
CHAPTER 1 

SYSTEMS OF LINEAR 

EQUATIONS 

Elementary Linear Algebra 

R. Larson (8 Edition) 

1.1  Introduction to Systems of Linear Equations 

1.2  Gaussian Elimination and Gauss-Jordan  Elimination 

1.3  Applications of Systems of Linear Equations 

 

 

 

投影片設計製作者 

淡江大學 電機系 翁慶昌 教授 



2/64 

CH 1  Linear Algebra Applied 

 

 

 

 

    Balancing Chemical Equations (p.4)                                      Global Positioning System (p.16) 

                                          

                                                   Airspeed of a Plane (p.11) 

 

 

 

 

 

 

            Traffic Flow (p.28)                                                         Electrical Network Analysis (p.30) 



3/64 

1.1 Introduction to Systems of Linear Equations 

 a linear equation in n variables: 

          a1,a2,a3,…,an, b: real number 

          a1: leading coefficient 

          x1: leading variable 

 Notes: 

(1) Linear equations have no products or roots of variables and 

      no variables involved in trigonometric, exponential, or  

      logarithmic functions. 

(2) Variables appear only to the first power. 

Elementary Linear Algebra: Section 1.1, p.2 
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 Ex 1: (Linear or Nonlinear) 
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Elementary Linear Algebra: Section 1.1, p.2 
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 a solution of a linear equation in n variables:  

 Solution set: 

          the set of all solutions of a linear equation 

bxaxaxaxa nn  332211

,11 sx  ,22 sx  ,33 sx  , nn sx 

bsasasasa nn  332211
such 

that 

Elementary Linear Algebra: Section 1.1, p.3 
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 Ex 2： (Parametric representation of a solution set) 
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Elementary Linear Algebra: Section 1.1, p.3 



7/64 

 a system of m linear equations in n variables: 

mnmnmmm
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 Consistent: 

A system of linear equations has at least one solution. 

 Inconsistent: 

 A system of linear equations has no solution. 

Elementary Linear Algebra: Section 1.1, pp.4-5 
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 Notes: 

Every system of linear equations has either 

(1) exactly one solution, 

(2) infinitely  many solutions, or 

(3) no solution. 

Elementary Linear Algebra: Section 1.1, p.5 
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 Ex 4: (Solution of a system of linear equations) 
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Elementary Linear Algebra: Section 1.1, p.5 
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 Ex 5: (Using back substitution to solve a system in row echelon form) 
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 The system has exactly one solution: 2 ,1  yx

Elementary Linear Algebra: Section 1.1, p.6 
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 Ex 6: (Using back substitution to solve a system in row echelon form) 
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  The system has exactly one solution: 

2 ,1 ,1  zyx

Elementary Linear Algebra: Section 1.1, p.6 
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 Equivalent: 

   Two systems of linear equations are called equivalent 

   if they have precisely the same solution set. 

 Notes: 

         Each of the following operations on a system of linear 

         equations produces an equivalent system. 

      (1) Interchange two equations. 

(2) Multiply an equation by a nonzero constant. 

(3) Add a multiple of an equation to another equation.  

Elementary Linear Algebra: Section 1.1, pp.6-7 
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 Ex 7: Solve a system of linear equations (consistent system) 
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Elementary Linear Algebra: Section 1.1, p.7 
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So the solution is                                  (only one solution) 2 ,1 ,1  zyx
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Elementary Linear Algebra: Section 1.1, p.7 
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 Ex 8: Solve a system of linear equations (inconsistent system) 
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Elementary Linear Algebra: Section 1.1, p.8 
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So the system has no solution (an inconsistent system). 
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Elementary Linear Algebra: Section 1.1, p.8 
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 Ex 9: Solve a system of linear equations (infinitely many solutions) 
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Elementary Linear Algebra: Section 1.1, p.9 
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Elementary Linear Algebra: Section 1.1, p.9 
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Key Learning in Section 1.1 

 Recognize a linear equation in n variables. 

