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Abstract: Background: Total Kidney Volume (TKV) is widely used globally to predict
the progressive loss of renal function in patients with Autosomal Dominant Polycystic
Kidney Disease (ADPKD). Typically, TKV is calculated using Computed Tomography (CT)
images by manually locating, delineating, and segmenting the ADPKD kidneys. However,
manual localization and segmentation are tedious, time-consuming tasks and are prone
to human error. Specifically, there is a lack of studies that focus on CT modality variation.
Methods: In contrast, our work develops a step-by-step framework, which robustly handles
both Non-enhanced Computed Tomography (NCCT) and Contrast-enhanced Computed
Tomography (CCT) images, ensuring balanced sample utilization and consistent perfor-
mance across modalities. To achieve this, Artificial Intelligence (AI)-enabled localization
and segmentation models are proposed for estimating TKV, which is designed to work
robustly on both NCCT and Contrast-Computed Tomography (CCT) images. These AI-
based models incorporate various image preprocessing techniques, including dilation and
global thresholding, combined with Deep Learning (DL) approaches such as the adapted
Single Shot Detector (SSD), Inception V2, and DeepLab V3+. Results: The experimental
results demonstrate that the proposed AI-based models outperform other DL architectures,
achieving a mean Average Precision (mAP) of 95% for automatic localization, a mean
Intersection over Union (mIoU) of 92% for segmentation, and a mean R2 score of 97% for
TKV estimation. Conclusions: These results clearly indicate that the proposed AI-based
models can robustly localize and segment ADPKD kidneys and estimate TKV using both
NCCT and CCT images.

Keywords: polycystic kidney disease; total kidney volume; non-contrast computed tomography;
contrast computed tomography; deep learning; segmentation; localization

1. Introduction
Kidney or renal disease can gradually harm the human body by impairing essential

renal functions such as filtration, re-absorption, secretion, and excretion. If this condition
worsens, the kidney may fail, leading to Chronic Kidney Disease (CKD). Globally, the mor-
tality rate of CKD increased 41.5%, resulting in a total of 1.2 million deaths [1]. According
to the Ministry of Health and Welfare (MHW) in Taiwan, nephritis, nephrotic syndrome,
and nephrosis were the ninth leading cause of death in 2018 [2]. Autosomal Dominant Poly-
cystic Kidney Disease (ADPKD) ranks as the fourth leading cause of CKD worldwide [3].
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The occurrence of ADPKD is primarily attributed to genetic abnormalities that are often
inherited from parents. Typically, ADPKD begins to develop asymptomatically in both
kidneys. For this reason, its progression is often observed in middle to late adulthood.
Thus, it is crucial to predict the progressive loss of renal function at an early stage.

Glomerular Filtration Rate (GFR) [4] is recognized as an important biomarker for
predicting the progressive loss of renal function. GFR is measured using blood tests by
analyzing changes in serum creatinine levels and estimating GFR (eGFR) values. However,
studies have shown that GFR measurements do not reflect changes in serum creatine levels
until around the fourth or fifth decade of life [5]. As a result, Total Kidney Volume (TKV)
has been included as a second key biomarker alongside GFR. TKV can be calculated using
commonly available medical imaging techniques such as Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT). Both techniques provide images in three planes,
Axial (Transverse), Coronal, and Sagittal, which are stored in the Picture Archiving and
Communication System (PACS) in Digital Imaging and Communication in Medicine (DI-
COM) format. These images typically consist of multiple slices (e.g., ≈100–200 slices).
However, MRI is known for being costly and time-consuming. In contrast, CT is a faster
and more cost-effective technique, making it highly preferable. CT imaging is categorized
into two types: Contrast-enhanced Computed Tomography (CCT) and Non-enhanced
Computed Tomography (NCCT). The term “Contrast” refers to a contrast material injected
into the patient’s body, which enhances the visibility of specific organs under investigation.
However, CCT is not always feasible for ADPKD patients due to the potential side effects
of the injected contrast material. As a result, NCCT, which does not require the use of
contrast material, is considered as the most practical and widely available medical imaging
technique for ADPKD patients, even though some organs may be more difficult to observe.

TKV calculation on CT involves localization and segmentation tasks, which require
experienced radiologists to manually localize and segment the kidneys by outlining them
slice by slice in the patient’s CT data. Several conventional methods have been applied
to this process, including Polyline tracing [6], Livewire [7], Freehand drawing [8], Stere-
ology [9], Mid-Slice [10], and Ellipsoid [11]. However, these methods are reported to be
labor-intensive, time-consuming, and prone to human error [12]. For instance, Polyline
tracing requires ≈30 min, Livewire takes ≈20–26 min, and Freehand drawing demands
8 min for a single kidney. Moreover, methods like Stereology, Mid-Slice, and Ellipsoid rely
on specific values, such as the total number of grids, mid-slice, length, width, and depth,
which must be derived using specialized software such as ImageJ [6], OsiriX [8], and others.
Despite these tools, the accuracy and efficiency of TKV calculation through localization and
segmentation largely depend on a radiologist’s experience and expertise.

To optimize TKV calculation, an automatic segmentation model has been developed
using a Computer-Aided Diagnosis (CAD) approach, which is based on Image Preprocess-
ing (IP). A semi-automated segmentation method utilizing IP has been reported, where
a T2-weighted MRI was employed to design an ADPKD segmentation model [13]. The
method relies on active contours and sub-voxel morphology and considers data from
17 patients. Similarly, an automated segmentation approach based on IP was designed,
using a Spatial Prior Probability Map (SPPM) and Propagated Shape Constraint (PSC)
techniques, by employing T2-weighted MRI data from 60 patients [14]. However, the
IP-based approach has limitations, particularly in terms of low accuracy, which can result
in a high error rate. This issue arises from the manual extraction of features, where the
low quality of extracted features negatively impacts the performance and accuracy of the
segmentation model.
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To address these limitations, Artificial Intelligence (AI) techniques have rapidly
evolved into two major approaches: Machine Learning (ML) and Deep Learning
(DL) [15,16]. Initially, ML techniques were employed to enhance the localization and
segmentation capabilities of IP-based approaches. For example, a segmentation method
using geodesic distance volume and Random Forest (RF) algorithms was developed to
segment ADPKD kidneys on 55 CCT image datasets [17]. Similarly, a preliminary study
on 20 NCCT image datasets applied Histogram and K-means algorithms for ADPKD kid-
ney segmentation [18]. Although various ML techniques addressed some limitations of
IP-based approaches, their effectiveness heavily depends on the quantity and quality of
the training data. The high variability in the shape, intensity, and size of ADPKD kidneys
makes small training datasets insufficient for developing robust segmentation models.
Additionally, ML techniques rely on optimal handcrafted feature extraction, which can be
challenging to achieve consistently. In recent years, DL has achieved tremendous success
in handling complex medical image data. Unlike ML, DL introduces automatic feature
extraction through the Convolution Neural Network (CNN) methodologies, eliminating
the need for handcrafted features. Several DL-based approaches have been designed for
image segmentation tasks in ADPKD, utilizing a variety of medical imaging datasets and
architectures. For example, Fully Convolutional Network (FCN) and 244 CCT [19], AlexNet
and 448 CCT [20], U-Net and 2000 T2-weighted MRI [21], U-Net and 3D T2-weighted [22],
FCN and 22 NCCT [23], Region-based CNN (R-CNN) and 32 T2-weighted MRI [24], CNN
and 526 T2-weighted MRI [25], Volumetric Medical Image Segmentation (V-Net) with
182 NCCT and 32 CCT [26], and multiple architectures such as FCN, Unet, SegNet, Deeplab,
and pspNet and breast 309 Ultrasound image [27].

