum), 0.848
(jejunum-ileum), 0.835 (colon), 0.774
(sigmoid), and 0.824 (rectum)

Segmentation of teeth and dental plaque
of various shape [126] SDNet SDPSeg MIoU: 90.35% (teeth), 80.08% (plaque)

Pixel-level semantic segmentation and
classification of Alzheimer’s
disease [127]

M-Net Own sMRI dataset, ADNI,
OASIS

Own dataset : Acc: 99%, ADNI: 97.1%,
OASIS : 92.1%

Spine fracture segmentation [128] MSFFNet Own MRI dataset DSC: 90.32, IoU: 91.72

Automatic instance counting and
segmentation of food [129]. SibNet own food dataset (Western,

Chinese, Japanese) MAE: 0.36, PQ: 81.68%

Recognition of thyroid gland and neck
tissue [130] SDNet Own dataset containing 2D

thyroid ultrasound images Average MAP: 61.1%

Instance segmentation of white blood
cells from whole slide images [131] MSS-WISN Own dataset F1: 0.901 and Dice: 0.902

Automatic segmentation of Nuclei[132] DSCA-Net PanNuke Average MIoU: 0.5248

Automatic counting, segmenting, and
recognizing food instances in
real-time [133].

FoodMask
Mixed Dishes (MD),
UECFoodPixComp (UEC) and
FoodSeg103 (FS)

F1: 87.02% (MD), 72.91% (UEC), 60.81%
(FS), PQ: 66.99 (MD), 61.35(UEC),
52.38(FS)

Automatic vessel occlusions detections
on CT angiography [135] RetinaNet Own CTA dataset AUROC: 0.96, Sen: 94%, Spe: 83%

Automatic localization of colorectal
cancer lesions in CCTA images [136] YOLOv8 Own CCTA dataset F1: 0.97, mAP: 0.984, Sen: 0.83, Spe: 0.97,

Acc: 0.96

Detection and measurement of renal
cysysts automatically [137] YOLOv5 UNet Own ultrasound dataset Mean error : 8.49

Automatic detection of lung
granulomas [138] CRDNet Own dataset mAP: 0.316

Automatic identification of stenotic
vessel and normal vessel and
quatification of degree of stenosis [139].

CASMatching Own DSA dataset
mAP: 95.12%, mae : 0.378 (refresence
vessel diameter), 0.221 (minimum lumen
diameter), 0.49 (degree of stenosis)

Segmentation of multimodal brain
tumor for smart hospitals [149]

Used UNet-LSTM
model

Brain Tumor Segmentation
Challenge DSC: 0.91 (WT), 0.82(TC), 0.80(ET)

Assessment and classification of facial
paralysis [150]

Esembled 5 SVM
classifiers in parallel Own dataset Acc: 96.8%, Sen: 88.9%, Spe: 99%

Early detection of PD from the voice
change of a patient [151]

Phase 1: feature
reduction through LDA.
Phase 2: Feature
extraction through
sparse Auto Encoder,
Phase 3: Classification
using
RNN-GLSTM-ADAM.

Max Little of the University of
Oxford in collaboration with the
National Center for Voice
and Speech

Acc: 95.4%, Precision: 95.8%, Recall:
92.1%

Fall detection system [152] Ensemble model using
1D CNN and LSTM SisFall, Kfall Sen : 99.24%, F1 : 98.79%

Prediction of heart disease in AAL [153] Used lightweight DL
based OQFFN

Heart Failure Prediction Dataset
from Kaggle ROC:0.923

Early diagnosis of PD [154] Used OF-k-NN
classifier model

Voice Dataset DS1 and DS2
from Kaggle

Acc: 97.95% (DS1), 91.48% (DS2), F1:
0.98 (DS1), 0.91 (DS2), MCC: 0.93675
(DS1) and 0.79816 (DS2)
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Table 14. Cont.