 Find a parametric representation of a solution set. 

 Determine whether a system of linear equations is consistent or 

inconsistent. 

 Use back-substitution and Gaussian elimination to solve a 

system of linear equations. 
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Keywords in Section 1.1 

 linear equation:  線性方程式 

 system of linear equations:  線性方程式系統 

 leading coefficient:  領先係數 

 leading variable:  領先變數 

 solution:  解 

 solution set:  解集合 

 parametric representation:  參數化表示 

 consistent:  一致性(有解) 

 inconsistent:  非一致性(無解、矛盾) 

 equivalent:  等價 
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(4) For a square matrix, the entries a11, a22, …, ann are called  

      the main diagonal entries. 

1.2 Gaussian Elimination and Gauss-Jordan Elimination 

 mn matrix: 
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n
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321

3333231

2232221

1131211

rows m

columns  n

(3) If           , then the matrix is called square of order n. nm 

 Notes: 

(1) Every entry aij in a matrix is a number. 

(2) A matrix with m rows and n columns is said to be of size mn . 

Elementary Linear Algebra: Section 1.2, p.13 
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 Ex 1:       Matrix               Size 
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 Note: 

One very common use of matrices is to represent  

a system of linear equations. 

Elementary Linear Algebra: Section 1.2, p.13 
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 a system of m equations in n variables: 
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Elementary Linear Algebra: Section 1.2, p.13 



24/64 

 Augmented matrix: 
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 Coefficient matrix: 

Elementary Linear Algebra: Section 1.2, p.13 
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 Elementary row operation: 

jiij RRr :(1) Interchange two rows. 

0  ,)(:)(  kRRkr ii

k

i (2) Multiply a row by a nonzero constant. 

jji

k

ij RRRkr )(:)((3) Add a multiple of a row to another row. 

 Row equivalent: 

Two matrices are said to be row equivalent if one can be obtained 

from the other by a finite sequence of elementary row operation. 

Elementary Linear Algebra: Section 1.2, p.14 
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 Ex 2: (Elementary row operation) 
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Elementary Linear Algebra: Section 1.2, p.14 
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 Ex 3:  Using elementary row operations to solve a system 
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Elementary Linear Algebra: Section 1.2, p.15 

 Associated  
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332
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Elementary Linear Algebra: Section 1.2, p.15 
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 Row-echelon form: (1, 2, 3) 

(1) All row consisting entirely of zeros occur at  

      the bottom of the matrix. 

(2) For each row that does not consist entirely of zeros,  

      the first nonzero entry is 1 (called a leading 1). 

(3) For two successive (nonzero) rows, the leading 1 in the higher  

      row is farther to the left than the leading 1 in the lower row. 

 Reduced row-echelon form: (1, 2, 3, 4) 

(4) Every column that has a leading 1 has zeros in every position  

      above and below its leading 1. 

Elementary Linear Algebra: Section 1.2, p.15 



30/64 

form)echelon 

-row (reduced

form)

echelon -(row

 Ex 4: (Row-echelon form or reduced row-echelon form) 
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Elementary Linear Algebra: Section 1.2, p.16 
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 Gaussian elimination: 

The procedure for reducing a matrix to a row-echelon form. 

 Gauss-Jordan elimination: 

The procedure for reducing a matrix to a reduced row-echelon 

form. 

 Notes: 

 (1) Every matrix has a unique reduced row echelon form. 

 (2) A row-echelon form of a given matrix is not unique. 

       (Different sequences of row operations can produce  

        different row-echelon forms.) 

Elementary Linear Algebra: Section 1.2, pp.17-19 
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Elementary Linear Algebra: Section 1.2, Addition 
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Zeros elements below leading 1 

Zeros elsewhere 
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Elementary Linear Algebra: Section 1.2, Addition 
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 Ex 7:  Solve a system by Gauss-Jordan elimination method  

              (only one solution) 
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Elementary Linear Algebra: Section 1.2, p.19 
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 Ex 8：Solve a system by Gauss-Jordan elimination method  

                (infinitely many solutions) 
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Elementary Linear Algebra: Section 1.2, p.20 
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So this system has infinitely many solutions. 