Based on the existing segmentation techniques, T2-weighted MRI [28] and CCT image
data are the most commonly utilized medical imaging modalities for designing automated
segmentation models of ADPKD, which use IP, ML, and DL approaches. While two existing
ADPKD segmentation methods have involved 20 [24] and 22 [23] NCCT image datasets,
the total number of training samples is insufficient for establishing the robustness of the
segmentation models. Similarly, 182 NCCT and 32 CCT datasets have been utilized for
volumetric analysis [26]. However, the imbalance in the number of NCCT and CCT cases
makes it challenging to validate the robustness of the developed models for both modalities.

It is also found that NCCT images pose significant challenges for localization and
segmentation due to several factors. First, the intensity of NCCT images, as shown in
Figure 1a, is lower as compared to the CCT images, as illustrated in Figure 1b. Second,
the intensity of liver cysts is similar to that of ADPKD kidneys, as shown in Figure 1c.
Third, the intensity of ADPKD kidneys can be similar to adjacent organs such as the liver
and spleen, as depicted in Figure 1c. This similarity makes it difficult to differentiate the
boundaries of the ADPKD kidneys from neighboring organs during delineation. These
limitations of NCCT in capturing detailed structural and functional characteristics of the
kidneys can make tasks such as localization, segmentation, and TKV estimations difficult to
perform accurately. As ADPKD is a progressive disease, cysts are often smaller and fewer
in number during its early stage, which makes diagnosis through NCCT challenging. This
difficulty arises because NCCT has limitations in accurately detecting and calculating the
total number of cysts in the kidneys [29]. This is crucial in clinical practice as early diagnosis
of ADPKD can lead to better patient prognosis. Therefore, incorporating NCCT and CCT
for kidney localization, segmentation, and TKV estimation, using AI-based methods, can
enhance diagnostic accuracy, improve early risk predictions, and ultimately optimize
treatment strategies for better outcomes.
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(a) (b) (c)
Figure 1. Comparison of NCCT and CCT for ADPKD kidneys: (a) ADPKD kidneys on NCCT.
(b) ADPKD kidneys on CCT. (c) ADPKD kidney with adjacent organs such as liver and spleen,
alongside liver cyst.

Furthermore, a review of existing studies reveals a lack of investigations into develop-
ing an end-to-end model that integrates localization, segmentation, and TKV estimation
while addressing the imbalance between NCCT and CCT cases. These challenges have mo-
tivated us to design an integrated, robust end-to-end model for ADPKD kidney localization,
segmentation, and TKV estimation, which performs effectively on both NCCT and CCT.

In this paper, we propose an automatic approach for the localization, segmentation,
and TKV estimation of ADPKD, using a balanced dataset of 100 NCCT and 100 CCT images.
Our methodology integrates IP techniques and state-of-the-art DL architectures. Specifically,
we adopted the Single Shot Detector (SSD) Inception V2 for the localization model, DeepLab
V3+ Xception65 for the segmentation model, and a Decision Tree Regression (DTR) ML
model for the TKV estimation model. The main contributions of this paper are summarized
as follows:

• Design an automatic localization and segmentation model for ADPKD kidneys, which
can effectively work with both NCCT and CCT image data.

• Develop a TKV estimation model, utilizing the outputs of the derived segmenta-
tion model.

• Facilitate radiologists’ work by providing automated ADPKD localization, segmenta-
tion, and TKV estimation models, thereby reducing the labor involved in analyzing
the progressive loss of renal function.

This paper is organized as follows. Section 1.1 reviews existing works related to
ADPKD localization and segmentation. Section 2 presents the description of the proposed
methods. Section 3 describes the experimental setup and results. Section 4 provides the
discussion, while Section 5 concludes the work.

1.1. Related Work

This section discusses the evolution of state-of-the-art methodologies for ADPKD
kidney localization and segmentation. These methodologies can be categorized into two
main groups: without AI (Section 1.1.1), which includes traditional methods and IP-based
approaches, and with AI (Section 1.1.2), which encompasses ML and DL approaches.

1.1.1. Without Artificial Intelligence

In clinical practice, traditional methods such as Polyline tracing [6], Livewire [7],
Freehand drawing [8], Stereology [9], Mid-Slice [10], and Ellipsoid [11], have been used
to delineate and segment the ADPKD kidneys. However, the accuracy of these methods
heavily relies on the radiologist’s expertise in manually delineating the kidneys. As a
result, high error rates in ADPKD kidney localization and segmentation are inevitable,
which can lead to inaccurate TKV calculation. To address the limitations of these traditional
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methods, IP techniques have been utilized [13,14]. Due to the challenges in delineating
ADPKD kidneys on T2-weighted MRI, active contours and sub-voxel morphology were
used to automate the delineation process [13]. Specifically, Geodesic Active Contours,
Region Competition techniques, and Bridge Burner algorithms were used for the sub-voxel
morphology. In [14], instead of using shape model, which are not well-suited for the
variable shapes of ADPKD kidneys, a Spatial Prior Probability Map (SPPM) was applied.
The process included three steps: SPPM construction, region mapping, and boundary
refinement, with the results compared to manual segmentation [14]. While IP-based
approaches mitigate some of the challenges of traditional methods, their performance still
depends on the quantity and quality of training data. The non-uniform morphology and
intensity of ADPKD kidneys make it difficult to build robust localization and segmentation
models with insufficient training data. Additionally, IP-based approaches often require
handcrafted features, which can be influenced by the radiologist’s expertise in extracting
relevant features from the highly variable ADPKD kidney image.