Objectives Methods Dataset Performance

Early detection of PD [155]
Used restricted BM
with multi-layer
perceptron

Collected from University of
Istanbul’s Cerrahpasa, Faculty
of Medicine’s Department of
Neurology

Acc: 95.32%

Early detection of atherosclerosis from
clinical data and medical records [156]

Used their own
SEcond-order Classifier

Collected from Xiamen Hospital
of Traditional Chinese Medicine
Liver Disease Center

Acc: 0.89, Precision: 0.8837, Recall:
0.9212 F1: 0.902

Automated postural stability assessment
for individuals with motor impairments
at home [157].

SVM assesses human
tasks using CoM
extracted from video
data via Microsoft
Kinect v2’s SDK
skeletal model.

Collected from UK PD Society
Brain Bank Clinical Diagnostic
standards

Stability severity (USD: 64.3%,
TS: 67.8%, RS: 71.4%)

Recognition of 15 sets of human activity
from UWB radars [158]

Used their own
customized 2D CNN
network while
emphasizing on data
cleaning using
Chebyshev type I filter
of order 2.

Collected from three UWB
radars placed on the walls of
the LIARA apartment

Acc: 0.96

Daily behavior recognition in a
multitenant environment [159]

Used their own
HAR_WCNN CASAS dataset Acc: 91.99%

Acc: Accuracy; Sen: Sensitivity; AAL: Ambient Assisted Living; OQFFN: Oversampled Quinary Feed-Forward
Network; OF-k-NN: Optimized Fuzzy-based k-Nearest Neighbour; PD: Parkinson’s Disease; GLSTM: Graph
Long Short-Term Memory; ADAM: Adaptive Moment Estimation; SDNet: Semantic Decomposition Network;
ROC: Receiver Operating Characteristic; AUROC: Area Under the Receiver Operating Characteristic Curve; CTA:
Computed Tomography Angiography; CCTA: Contrast Computed Tomography Angiography; Spe: Specificity.

6.1. Case Studies for Smart Healthcare

This section explores two compelling case studies exemplifying the transformative
potential of smart healthcare technologies. Case Study 1 delves into an innovative smart
transdermal drug delivery system for diabetic patients that is revolutionizing the precise
and efficient administration of medication. Case Study 2 showcases a system for the auto-
matic identification and localization of colorectal cancer (CRC) lesions, demonstrating how
AI can reshape cancer diagnostics while providing enhanced accuracy and early detection.
These real-world examples highlight the remarkable advancements and opportunities
offered by the integration of AI and the IoMT in healthcare.

6.1.1. Smart Transdermal Drug Delivery System for Diabetic Patients

Traditional medication delivery systems often fall short in providing real-time person-
alized care, especially for conditions such as diabetes where timely administration of insulin
is critical. Fluctuations in drug levels can result in side-effects or reduced efficacy, posing
serious risks to patients. To address this challenge, noninvasive actuators such as smart
transdermal patches offer a controlled real-time solution. These patches can adjust dosage
based on vital signs obtained from IoT sensors such as smartwatches and fitness bands.

The procedure begins with real-time monitoring of a patient’s vitals, including blood
glucose levels, heart rate, skin temperature, and physical movements. Smartwatches con-
tinuously measure the heart rate, skin temperature, and physical activity using gyroscopic
and accelerometer data, which are then uploaded to the nearest edge server via Wi-Fi
connectivity. The AI analyzer in the edge server continuously monitors these vitals through
preprocessing the data and analyzing patterns. If it detects abnormalities, it cross-references
recent blood glucose readings from a CBGM device such as the Freestyle Libre.

The Freestyle Libre is a noninvasive CBGM that measures vitals at predefined intervals.
If abnormal AI predictions are detected, the smart transdermal patch initiates dosage
adjustments as needed. With each automated dosage insertion, the AI analyzer assesses the
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patient’s vitals and determines whether additional dosage is necessary. Typically, the patient
may exhibit an elevated heart rate of 90-110 bpm or higher during a hypoglycemic event.
Excessive sweating may also be observed, while hypoglycemia can lead to a decrease in skin
temperature due to vasoconstriction, with temperatures potentially falling below 89.6 ◦F.
This integrated approach leveraging IoT sensors, edge computing, and AI algorithms
offers a proactive and responsive method for managing medication delivery, enhancing
patient safety, and improving treatment outcomes for conditions like diabetes. The entire
framework is described pictorially in Figure 7.