Elementary Linear Algebra: Section 1.2, p.20 
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 Homogeneous systems of linear equations: 

A system of linear equations is said to be homogeneous 

if all the constant terms are zero. 
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Elementary Linear Algebra: Section 1.2, p.21 
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 Trivial solution: 

 Nontrivial solution: 

    other solutions 

0321  nxxxx 

 Notes: 

 (1) Every homogeneous system of linear equations is consistent. 

(2) If the homogenous system has fewer equations than variables, 

      then it must have an infinite number of solutions. 

 (3) For a homogeneous system, exactly one of the following is true. 

 (a) The system has only the trivial solution. 

 (b) The system has infinitely many nontrivial solutions in  

       addition to the trivial solution. 

Elementary Linear Algebra: Section 1.2, p.21 
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 Ex 9: Solve the following homogeneous system 
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Elementary Linear Algebra: Section 1.2,  p.21 
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Key Learning in Section 1.2 

 Determine the size of a matrix . 

 Write an augmented or coefficient matrix from a system of 

linear equations. 

 Use matrices and Gaussian elimination with back-substitution to 

solve a system of linear equations. 

 Use matrices and Gauss-Jordan elimination to solve a system of 

linear equations. 

 Solve a homogeneous system of linear equations. 
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Keywords in Section 1.2 

 matrix:  矩陣 

 row:  列 

 column:  行 

 entry:  元素 

 size:  大小 

 square matrix:  方陣 

 order:  階 

 main diagonal: 主對角線 

 augmented matrix:  增廣矩陣 

 coefficient matrix: 係數矩陣 
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 elementary row operation:  基本列運算 

 row equivalent:  列等價 

 row-echelon form:  列梯形形式 

 reduced row-echelon form:  列簡梯形形式 

 leading 1:  領先1 

 Gaussian elimination:  高斯消去法 

 Gauss-Jordan elimination:  高斯-喬登消去法 

 free variable:  自由變數 

 leading variable: 領先變數 

 homogeneous system:  齊次系統 

 trivial solution:  顯然解 

 nontrivial solution:  非顯然解 

Keywords in Section 1.2 
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1.3 Applications of Systems of Linear Equations 

) ,(, ), ,( ), ,( 1111 nn yxyxyx 
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 a polynomial function of degree n-1: 

 n linear equations in n variables a0, a1, a2, …, and an-1: 

 Polynomial Curve Fitting: 

The procedure to fit a polynomial function 

to a set of data points in the plane is called 

polynomial curve fitting. 

Elementary Linear Algebra: Section 1.3, p.25 



44/64 

 Ex 1: (Polynomial Curve Fitting) 

1293)3()3()3(
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 Sol:  Substitute x = 1, 2, and 3 into p(x)  

Determine the polynomial p(x)= a0+a1x+a2x
2 whose graph passes 

through the points (1, 4), (2, 0), and (3, 12). 

  The solution of this system is 

  So the polynomial function is 

Elementary Linear Algebra: Section 1.3, p.25 
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 Ex 2: (Polynomial Curve Fitting) 

1016842
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Find a polynomial that fits the points (-2, 3), (-1, 5), (0, 1), 

(1, 4), and (2, 10). 

 Sol:  Choose a fourth-degree polynomial function 

   Substitute the given points into p(x) 

Elementary Linear Algebra: Section 1.3, p.26 
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24
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4
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 The solution is 

 So the polynomial function is 

Elementary Linear Algebra: Section 1.3, p.26 
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 Ex 3: (Translating Large x- Values Before Curve Fitting) 

Find a polynomial that fits the points 

(2011, 3),   (2012, 5),   (2013, 1),   (2014, 4),  (2015, 10). 