1.1.2. With Artificial Intelligence

To fully automate ADPKD kidney localization and segmentation, the used of AI has
rapidly increased. In the realm of ML, the authors [17] applied RF and geodesic distance
volume on mid-slice CCT images. Before generating the forest training, feature selection
was performed by selecting box features, represented as a single vector with 11 elements.
In a preliminary study using a small number of NCCT cases, the authors proposed the
first segmentation model for ADPKD kidneys using Histogram analysis, and K-means
clustering [18]. By applying ML algorithms, the performance of ADPKD kidney localization
and segmentation models can be more accurate compared to IP-based approaches. This
is because the model is designed through a learning process using extracted features.
However, the performance of the derived ML model depends on the feature extraction and
selection methods. If inappropriate features are selected, the localization and segmentation
accuracy will be poor. Moreover, during feature extraction and selection, important features
might be overlooked. To overcome the limitations of handcrafted feature extraction in
IP and ML approaches, DL is increasingly utilized. DL automates the feature extraction
process, which is otherwise manually performed in traditional methods. For example,
in [19], the authors designed an ADPKD segmentation model using FCN with a Visual
Geometry Group (VGG-16) backbone on CCT images. Due to the presence of liver cysts,
the localization and segmentation model could potentially overestimate TKV. To address
this, the authors [20] proposed a method using AlexNet architecture and Marginal Space
Learning (MSL) to improve ADPKD kidney localization and segmentation. Their method
classified patches into two classes: abdomen and kidney localization. However, the division
of predefined abdomen classes was not analyzed, which could affect the optimal range
values derived from the model. The kidney localization model in their approach was
created by manually cropping the kidney area and then dividing the cropped images
into positive and negative patches. In contrast, the authors [21] designed an ADPKD
segmentation model using the U-Net architecture on T2-weighted MRI. They introduced a
multi-observer concept, where several iterations were required to find the optimal networks.
The final segmentation result was determined by applying a voting scheme among the
optimal networks. While this method is robust, it requires a time-consuming training phase.

The U-Net architecture has gained widespread popularity and has been applied in
various studies using 2D MRI and 3D CT imaging [30–32]. However, 2D segmentation
using MRI is limited by the small number of samples used in the architectures [30,31]. In
contrast, the authors employed NCCT and CCT for 3D segmentation [32]. Nevertheless,
the proportion of NCCT and CCT used in their experiments is imbalanced, with approx-
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imately 60% allocated to NCCT and 30% to CCT. Using NCCT image data, an ADPKD
kidney segmentation model was developed with an IP technique, where the kidney area
was manually cropped, and FCN architecture was applied with two data augmentation
techniques, rotation and scaling [23]. However, the proposed method was based on a
limited number of NCCT images. For ADPKD volumetry, 182 NCCT and 32 CCT image
data were used with V-Net [26]. However, to ensure the robustness of the derived ADPKD
kidney segmentation model, balanced data from both CT types is required. To solve this
limitation, in this paper, we propose an automatic ADPKD localization and segmentation
model by utilizing a balanced number of NCCT (100 patients) and CCT (i.e., 100 samples)
images, specifically from ADPKD patients associated with liver cysts.

2. Materials and Methods
In this section, we describe the workflow of the proposed method. The designed

method consists of four main stages: Data Preprocessing, Automatic ADPKD Kidney
Localization, Automatic ADPKD Kidney Segmentation, and TKV Estimation model. An
overview of the proposed method workflow is shown in Figure 2.

Figure 2. The overview of proposed method workflow.

2.1. Data Preprocessing

Based on our previously developed IP method for ADPKD using CCT [33], we apply
four IP procedures to both NCCT and CCT images. First, image selection is performed by
excluding images that do not contain both kidneys. Let R = {r1, r2, . . . , r|R|} represent the
set of selected raw image data in DICOM format (.Dcm). Each selected image ri, where
i ∈ {1, 2, . . . , |R|}, is converted to Joint Photographic Experts Group (JPEG) format using
RadiAnt DICOM Viewer software [34]. As shown in Figure 1a,b, both NCCT or CCT
images exhibit significantly higher intensity values in the spine compared to other organs,
including the ADPKD kidneys. To address this, we apply image enhancement techniques
as the third preprocessing step to reduce the intensity variance. Global thresholding is then
applied to adjust the coordinates or pixel intensities (x, y) of an image ri(x, y). The image
enhancement operation is expressed in Equation (1).

r̃i(x, y) =

{
Max if ri(x, y) > Tmax

0 if ri(x, y) < Tmin

}
(1)

where r̃i(x, y) represents the enhanced image, Tmin and Tmax are the minimum and maxi-
mum thresholds, respectively, and Max refers to a user-defined maximum intensity. These
threshold values are determined based on empirical studies conducted separately for each
case in both NCCT and CCT, with the values being consistent within each modality. Addi-
tionally, to avoid bias in the image, an automatic cropping mechanism is designed. This
mechanism works by cropping the full black pixel intensity (r̃i(x, y) = 0) that surrounds
the abdomen cavity. To achieve this, dilation morphology [35] and contour [36] techniques
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are applied. The dilation morphology operation for each input-enhanced image r̃i can be
computed as follows:

DILATION(B ⊕ S) =
⋃
s∈S

Bs (2)

where B is the input binary image with a kernel size S = 4 × 4, and Bs represents the
translation of image B by s. The hierarchical contour technique is adopted to identify the
maximum contour area in the image. Then, a rectangular shape Rec is drawn around the
maximum area with coordinates Rec = [y : y + h, x : x + w], where h, w refer to the height
and width, respectively. Afterward, the corresponding rectangular area Rec is cropped. The
result of this preprocessing is the enhanced images r̃i. Furthermore, a set of preprocessed
images R̃, R̃ = {r̃1, r̃2, ..., r̃|R̃|} is obtained, which will be used as the training input for
developing the automatic localization and segmentation models. The overall flow and an
example of proposed data preprocessing steps are illustrated in Figure 3.

Figure 3. The overview of data preprocessing using NCCT.