Figure 7. Pictorial framework of smart transdermal drug delivery system for diabetic patients.

6.1.2. Automatic Identification and Localization of Colorectal Cancer Lesions

CRC ranks among the most common and deadly cancers worldwide. The key to
saving lives lies in early detection and accurate localization of cancerous lesions, which
can dramatically improve prognosis and survival rates. Abdominal computed tomography
(CT) scans are often the first step before conducting a more invasive colonoscopy. Yet, when
these scans are performed for reasons other than colorectal evaluation, the intricate and
winding structure of the colon makes thorough analysis exceptionally challenging. The
ability of CT scans to detect colorectal cancer also varies greatly with tumor size, leading
to a troubling number of incidental colon cancers being missed, much to the concern of
clinicians and radiologists [136]. Furthermore, traditional diagnostic methods such as
colonoscopy depend heavily on the skill of clinicians, resulting in inconsistent detection
rates and the potential for small or subtle lesions to be overlooked. This highlights an
urgent need for innovative automatic solutions which could increase detection accuracy
and reduce the manual burden on doctors.

The procedure described in Figure 8 starts with the patient undergoing a CT scan for
gastrointestinal disease. The AI analyzer integrated with the CT scan machine then detects
any abnormalities and localizes probable CRC lesions, displaying the results directly on the
visualization console. This automation significantly reduces the manual burden on doctors,
as a typical CT scan comprises 250 to 300 slices. Acting as a guiding tool, the AI highlights
potential CRC lesion regions, enabling quicker decision-making for treatment strategies.
However, DL models can generate false positives, especially for small tumors, tumors
obstructed by fecal material, or incorrect predictions [136]; therefore, while automated
analysis provides valuable guidance, the final diagnosis and treatment decisions remain in
the hands of the physicians. The visualization images shown here were obtained from [136].
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Figure 8. Pictorial framework of automatic identification and localization of colorectal cancer lesions.

6.2. Evaluation Procedure for the Case Studies

This section briefly introduces the validation procedures used for the smart transder-
mal drug delivery system and the system for automatic identification and localization of
colorectal cancer lesions. Ideally, the performance of these systems should be validated
in clinical settings; however, empirical validation methods, which are discussed here, are
highly essential as well.

The performance of the smart transdermal drug delivery system can be evaluated
based on the correct identification of abnormalities and the mean absolute error between
the AI-predicted dosage and the actual dosage required by the patient. The correctness of
identification can be statistically measured using accuracy, sensitivity, specificity, precision,
and F1-score. In this context, True Positive (TP) refers to instances where the AI correctly
identifies an abnormal condition, False Positive (FP) to those when the AI mistakenly
identifies a patient as abnormal when they are actually normal, False Negative (FN) to
cases where the AI fails to identify an abnormal condition and incorrectly labels it as
normal, and True Negative (TN) as when the AI correctly identifies a normal condition.
Additionally, analyzing the transmission time and prediction time separately is essential
for assessing the system’s efficiency. The statistical formulas are as follows.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Sensitivity /Recall =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1-Score =
2TP

2TP + FP + FN
(5)

Additionally, the mean absolute error (MAE) can be used to measure the deviation
between the AI-predicted dosage and the actual dosage required by the patient. The actual
dosage, denoted as xi, refers to the dosage that is actually required by the patient based on
their medical condition, while the predicted dosage, denoted as yi, is the dosage predicted
by the AI system:

MAE =
n

∑
i=1

|xi − yi| (6)

where n represents the total number of dosage predictions made. Similar statistical mea-
sures, namely, the accuracy, sensitivity, specificity, precision, and F1-score, can be used for
both slice-level and patient-level analyses in the automatic identification and localization
of colorectal cancer lesions.
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7. Open Challenges

This section describes numerous challenges that persistently confront the researchers
and practitioners. These challenges encompass critical aspects such as data processing
and management, latency and response time, privacy and security concerns, operational
power constraints, and limitations in performance measurement. Tackling these challenges
is imperative for the seamless integration and effective operation of AMI-enabled IoMT
systems, which in turn hold significant promise for revolutionizing healthcare delivery and
improving patient outcomes.