 Sol:  Use the translation z = x - 2013 to obtain 

   (-2, 3),     (-1, 5),     (0, 1),     (1, 4),    (2, 10). (the same as Ex.2) 

Elementary Linear Algebra: Section 1.3, p.26 

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) 

(z1, y1) (z2, y2) (z3, y3) (z4, y4) (z5, y5) 

  So the polynomial function is 
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  Let z = x - 2013 
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 Ex 4: (An Application of Curve Fitting) 

Planet Mercury Venus Earth Mars 

Mean Distance 0.387 0.723 1.000 1.524 

Period 0.241 0.615 1.000 1.881 

1                            

615.0)723.0()723.0(

241.0)287.0()387.0(

210

2
2

10

2
2

10







aaa

aaa
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Elementary Linear Algebra: Section 1.3, p.27 

 Sol:  Choose a quadratic polynomial function 
2

210)( xaxaaxp 

   Substitute these points into p(x) 

Find a polynomial that relates the periods of the three planets that 

are closest to the Sun to their mean distances from the Sun, as 

shown in the table. Then use the polynomial to calculate the 

period of Mars and compare it to the value shown in the table. 
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24515.06119.00634.0)( xxxp 

years 918.1)524.1( p

4515.0 ,6119.0 ,0634.0 210  aaa

 The approximate solution of the system is 

 An approximate of the polynomial function is  

 Let x =1.524 (the mean distance of Mars) to produce  p(x) (the period of Mars) 

Elementary Linear Algebra: Section 1.3, p.27 

   
 Note: 

     The actual period of Mars is 1.881 years. 
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 Notes: 

(1) A polynomial that fits some of the points in a data set is not 

     necessarily an accurate model for other points in the data set. 

(2) Generally, the farther the other points are from those used  

      to fit the polynomial, the worse the fit. 

Elementary Linear Algebra: Section 1.3, p.28 
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 Note: 

Types of functions other than polynomial functions may 

provide better fits. 

Planet Mercury Venus Earth Mars 

Mean Distance (x) 0.387 0.723 1.000 1.524 

ln x －0.949 －0.324 0.000 0.421 

Period (y) 0.241 0.615 1.000 1.881 

ln y －1.423 －0.486 0.000 0.632 

Taking the natural logarithms of the given distances and periods 

produces the following results.  

Elementary Linear Algebra: Section 1.3, p.28 

Fitting a polynomial to the logarithms of the distances and periods 

produces the linear relationship.  

xy ln 
2

3
ln 

322/3 or  , xyxy                    (i.e.                              ) 
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 Network Analysis: 

2521  xx

Elementary Linear Algebra: Section 1.3, p.29 

 Notes: 

(1) Networks composed of branches and junctions are used as  

      models in such fields as economics, traffic analysis, and  

      electrical engineering. 

(2) Each junction in a network gives rise to a linear equation. 

(3) The flow through a network composed of several junctions 

      can be analyzed by solving a system of linear equations. 

In a network model, the total flow into a junction is equal to the 

total flow out of the junction. 
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Ex 5: (Analysis of a Network) 
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xx

Elementary Linear Algebra: Section 1.3, p.29 

Set up a system of linear equations to represent the network 

shown in figure. Then solve it. 

Junction 1 

Junction 2 

Junction 3 

Junction 4 

Junction 5 

 Sol: Each of the network’s junctions 

gives rise to a linear equation. 
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the augmented matrix                               reduced row-echelon form 

(t is any real number) 

Gauss-Jordan elimination 
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 Notes: 

(1) All the current flowing into a junction must flow out of it. 

(2) The sum of the products IR (I is current and R is resistance)  

      around a closed path is equal to the total voltage in the path. 

(3) An analysis of such a system uses two properties of  

      electrical networks known as Kirchhoff’s Laws. 