2.2. Automatic ADPKD Kidney Localization

In designing the automatic ADPKD kidney localization model, we extend and im-
prove upon our previous work [33]. Based on the results of our prior experiments, we
demonstrated that one of the one-stage detector algorithms, SSD Inception V2, outper-
forms other two-stage and one-stage detectors. Therefore, in this work, we select SSD
Inception V2 again, with more extensive experiments involving 100 NCCT and 100 CCT.
SSD Inception V2 consists of two main layers: the feature map extraction layer and the
detection layer, as shown in Figure 4. Initially, the preprocessed input image r̃i (either
NCCT or CCT) is labeled by drawing a set of bounding boxes Box = {ble f t, bright}, where
each image contains a total number of bounding boxes, 0 < |Box| ≤ 2. After labeling the
bounding boxes using Labellmg software v1.8.4, each image has an associated label file f j,
which contains a set of tuples. Each tuple comprises the bounding box coordinates Coor,
Coor = [y : y + h, x : x + w] and the respective class Cls, where Cls = {cle f t, cright}. The

label file f j is thus represented as f j = {< C1
oor, C1

ls >, ...,< C|Box|
oor , C|Box|

ls >}. The pair with
the input image and label (r̃i, f j) is then fed into the feature map extraction layer using
the Inception V2 backbone. This layer extracts features through 16 convolution layers
and Rectified Linear Unit (ReLU) activation functions. The extracted feature maps are
subsequently forwarded to the detection layer, where four components need to be detected:
the total number of classes C, the center of the bounding box tx,y, the width w, and the
height h. To achieve this, a total of |N| default boxes, N = {d1, d2, ..., d|N|}, with different
aspect ratios r = {1, 2, 3, 1

2 , 1
3} and scales sl, are required. The determination of different

scales is shown in Equation (3).

sl = smin +
smax − smin
| f | − 1

(i − 1), i ∈ [1, | f |] (3)
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where smin = 0.2 is the scale for the lowest layer, smax = 0.95 is the scale for the highest
layer, and | f | refers to the total number of extracted feature maps. A matching procedure
M is performed by comparing the coordinates and corresponding class labels in the label
file f j with each default box dm, m = {1, 2, ..., |N|}. The matching procedure is outlined in
Equation (4).

M( f j, dm) =

(
f j[y : y + h, x : x + w]

dm[y : y + h, x : x + w]

)
(4)

The matching procedure is based on the best Jaccard index or Intersection over Union
(IoU). As a result, the localization outputs are generated, including the predicted bounding
box Bm, m ∈ Box, the predicted class cn, n ∈ Cls, and the localization confidence score Lscore.

Figure 4. The overview of automatic ADPKD kidney localization model.

2.3. Automatic ADPKD Kidney Segmentation

In this section, we present our proposed automatic ADPKD segmentation model for
NCCT and CCT image datasets. The segmentation problem is approached as a semantic
segmentation task, focusing on two main Regions of Interest (RoIs): the left and right
kidneys. To solve this semantic segmentation problem, we adopt the DeepLab V3+ architec-
ture [37], an enhanced version of DeepLab V3 [38], developed by Google. Although many
architectures are available for segmentation models, such as U-Net, we chose to adopt
DeepLab V3+ due to our objective of segmenting the entire kidney, which contains multiple
cysts of varying sizes and structures. U-Net is known for its high accuracy in segmenting
large areas. However, it suffers from jagged boundaries and the islanding phenomenon,
where its symmetric skip connections, which combine high- and low-level features, can
locate regions but result in jagged cyst boundaries and potentially overlook overlapping
cysts [39]. Therefore, we selected DeepLab V3+ as it is better suited for capturing entire
kidneys containing cysts of varying sizes and fine details, thanks to its Atrous Spatial
Pyramid Pooling (ASPP), which are crucial for accurately estimating TKV. DeepLab V3+
introduces three key concepts: depth-wise separable convolution with dilation (also known
as dilated convolution), Atrous Spatial Pyramid Pooling (ASPP) with image-level features,
and batch normalization. In our proposed ADPKD segmentation model, the DeepLab V3+
network is organized into three main layers: the input layer, the feature extraction and
segmentation layer, and the output layer. An overview of the proposed automatic ADPKD
kidney segmentation model is shown in Figure 5.

Similar to the automatic localization model, with the exception of the third preprocess-
ing step (i.e., image enhancement), the preprocessed image r̃i (either NCCT or CCT) and
the corresponding mask image mj are treated as pairs for the input layer (r̃i, mj). The mask
image is generated using the open-source software LabelMe v3.16.1, where each mask
image contains at least one mask region, denoted as mk

j , where k ∈ {right, le f t}. In [37],
the entire image is used as input, where the crop size corresponds to the maximum size of
the input. Therefore, we set the input size to 513 × 513.
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Figure 5. The overview of automatic ADPKD kidney segmentation model: Green represents the
segmented right kidney, red represents the segmented left kidney, white indicates high-density areas
(e.g., spine), and gray represents low-density areas (e.g., surrounding organs and soft tissues).

A pair of inputs is fed into the feature extraction and segmentation layer. In the
feature extraction layer, we adopt Xception65 as the backbone for feature extraction in
our segmentation model, which consists of 65 network layers. Xception introduces two
main ideas: pointwise convolution followed by deepwise convolution where the Max
Pooling operation is replaced with separable (conv2d) with a stride of 2 and a ReLU
activation function [40]. The extracted feature maps are then fed into the Atrous Spatial
Pyramid Pooling (ASPP) layer, utilizing atrous rates a = {6, 12, 18, 16}, along with batch
normalization. Finally, the extracted features are combined using a 1 × 1 convolution. At
the end of this process, the prediction is made by calculating the probability of the input
vector i using the Softmax function, as shown below:

So f tmax(i) =
exp(i)

∑
η
j=1 exp(j)

(5)

where η is the total input vector from the exit flow section, and exp(i) represents the
exponentiation of the particular input vector i, j ∈ η. To obtain a high-level feature map,
an up-sampling procedure is executed on the extracted feature maps. We use a stride of
4 for the up-sampled decoder output. As a result, the outputs from the low-level extracted
features are concatenated with high-level extracted features. Finally, in the output layer,
the segmented areas are generated, which correspond to either the left kidney, the right
kidney, or both kidneys.