7.1. Variability in Collected Data

The first step in any data-centric IoMT analysis involves collecting a vast volume of
data, which greatly impacts subsequent stages such as network access, storage, energy
consumption, and system architecture. Various sensors generate different formats of data;
for example, light or temperature sensors produce numerical data, while proximity sensors
generate categorical data. Smart cameras produce video along with audio, while sensors
such as ECG and EMG generate time series data. This variability in data necessitates
different data processing methods to handle the data effectively.

7.2. Data Processing and Management

The substantial volume of IoMT data demands effective pattern analysis for informed
decision-making. While traditional methods rely on manual observation via self-reporting
tools such as questionnaires and interviews, big data platforms provide automated frame-
works such as MapReduce and Hadoop for parallel and distributed analysis. Additionally,
tools such as Cascading, Pig, and Hive can aid in handling interrelated data groups [55].
However, selecting the most suitable framework poses a challenge, as some cater to contin-
uous streaming data while others handle batch-type data.

7.3. Latency and Response Time

Edge, fog, and cloud computing are integral components of ambient intelligence (AMI)
environments. Edge servers positioned near data acquisition points face constraints such as
limited computational resources, storage capacity, and energy efficiency. These limitations
frequently result in latency issues, especially for real-time healthcare applications demand-
ing immediate processing and response. Consequently, edge servers must implement
efficient mechanisms to distinguish regular data from emergency data to deliver prompt
responses during critical situations.

7.4. Privacy and Security in AMI-Enabled IoMT Environments

IoMT devices and sensors continuously collect sensitive healthcare data, emphasizing
the need for robust security measures to protect patient privacy and prevent unauthorized
access. One of the primary challenges is the susceptibility of IoT devices to cyberattacks,
which stems from inadequate security protocols and firmware vulnerabilities. Exploiting
these vulnerabilities can grant malicious actors unauthorized access to medical records,
allowing them to manipulate patient data or disrupt healthcare services. Moreover, the vast
volume of data generated by IoMT devices presents challenges for secure transmission,
storage, and processing, necessitating the implementation of encryption techniques and
robust access controls. Security concerns are also present in the integration of edge or
cloud computing due to diverse locations and multi-hopping [160]. Therefore, developing
lightweight and efficient encryption mechanisms that can ensure data security in IoMT
environments is crucial.

7.5. Operational Power Constraints

In AMI environments, IoMT devices constantly gather data, requiring a steady power
supply for continuous operation. This demand strains energy resources and escalates
operational expenses. Moreover, reliance on battery-powered devices presents challenges
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such as limited battery life [161] and the need for frequent replacements, especially in
remote areas. Hence, it is crucial to develop energy-efficient hardware and software
solutions to address these operational power constraints more effectively.

7.6. Performance Measurement Constraints

In evaluating the effectiveness of an AMI environments and AI-enabled systems,
various performance metrics come into play, including accuracy, sensitivity, specificity,
and precision. These metrics are used to gauge the system’s responsiveness and efficiency,
particularly in critical situations. Additionally, considering the diverse array of sensors,
actuators, and data sources involved in AMI applications, the environment is often complex
and dynamic. Performance measurement constraints help to assess how well AI algorithms
adapt to this complexity, thereby ensuring reliability across different scenarios. Further-
more, regular optimization of these metrics is crucial for assessing the system’s predictive
capabilities, as any erroneous predictions could have severe consequences, potentially even
leading to death.