(4) An electrical network is another type of network where  

      analysis is commonly applied. 
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Ex 6: (Analysis of an Electrical Network) 

231 III 

842

723

323322

212211





IIIRIR

IIIRIR

842         

7          23
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32

21

321







II

II

III

Elementary Linear Algebra: Section 1.3, p.30 

Path 1 

Path 2 

Junction 1 or Junction 2 

two junctions (Kirchhoff’s first law) 

two paths (Kirchhoff’s second law) 

The system of three linear equations 

 Sol: 

Determine the currents I1, I2, and I3 for the electrical network 

shown in the following figure. 
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Elementary Linear Algebra: Section 1.3, p.30 

That is 

the augmented matrix                               reduced row-echelon form 

Gauss-Jordan elimination 
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Ex 7: (Analysis of an Electrical Network) 

Elementary Linear Algebra: Section 1.3, p.31 

Junction 1 

Junction 2 

Junction 3 

Junction 4 

Path 1 

Path 2 

Path 3 

564

563

241

231

III

III

III

III









4142                                     

71           22   4         

01                                      42

65

5432

21







II

IIII

II

four junctions (Kirchhoff’s first law) 

three paths (Kirchhoff’s second law) 

Determine the currents I1, I2, I3, I4, I5, and I6 for the electrical 

network shown in the following figure. 

 Sol: 
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4142                                     

71          22   4         

01                                      42

0                                    

0                                     

0                                      

0                                     

65

5432

21

654

653

421

321
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III

III

III

III

  The system of seven linear equations The augmented matrix 



































14420000

17022140

10000042

0111000

0110100

0001011

0000111

So I1=1 amp, I2=2 amp, I3=1 amp, I4=1 amp, I5=3 amp, and I6=2 amp. 

Using Gauss-Jordan elimination solve this system to obtain 

      I1=1, I2=2, I3=1, I4=1, I5=3, and I6=2 
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Keywords in Section 1.3 

 Polynomial Curve Fitting: 多項式曲線逼近 

 Network Analysis: 網路分析 

 Kirchhoff’s Laws: 克希荷夫定律 

 Junction: 接合點 

 Path: 迴路 
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Key Learning in Section 1.3 

 Set up and solve a system of equations to fit a polynomial 

function to a set of data points. 

 Set up and solve a system of equations to represent a network. 



62/64 

1.1 Linear Algebra Applied 

 Balancing Chemical Equations 
      

      In a chemical reaction, atoms reorganize in one or more 

substances. For example, when methane gas (CH4) 

combines with oxygen (O2) and burns, carbon dioxide 

(CO2) and water (H2O) form. Chemists represent this 

process by a chemical equation of the form 

             (x1)CH4 + (x2)O2 → (x3)CO2 + (x4)H2O. 

     A chemical reaction can neither create nor destroy atoms. 

So, all of the atoms represented on the left side of the 

arrow must be accounted for on the right side of the 

arrow. This is called balancing the chemical equation. In 

the above example, chemists can use a system of linear 

equations to find values of x1, x2, x3, and x4 that will 

balance the chemical equation. 

Elementary Linear Algebra: Section 1.1,  p.4 
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 Global Positioning System 

 

The Global Positioning System (GPS) is a network of 

24 satellites originally developed by the U.S. military as 

a navigational tool. Today, GPS technology is used in a 

wide variety of civilian applications, such as package 

delivery, farming, mining, surveying, construction, 

banking, weather forecasting, and disaster relief. A GPS 

receiver works by using satellite readings to calculate its 

location. In three dimensions, the receiver uses signals 

from at least four satellites to “trilaterate” its position. In 

a simplified mathematical model, a system of three linear 

equations in four unknowns (three dimensions and time) 

is used to determine the coordinates of the receiver as 

functions of time. 

1.2 Linear Algebra Applied 

Elementary Linear Algebra: Section 1.2,  p.16 
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 Traffic Flow 

 
 Researchers in Italy studying the acoustical noise levels 

from vehicular traffic at a busy three-way intersection 

used a system of linear equations to model the traffic 

flow at the intersection. To help formulate the system of 

equations, “operators” stationed themselves at various 

locations along the intersection and counted the 

numbers of vehicles that passed them. 

1.3 Linear Algebra Applied 

Elementary Linear Algebra: Section 1.3,  p.28 