2.4. TKV Estimation Model

To finalize the end-to-end proposed method, we analyze and design the TKV esti-
mation model, which consists of three main stages: feature extraction, numerical data
preprocessing, and TKV estimation using the DTR ML algorithm. We select the DTR model
because it is efficient on large numerical datasets and effectively handles non-linearity.
Additionally, DTR is a simpler algorithm compared to other regression ML algorithms.
In the first stage, we extract features from two sources: the ground truth provided by
radiologists (i.e., CSV format) and the segmented results derived from the AI model. Let
G = {g1, g2, ..., g|G|} represent the set of extracted features from ground truth, and let hi

denote the segmented area derived from the automatic ADPKD kidney segmentation result.
An element of gj, where j ∈ 1, 2, ..., |G|, represents features such as the mean Hounsfield
Unit (HU), area, and volume of kidneys. The hi values correspond to the contour segmented
areas of the left and right kidneys, where i ∈ {le f t, right}. To calculate the segmented
contour areas, we detect the contours of the segmented kidneys by identifying points
surrounding the objects. Using these detected points, we apply the Green Formula to
calculate the areas within the contours as described in [41]. The final set of features for
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TKV (Ftkv) is obtained as the union of the features from the ground truth and segmented
contour areas, Ftkv = {G ∪ H}, where Ftkv = {ε1, ε2, ..., ε |Ftkv |}. For each extracted feature
εr, r = {1, 2, ..., |Ftkv|}, we apply numerical preprocessing by normalizing the data points
dr, d ∈ εr using min–max normalization [42], as shown in Equation (6).

d̃r =
drdr

min
dr

max − dr
min

(6)

where dr
min and dr

max are the minimum min() and maximum values max() observed from all
data points D corresponding to a particular extracted feature r, respectively. We apply the
DTR model from the Sckit-learn machine learning framework. The model is built using the
Classification And Regression Tree (CART) algorithms. Given the set of normalized features
F̃tkv, a regression tree is generated. To evaluate the quality of feature splits, the Mean
Squared Error (MSE) is computed, as described in [43], and it is shown in Equation (7):

MSE =
1
D

D

∑
d=1

(xd − x̄d)
2 (7)

where xd and x̄d are the observed data points and predicted data points, respectively.

3. Results
In this section, we provide a detailed discussion of the experiment, which includes

the following components: the Dataset, the Experimental Setup, the Evaluation Metrics,
the Results for ADPKD kidney localization, segmentation and TKV estimation models on
NCCT and CCT images.

3.1. Dataset

To design a robust ADPKD localization, segmentation, and TKV estimation model, we
collected a dataset of 200 CT scans, comprising 100 NCCT and 100 CCT scans, all associated
with liver cysts. These 200 CT scans were obtained from 97 ADPKD patients. As shown in
the demographic Table 1, the majority of our sample is male with an average age of 55 and
a mean TKV of 2734.33 cm3. The dataset includes a total of 17,836 slices, with 8849 NCCT
slices and 8987 CCT slices. These images were collected from the PACS system of Linkou
Chang Gung Memorial Hospital between 2003 and 2019. The Institutional Review Board
(IRB) of the Chang Gung Medical Foundation, Taipei, Taiwan, approved this study (IRB No.
201701583B0C501). The CT slices have a thickness and interval of 5 mm each. The images
are in DICOM format with a window level of 35 HU and a window width of 350 HU.
The raw CT images have a dimension of 512 × 512 pixels. The collected CT raw image
data were annotated by two radiologists with 10 years of experience. The annotations
provided in the form of annotated images and CSV files serve as the ground truth for the
dataset. Based on this ground truth, the number of usable CT raw image data was reduced
to 8618, consisting of 4352 NCCT and 4266 CCT images. For model training and testing,
the dataset was split into 80% training and 20% testing sets. This results in 3482 training
images (i.e., 80 NCCT scans) and 870 testing images (i.e., 20 NCCT scans), and 3413 training
images (i.e., 80 CCT scans) and 853 testing images (i.e., 20 CCT scans). It is important
to note that the training images are not included in the testing set. For the training set,
we applied k-fold cross validation |k| = 5. The training set was divided randomly into
approximately equal-sized subsets. During each of the 5 rounds of training, one subset kd,
where d = {1, 2, ..., |K|}, was used as the validation set, while the remaining |k − 1| subsets
were used for training.
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Table 1. Demographic information of 200 CT scans from 97 ADPKD patients.

Characteristic Values

Age (years; Mean ± SD) 55 ± 18.5

Sex (total sample; %) Male 52 (53.6%)
Female 45 (46.4%)

TKV (cm3; Mean ± SD) 2734.33 ± 2312.45

3.2. Experimental Setup

Our experiments are conducted using the OpenCV v3.2.0 data preprocessing frame-
work, TensorFlow-GPU v1.12 DL framework, and Scikit-learn v0.19.2 ML framework. The
interface for all frameworks is implemented in Python v3.6.7, along with several other sup-
ported Python libraries, including Pandas v1.0.5, Numpy v1.19.1, Matplotlib v3.3.0, Pillow
v7.2.0, osmnx v0.15, lxml v4.2.1, imageio v2.5.0, Urllib3 v1.22, Sys v3.6.9. All software is
available for access and installation from this Python Package Index (PyPI) repository [44].
These frameworks are running on an Ubuntu 18.04.3 operating system with the following
hardware specifications: GPU TITAN RTX 24 GB × 4 and 256 GB memory.

3.3. Evaluation Metrics

We evaluate our ADPKD kidney localization and segmentation models using four
common evaluation metrics: Accuracy (ACC) (Equation (8)), Precision (PR) (Equation (9)),
Recall/Sensitivity (RE) (Equation (10)), and Dice-score (DS) (Equation (11)). These metrics
can be calculated as follows:

ACC =
TP

TP + FN + FP
(8)

PR =
TP

TP + FP
(9)

RE =
TP

TP + FN
(10)

DS = 2 × PR × RE
PR + RE

(11)

where TP refers to True Positive, FP denotes False Positive, FN stands for False Negative,
and TN represents True Negative. Moreover, for automatic localization and segmentation,
the Intersection over Union (IoU) metric was used by calculating the intersection between
predicted and ground truth RoI, divided by their union. We also computed the mean
IoU (mIoU), Average Precision (AP), and mean AP (mAP). R-square (R2) coefficient was
utilized to assess the performance of the regression-based TKV estimation model. The R2

was calculated by dividing the Sum of Squares Regression (SSR) by the Sum of Squares
Total (SST).