8. Conclusions

This paper has delved into the realm of intelligent healthcare through the exploration
of AMI via the IoMT. By examining the convergence of advanced technologies such as
AMI, IoMT, and AI, the transformative potential of these innovations in revolutionizing
healthcare delivery has been uncovered. Through the integration of smart environments,
wearable devices, and AI-driven analytics, the IoMT has emerged as a promising paradigm
for enhancing patient care, enabling personalized interventions, and optimizing healthcare
workflows. The impact on healthcare of AMI and the IoMT is extensive, and their integra-
tion is indispensable in the development of an intelligent healthcare ecosystem. Through a
range of IoMT applications, patients can access appropriate medical services more swiftly,
benefiting from personalized content tailored to their needs. The advancements provided
by the IoMT offer advantages to both patients medical institutions, facilitating cost reduc-
tion in maintenance, alleviating the workload of medical staff, and mitigating unnecessary
expenses associated with frequent patient visits. However, large-scale integration of the
IoMT with AI and AMI remains a challenge, necessitating extensive research to make for
smoother implementation. In highlighting these challenges, this paper has holistically
explored key aspects of AMI, addressing issues such as accuracy discrepancies in IoT
data, communication protocols, and limitations in current research through an extensive
literature survey. The focus includes the primary components of AI that are essential for
automatically addressing various tasks, including the highlighting of current improve-
ments in sensor data accuracy. This survey represents a comprehensive resource for future
researchers exploring AI, AMI, and the IoMT, with the aim of developing a more intelligent
and responsive healthcare system.
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Abbreviations
The abbreviations listed below are used throughout this manuscript:

2DIoU Direction Distance-Iou
AMI Ambient Intelligence
AI Artificial Intelligence
AAL Ambient Assisted Living
ABI Acquired Brain Injury
ABIDE Autism Brain Imaging Data Exchange
Acc Accuracy
ACDC Automated Cardiac Diagnosis Challenge Dataset
ACM Active Contour Model
ADAM Adaptive Moment Estimation
ADL Activities of Daily Living
ADNI Alzheimer’s Disease Neuroimaging Initiative
AE Autoencoders
AHN Artificial Hydrocarbon Network
AMIL AMI Assisted Living
AMPQ Advanced Message Queuing Protocol
AR Augmented Reality
ARIMA Autoregressive Integrated Moving Averages
ASL American Sign Language
AUROC Area Under the Receiver Operating Characteristic Curve
BCSS Breast Cancer Semantic Segmentation
BM Boltzmann Machines
BRaTS Brain Tumor Segmentation Challenge
BUSI Breast Ultrasound Image
BVP Blood Volume Pulse
CASMatching Carotid Artery Stenosis Matching
CBAM Convolution Block Attention Module
CBGM Continuous Blood Glucose Monitors
CBIS-DDSM Curated Breast Imaging Subset Of DDSM
CCTA Contrast Computed Tomography Angiography
CGM Continuous Glucose Monitoring
CLAHE Contrast Limited Adaptive Histogram Equalization
CLUST Challenge on Liver Ultrasound Tracking
CO2 Carbon Dioxide
CoAP Constrained Application Protocol
COBRA Common Object Request Broker Architecture
COPD Chronic Obstructive Pulmonary Disease
CPRM Contactless Portable Respiratory Rate Monitor
CRAG Colorectal Adenocarcinomaglands
CRC Colorectal Cancer
CT Computed Tomography
CTA Computed Tomography Angiography
CTS Carpal Tunnel Diagnosis
CVAT Computer Vision Annotation Tool
DAPPM Deep Aggregation Pyramid Pooling Module
DBN Deep Belief Networks
DDI Diverse Dermatology Images
DDS Data Distribution Service
DDSM Digital Database for Screening Mammography
DDTL Digital Database Thyroid Image
DEAP Database for Emotion Analysis using Physiological Signals
DIARETD Standard Diabetic Retinopathy Database Calibration
DL Deep Learning
DNN Deep Neural Networks
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DPWS Devices Profile for Web Services
DRD Dilation, Residual, and Dense Block
DRIVE Digital Retinal Images for Vessel Extraction
DSCA-Net Double-Stage Codec Attention Network
DT Decision Trees
DTLS Datagram Transport Layer Security
ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyography
FAM-UNet Multi-Scale Feature Aggregation and Double-Attention Mixed uNet
FCIS Fully Convolutional Instance Segmentation
FCN Fully Convolutional Networks
FN False Negative
FID Footwear Impression Database
FLOPs Floating Point Operations
FP False Positive
FPN Feature Pyramid Network
FS Foodseg103
FSO Free Space Optical
GAN Generative Adversarial Networks
GCNN Graph Convolutional Neural Network
GlaS Miccai Gland Segmentation Challenge
GLSTM Graph Long Short-Term Memory
GNN Graph Neural Network
GSR Galvanic Skin Response
HGDB Hand Gesture Recognition Database
HMM Hidden Markov Model
IAFMSMB Instance-Aware Filters And Multi-Scale Mask Branch
ICT Information and Communication Technology
ICU Intensive Care Units
ILSVRC Imagenet Large-Scale Visual Recognition Challenge
IoMT Internet Of Medical Things
IPC Inter-Process Communication
IR Infrared
ISIC International Skin Imaging Collaboration
k-NN k-Nearest Neighbor
KPCA Kernel Principal Component Analysis
LAN Local Area Network
LDA Linear Discriminant Analysis
LED Light-Emitting Diodes
LG-GNN Local-to-Global Graph Neural Network
LoR Logistic Regression
LoRA Long Range
LSTM Long Short-Term Memory
LTE Long-Term Evolution
LUNA Lung Nodule Analysis 2016 Challenge
LWT Lifting-based Wavelet Transform
M2M Machine-to-Machine
MAE Mean Absolute Error
MD Mixed Dishes
MFE Multiscale Feature Extraction
ML Machine Learning
MLP Multi-Layer Perceptron
MQTT Message Queuing Telemetry Transport
MRI Magnetic Resonance Imaging
MSFF Multi-Scale Feature Fusion
ms-SP Multi-Scale Spatial Pooling
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MSS-WISN
Multi-Scale And Multi-Staining White Blood Cell Instance
Segmentation Network