3.4. ADPKD Kidney Localization Results

We trained and compared the proposed automatic localization model with well-
established object localization architectures such as the original SSD and Faster R-CNN,
which have been applied to malignant pulmonary nodule detection [45]. After preprocess-
ing (Section 2.1), the training data were used for training and validation purposes with the
designed localization model, SSD MobileNet V1, and Faster R-CNN Inception ResNet V2
across k rounds. Similarly, we tested the derived models on an independent testing set to
compare and evaluate the robustness of our proposed localization model. The performance
results of the designed model on NCCT and CCT were analyzed and presented in two
parts: validation set and testing set results.



Biomedicines 2025, 13, 263 12 of 22

3.4.1. Validation Set Results on NCCT

By applying k-fold cross-validation, we evaluated the performance of the proposed
ADPKD kidney localization model. As shown in Table 2, we compared the performance
of our model with other localization architectures in terms of ACC, PR, RE, DS, and mAP.
The results show that our proposed method achieves an average of 92% across all metrics.
In comparison, SSD MobileNet and Faster R-CNN Inception ResNet V2 achieve 84% and
46%, respectively.

Table 2. Localization results using validation set with k-fold on NCCT, including Accuracy (ACC),
Precision (PR), Recall (RE), Dice-score (DS), and mean Average Precision (mAP).

Architecture ACC PR RE DS mAP

Our method 0.91 (±0.07) 0.94 (±0.04) 0.9 (±0.05) 0.91 (±0.041) 0.94 (±0.02)

SSD MobileNet V1 0.83 (±0.08) 0.84 (±0.06) 0.85 (±0.05) 0.85 (±0.06) 0.85 (±0.02)

Faster R-CNN
Inception ResNet V2 0.4 (±0.02) 0.41 (±0.03) 0.51 (±0.01) 0.44 (±0.02) 0.55 (±0.03)

3.4.2. Testing Set Results on NCCT

To thoroughly evaluate the performance of the proposed localization model, we test
the derived model using an independent testing set and compare it with other localization
architectures. The results show that our derived model outperforms the others with
94%, 96%, 91%, 93%, and 96% for ACC, PR, RE, DS, and mAP, respectively, as shown
in Table 3. In comparison, SSD MobileNet V1 and Faster R-CNN Inception ResNet V2
achieved only 89% and 41%, 88% and 42%, 89% and 51%, 89% and 45%, and 90% and 55%
for ACC, PR, RE, DS, and mAP, respectively. Notably, our proposed localization model
achieves the highest mAP of 96%. The PR and RE curve for the right and left kidneys
can be visualized in Figure 6a,b, respectively. Moreover, our ADPKD localization model
demonstrates robustness in detecting ADPKD kidneys with varying sizes, shapes, and
intensities (including those similar to liver cysts), as shown in Figure 7.

Table 3. Localization results using testing set NCCT, including Accuracy (ACC), Precision (PR), Recall
(RE), Dice-score (DS), and mean Average Precision (mAP).

Architecture ACC PR RE DS mAP

Our method 0.94 (±0.02) 0.96 (±0.01) 0.91 (±0.01) 0.93 (±0.01) 0.96 (±0.01)

SSD MobileNet V1 0.89 (±0.03) 0.88 (±0.02) 0.89 (±0.01) 0.89 (±0.02) 0.9 (±0.01)

Faster R-CNN
Inception ResNet V2 0.41 (±0.01) 0.42 (±0.02) 0.51 (±0.01) 0.45 (±0.01) 0.55 (±0.02)

(a) (b)
Figure 6. Precision and recall curve on NCCT: (a) Right kidney. (b) Left kidney.



Biomedicines 2025, 13, 263 13 of 22

Figure 7. Automatic ADPKD kidney localization results on NCCT.

3.4.3. Validation Set Results on CCT

Using the same comparison setup and evaluation metrics, we assess the performance
of the derived localization model on CCT. As shown in Table 4, our proposed method
demonstrates the ability to localize ADPKD kidneys with 91% of mAP, outperforming
SSD MobileNet V1 and Faster R-CNN Inception ResNet V2, which achieve 78% and
51% mAP, respectively.

Table 4. Localization results using validation set with k-fold on CCT, including Accuracy (ACC),
Precision (PR), Recall (RE), Dice-score (DS), and mean Average Precision (mAP).

Architecture ACC PR RE DS mAP

Our method 0.83 (±0.06) 0.88 (±0.04) 0.82 (±0.05) 0.85 (±0.04) 0.91 (±0.03)

SSD MobileNet V1 0.62 (±0.09) 0.78 (±0.06) 0.79 (±0.06) 0.77 (±0.07) 0.78 (±0.07)

Faster R-CNN
Inception ResNet V2 0.43 (±0.04) 0.38 (±0.02) 0.5 (±0.03) 0.42 (±0.01) 0.51 (±0.04)

3.4.4. Testing Set Results on CCT

Using an independent testing set, each localization architecture model showed sig-
nificant improvement, as shown in Table 5. While SSD MobileNet V1 localizes ADPKD
kidneys with 82% ACC, 83% PR, 84% RE, 83% DS, and 86% mAP, our proposed method
demonstrates superior performance, achieving 91% ACC, 93% PR, 87% RE, 90% DS, and
94% mAP in localizing ADPKD kidneys.

Table 5. Localization results using testing set CCT, including Accuracy (ACC), Precision (PR), Recall
(RE), Dice-score (DS), and mean Average Precision (mAP).

Architecture ACC PR RE DS mAP

Our method 0.91 (±0.03) 0.93 (±0.02) 0.87 (±0.01) 0.9 (±0.01) 0.94 (±0.01)

SSD MobileNet V1 0.82 (±0.08) 0.83 (±0.04) 0.84 (±0.04) 0.83 (±0.05) 0.86 (±0.05)

Faster R-CNN
Inception ResNet V2 0.38 (±0.01) 0.39 (±0.02) 0.5 (±0.01) 0.43 (±0.02) 0.51 (±0.01)

In addition, Faster R-CNN Inception ResNet V2 shows the lowest performances
compared to both SSD MobileNet V1 and our proposed method. For a deeper performance
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analysis, we derive the PR and RE curves for the left and right kidneys based on the highest
mAP value of 94%, as shown in Figure 8a,b, respectively. Figure 9 shows the visualization
of our automatic ADPKD kidney localization on CCT.

(a) (b)
Figure 8. Precision and recall curve on CCT: (a) Right kidney. (b) Left kidney.

Figure 9. Automatic ADPKD kidney localization results on CCT.