Multi-MMO Multivariate Many-to-One
MURA Musculoskeletal Radiographs
MuRCL Multi-Instance Reinforcement Contrastive Learning
NB Naive Bayes
NER Named Entity Recognition
NHANES National Health and Nutrition Examination Survey
O2 Oxygen
OAI Osteoarthritis Initiative
OANet Occlusion-Aware Network
OASIS Open-Access Series Of Imaging Studies
OCT Optical Coherence Tomography
OF-k-NN Optimized Fuzzy-based k-Nearest Neighbour
OQFFN Oversampled Quinary Feed-Forward Network
PAN Personal Area Network
PD Parkinson’s Disease
PPG Photoplethysmography
PQ Panoptic Quality
PSP Pyramid Scene Parsing
QoS Quality of Service
RBFNN Radial Basis Function Neural Networks
ResNets Residual Networks
REVIEW Retinal Vessel Image Set for Estimation of Widths
RF Random Forests
RFW Racial Faces In-the-Wild
RL Reinforcement Learning
RNN Recurrent Neural Networks
ROBUST-MIS Robust Medical Instrument Segmentation 2019 Challenge
ROC Receiver Operating Characteristic
ROI Region of Interest
ROI-GNN Region of Interest-Based Graph Neural Network
RPN Region Proposal Network
SCADA Superior Control and Data Acquisition
SDNet Semantic Decomposition Network
SDNet Semantic Decomposition Network
Sen Sensitivity
SMOTE Synthetic Minority Over-Sampling Technique
SpaMA Spectral Filter Algorithm for Motion Artifact and Pulse Reconstruction
SSL Secure Sockets Layer
SVM Support Vector Machine
Synapse Synapse Multi-Organ Segmentation Dataset
TCGA-L The Cancer Genome Atlas—Lung
TCP Transmission Control Protocol
TLS Transport Layer Security
TN True Negative
TP True Positive
UA Unified Architecture
UDP User Datagram Protocol
UEC Uecfoodpixcomp
UFDD Unconstrained Face Detection Dataset
UGRA Ultrasound-Guidedregional Anesthesia
Uni-MO Univariate Multi-to-One
Uni-Mm Univariate Many-to-Many
UPSNet Unified Panoptic Segmentation Network
UV Ultraviolet
VGG Visual Geometry Group
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VIA VGG Image Annotator
VLC Visible Light Communications
VR Virtual Reality
WAN Wide-Area Network
WSI Whole-Slide Imaging
XMPP Extensible Messaging and Presence Protocol
YOLO You Only Look Once
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