3.5. ADPKD Kidney Segmentation Results

To evaluate the performance of our proposed automatic ADPKD kidney segmentation
method, we select commonly used semantic segmentation architecture for ADPKD kidney
segmentation, such as FCN [19] with the powerful VGG-16 [46] backbone, and the original
DeepLab V3+ architecture with MobileNet V2, which has shown the best performance for
breast tumor semantic segmentation in state-of-the-art comparison [47]. We train our model,
along with the two selected architectures, using the preprocessed training dataset. Training
and validation are performed over k rounds. We analyze and compare the performance of
our model against the other architectures using an independent testing set for k rounds of
testing. These procedures are applied to both NCCT and CCT, with results presented in
two categories: validation set results and testing set results for both NCCT and CCT.

3.5.1. Validation Set Results on NCCT

Table 6 presents a comparison between our method and the FCN with VGG-16 and
DeepLab V3+ with MobileNet architectures. It can be observed that our proposed method
outperforms the other semantic segmentation architectures, achieving an average of 94%
across the PR, RE, DS, and mIoU metrics, with an average Standard Deviation (SD) value
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of ±0.004. This shows that, over k rounds of validation, our method consistently exhibits
robust performance in segmenting the ADPKD kidneys, outperforming both the FCN with
VGG-16 and DeepLab V3+ with MobileNet V2 architectures.

Table 6. Segmentation results using validation set with k-fold on NCCT, including Precision (PR),
Recall (RE), Dice-score (DS), and mean IoU (mIoU).

Architecture PR RE DS mIoU

Our method 0.96 (±0.004) 0.95 (±0.004) 0.96 (±0.003) 0.91 (±0.007)

Fully Convolution Network
with VGG-16 0.73 (±0.3) 0.63 (±0.3) 0.66 (±0.3) 0.63 (±0.1)

DeepLab V3+ with
MobileNet V2 0.88 (±0.01) 0.89 (±0.004) 0.88 (±0.007) 0.79 (±0.007)

3.5.2. Testing Set Results on NCCT

Through a more in-depth evaluation, we compare the performance of our proposed
method with other architectures using the testing set. As shown in Table 7, the performance
of our method in terms of mIoU slightly increases from 91% to 92%, with the lowest SD of
±0.002. With an unseen dataset, our method can robustly segment the ADPKD kidneys,
achieving 96%, 95%, 95% for PR, RE, and DC, respectively. To support these findings, we
plot the Receiver Operating Characteristic (ROC) curve to analyze the trade-off between
the True Positive Rate and False Positive Rate. As shown in Figure 10, our method achieves
a higher Area under Curve (AUC) = 0.978. Figure 11 displays the comparison between the
ground truth and the automatic segmentation results. These results demonstrate that our
designed model can segment ADPKD kidneys precisely, even though the kidneys vary in
shape and size, and their intensity is similar to adjacent organs and liver cysts.

Table 7. Segmentation results using testing set NCCT, including Precision (PR), Recall (RE), Dice-score
(DS), and mean IoU (mIoU).

Architecture PR RE DS mIoU

Our method 0.96 (±0.004) 0.95 (±0.003) 0.95 (±0.002) 0.92 (±0.002)

Fully Convolution Network
with VGG-16 0.87 (±0.05) 0.84 (±0.09) 0.84 (±0.08) 0.76 (±0.05)

DeepLab V3+ with
MobileNet V2 0.86 (±0.01) 0.84 (±0.009) 0.85 (±0.008) 0.74 (±0.01)

Figure 10. Automatic ADPKD segmentation ROC curve on NCCT.
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Figure 11. Automatic ADPKD kidney segmentation results on NCCT: Green represents the segmented
right kidney, red represents the segmented left kidney, white indicates high-density areas (e.g., spine),
and gray represents low-density areas (e.g., surrounding organs and soft tissues).

3.5.3. Validation Set Results on CCT

Similar to the NCCT evaluation, we assess and compare our proposed method with
other architectures using CCT. Table 8 shows the experiment results, including the SD. Our
proposed segmentation method outperforms other state-of-the-art semantic segmentation
architecture, achieving 95%, 95%, 95%, 91% value for PR, RE, DS, and mIoU. The low
SD values across all metrics show that our method performs robustly over k rounds
of validation.

Table 8. Segmentation results using validation set with k-fold on CCT, including Precision (PR),
Recall (RE), Dice-score (DS), and mean IoU (mIoU).

Architecture PR RE DS mIoU

Our method 0.95 (±0.008) 0.95 (±0.003) 0.95 (±0.003) 0.91 (±0.008)

Fully Convolution Network
with VGG-16 0.81 (±0.1) 0.89 (±0.1) 0.75 (±0.2) 0.73 (±0.05)

DeepLab V3+ with
MobileNet V2 0.84 (±0.02) 0.87(±0.02) 0.84(±0.02) 0.73 (±0.04)

3.5.4. Testing Set Results on CCT

To verify the robustness of our derived method, we evaluate it again using an inde-
pendent CCT testing set. The evaluation is conducted in the same manner for our model
and the other comparison models. As shown in Table 9, the results demonstrate that our
model outperforms FCN with VGG-16 and DeepLab V3+ with MobileNet V2. Our model
achieves an average of 95% across all metrics for segmenting ADPKD kidneys on CCT,
while FCN with VGG-16 and DeepLab V3+ MobileNet only achieve an average of 72% and
79%, respectively. We visualized the performance of our model through an ROC curve, as
shown in Figure 12, where our method achieves a high AUC value of 0.982. As shown in
Figure 13, these results confirm that our proposed segmentation ADPKD kidneys method
can accurately segment kidneys, even in the presence of morphological heterogeneity.
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Table 9. Segmentation results using testing set CCT, including Precision (PR), Recall (RE), Dice-score
(DS), and mean IoU (mIoU).

Architecture PR RE DS mIoU

Our method 0.96 (±0.006) 0.96 (±0.001) 0.96 (±0.001) 0.93 (±0.001)

Fully Convolution Network
with VGG-16 0.66 (±0.06) 0.89 (±0.08) 0.73 (±0.06) 0.63 (±0.1)

DeepLab V3+ with
MobileNet V2 0.82 (±0.02) 0.84 (±0.01) 0.82 (±0.02) 0.7 (±0.03)

Figure 12. Automatic ADPKD segmentation ROC curve on CCT.

Figure 13. Automatic ADPKD kidney segmentation results on CCT: Green represents the segmented
right kidney, red represents the segmented left kidney, white indicates high-density areas (e.g., spine),
and gray represents low-density areas (e.g., surrounding organs and soft tissues).

3.6. TKV Estimation Results

We train the proposed TKV estimation using the DTR model. We evaluate and
compare the performance of the adopted regression model with Linear Regression (LR),
measuring the results using an R2 score with 5-fold cross validation. Table 10 shows the
results obtained from both NCCT and CCT. Our method estimates superior performance,
which achieves an average Maximum R2 = 98% for predicting TKV based on the given
input features compared to 87% for LR. For a deeper analysis, we examine the training and
validation scores with varying values of the maximum tree depth hyperparameters. As
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shown in Figure 14a,b, the proposed method’s training and validation scores improve as
the maximum tree depth hyperparameter increases.

Table 10. R2 score using validation set with k-fold on NCCT and CCT.

Algorithm
NCCT CCT

Max R2 Mean R2 Max R2 Mean R2

Our method 0.987 0.962 (±0.012) 0.983 0.98 (±0.004)

Linear Regression 0.826 0.778 (±0.011) 0.93 0.92 (±0.03)

Figure 14. Validation curve for DTR: (a) Validation score on NCCT. (b) Validation score on CCT.

4. Discussion
Analyzing the progressive loss of renal function in ADPKD patients through medical

image data is crucial. Therefore, accurate TKV measurement on NCCT and CCT scans
is both essential and challenging. In this paper, we propose an AI-based framework for
ADPKD kidney localization, segmentation, and TKV measurement for both NCCT and
CCT. The proposed method integrates traditional IP techniques with DL architectures, such
as SSD Inception V2 for localization, DeepLab V3+ Xception65 for segmentation, and an
ML approach using the DTR algorithm for TKV estimation.

In the first part of this work, we proposed an automatic ADPKD localization model for
both NCCT and CCT. The localization model was trained and validated using the training
set for over k rounds, which was followed by testing on an independent testing set. Based
on the evaluation results, our model outperformed SSD MobileNet V1 and Faster R-CNN
Inception ResNet V2 architectures, achieving 92% ACC, 94% PR, 89% RE, 95% DS, and 95%
mAP. Our proposed localization model demonstrates a higher mAP than previous works
such as [24,46], where R-CNN-based detection resulted in a high false positive, leading to
low AP = 78% when MRI was used as input. As shown in Figures 7 and 9, our localization
model accurately localizes the left kidney (i.e., blue box) and right kidney (i.e., green box)
with a high confidence score. Despite the presence of liver cysts, our model successfully
localizes the ADPKD kidneys by predicting the bounding boxes, although some parts of
adjacent organs, like the liver and spleen, may also be included within the detected box. To
address this limitation, we further proposed an automatic ADPKD segmentation model.

The main aim of our second proposed idea is to extract the precise shape of ADPKD
kidneys from both NCCT and CCT. Similar to the first localization idea, we trained and
validated the segmentation model over k rounds and then tested the model using a separate
testing set. As shown in Tables 7 and 9, the proposed model achieved an average of 96%
PR, 95% RE, 95% DS, and 92% mIoU on both NCCT and CCT. With an mIoU = 92%, our
method outperforms other ADPKD segmentation architectures [24,46], which achieved
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an IoU of 85% using MRI images. When using CCT as input, our proposed segmen-
tation model achieved a higher DS = 0.96 (±0.001) compared to [19], which reported
as DS of 0.85(±0.007). These results are reflected in the segmented images shown in
Figures 11 and 13 for NCCT and CCT, respectively. It can be observed that our segmenta-
tion model robustly segments ADPKD kidneys of varying sizes and shapes, even in the
presence of liver cysts. The outputs of this segmentation model are then used to design the
TKV estimation model. To complete our proposed idea, we introduce the third component:
the TKV estimation model. As discussed in the performance evaluation results, our pro-
posed method using DTR achieved high R2 = 98.7% for NCCT and R2 = 98.3% for CCT.
Using k-fold cross validation, the TKV estimation model achieved R2 =96.2% with an SD of
0.01 for NCCT and R2 = 98% with an SD of 0.004 for CCT.

One of the limitations of our study is the small dataset size, which can affect the
generalization of our models. Although our results show high mIoU, some segmentation
errors do occur in certain cases, such as when cysts overlap with neighboring organs
or have homogeneous intensity. These errors may impact the subsequent task of TKV
estimation, and as a result, inaccurate TKV could affect treatment decisions or patient
outcomes. To address the small dataset size and segmentation errors, we plan to conduct
future experiments with a large dataset and additional external validation. By doing
so, we aim to improve the generalizability and reliability of our models. Despite strong
performance and lower sensitivity to outliers compared to other regression algorithms,
outliers can still influence how the decision tree splits the data. As a result, the tree may
overfit to extreme outliers, causing splits that fail to reflect the true distribution of the data.
Consequently, this could result in less precise TKV estimations. In the future, we plan to
mitigate the influence of outliers by employing outlier removal techniques.

To make the proposed method feasible in real-world settings, we could integrate
the automatic ADPKD kidney localization, segmentation, and TKV estimation into a
single, user-friendly desktop-based software pipeline in the future. This software could
be installed in hospital systems, allowing clinicians and radiologists to compare their
conventional methods with our software. This integration can enhance diagnostic accuracy
and decision-making for treatment. Additionally, through this comparison, we can validate
our model’s results against conventional methods, ensuring the reliability and accuracy of
the developed software.

5. Conclusions
In this paper, three key models, an automatic ADPKD localization model, a segmenta-

tion model, and a TKV estimation model, which utilized IP methods and DL approaches,
were proposed. These models were designed to work robustly on NCCT and CCT images.
For IP, we applied techniques such as image enhancement and automatic cropping. For
the localization model, we adopted SSD Inception V2; for segmentation, we used DeepLab
V3+ Xception65; and for the TKV estimation model, we implemented the DTR model. The
experimental results demonstrate that our localization model achieves a mAP of 95%, our
segmentation model achieves a mIoU of 92%, and the TKV estimation model reaches an
R2 of 97%. These results show that our derived models work robustly on both NCCT and
CCT images, even when considering challenges such as liver cysts and variations in kidney
shape and size. Furthermore, we believe that derived models could significantly assist
radiologists in diagnosing the progressive loss of renal function, particularly when working
with challenging imaging modalities like NCCT and CCT.
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