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1.1 Introduction to Systems of Linear Equations

= a linear equation in n variables:
ax e ba v ke g v b
a,, a,, a,, ..., &, b: real number
a,: leading coefficient

X,: leading variable
= Notes:

(1) Linear equations have no products or roots of variables and

no variables involved in trigonometric, exponential, or

logarithmic functions.

(2) Variables appear only to the first power.
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= EX 1: (Linear or Nonlinear)

Linear (&) 3x+2y=7 (b)%x+y—-7zz:ﬁ Linear

AL
Linear (€) X, —2X, +10x;+x, =0 (d)(sin E)X1_4X2 =€’ Linear

_Exponentia |
N onlinear (e)@z =2 (f)e)-2y=4 N onlinear

not the first power

N onlinear (9+ 2X, —3X3 =0 (h 4 N onlinear
\

trigonomet ric functions not the first power
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= a solution of a linear equation in n variables:

axX +a,X, +aX, +---+a x =b

X].:Sl’ X2 :Sz, X3283, S

] n n

such a;s,+a,s,+a,5,+---+as =Db
that

= Solution set:
the set of all solutions of a linear equation
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« Ex 2 ¢ (Parametric representation of a solution set)
X L2x —4
a solution: (2, 1), i.e. X, =2,X, =1
If you solve for x; In terms of x,, you obtain
X — 4 x
By letting x, =t you can represent the solution set as
X a2
And the solutions are {(4—2t,t)|[te R} or {(s,2—-1s)|seR}

Elementary Linear Algebra: Section 1.1, p.3 6/64



= a system of m linear equations in n variables:

allxl Y5 aCI.2X2 + a13x3
a21)(1 1 a'22)(2 o a23)(3

a'31)(1 + a'32)(2 + a33)(3

a %X © a x & a.

ml m2

« Consistent:;

A system of linear equations has at least one solution.

« Inconsistent:

X3

+
+
+

% aln Xn
+  a,.X,
+ A, X
+ a. X

mn

A system of linear equations has no solution.

Elementary Linear Algebra: Section 1.1, pp.4-5
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= Notes:

Every system of linear equations has either
(1) exactly one solution,
(2) infinitely many solutions, or

(3) no solution.
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= EX 4: (Solution of a system of linear equations)

A} x : Yy = 3 \
X -y - exactly one solution
two intersecti ng lines /

2] x | vy - 3 N
2X + 2y = 6 infinitely many solutions
two coincident lines

B) y + y — 3 \

x+ry \\ no solution

two parallel lines

1 2
TN
B \3\
_|__
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» EX 5: (Using back substitution to solve a system in row echelon form)

X — 2y 5 (1)
Yy ¢ (2)

Sol: By substituting y =-2 into (1), you obtain

X — 2(-2) =5
Yool

The system has exactly one solution: X =1,y =-2
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= EX 6: (Using back substitution to solve a system in row echelon form)

X — 2y + 32 = 9 (1)
y + 32 = 5 (2)
Z = 7 (3)

Sol: Substitute z=2 into (2)

and substitute y =—1 and z=2 into (1)

X — 2(-1) + 3(2) = 9
X =l

The system has exactly one solution:
x=lLy=-12=2
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= Equivalent:
Two systems of linear equations are called equivalent

If they have precisely the same solution set.

= Notes:
Each of the following operations on a system of linear
equations produces an equivalent system.

(1) Interchange two equations.

(2) Multiply an equation by a nonzero constant.

(3) Add a multiple of an equation to another equation.
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= EX 7: Solve a system of linear equations (consistent system)

X — 2y + 32 = 9
X 4 3y -4
2X — DYy + 52 17

Sol: (1)+(2)—(2)

X = 2y 372 = 9
y + 32
2X — By + 57

(1) x(-2)+(3) > (3)
X — 2y + 32 = 9
Yy + 32

Elementary Linear Algebra: Section 1.1, p.7

1l
~ U1

Il
|
= O1

(1)
(2)
(3)

(4)

()
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(4)+(3) = ()

X — 2y + 32 = 9
Yy + 32 = 5
27 =4 (6)
(6) x3 — (6)
¥ 2y . 372 = 1
y & 32 = 5
o= 7

So the solutionis x =1, y = —1, z = 2 (only one solution)

Elementary Linear Algebra: Section 1.1, p.7 14/64



= EX 8: Solve a system of linear equations (inconsistent system)

o0 L x o ] (1)
2% ~ X = 22X = 27 (2)
oo s (3)
Sol: (1)x(-2)+(2)— (2
(D) x(=1)+(3) = (3)
g e
he oy o ) (4)
BX, — 4%, = -2 (5)

Elementary Linear Algebra: Section 1.1, p.8 15/64



(4)x(=1)+() - (5)

X« 9 4 X =
oX, — 4%, = 0
0= -7 (a false statement)

So the system has no solution (an inconsistent system).
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= EX 9: Solve a system of linear equations (infinitely many solutions)

X, x = 0 (1)
X, —ax. - (2)
oy — (3)
Sol: (1) < (2)
X e (1)
X, - X =D (2)
=X + 3K =1 (3)
(1) +(3) = (3)
X, gk ]
Koo o )
3% - 3 = 0 (4)
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let X =
X, =1, teR
X; =1,

So this system has infinitely many solutions.

Elementary Linear Algebra: Section 1.1, p.9 18/64



Key Learning in Section 1.1

= Recognize a linear equation in n variables.
« FInd a parametric representation of a solution set.

= Determine whether a system of linear equations Is consistent or
Inconsistent.

« Use back-substitution and Gaussian elimination to solve a
system of linear equations.
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Keywords In Section 1.1

. linear equation: w4 = fz ;¢

. system of linear equations: #{+ = f25% % 54
« leading coefficient: 4 £ % ¥

. leading variable: 4f £ % #ic

« solution: f#

- solution set: 2 & &

parametric representation: ## i % 1

consistent: — % (7 f%)

2

inconsistent: - {t(& %~ 4 F)

equivalent: % i%

20/64



1.2 Gaussian Elimination and Gauss-Jordan Elimination

« MxN matrix:
all a12 a13 aln
a21 a22 a'23 a'2n
dy dg dgg ds, M rows
_aml am2 am3 WA amn |
n columns
« Notes:

(1) Every entry a; In a matrix Is a number.
(2) A matrix with m rows and n columns is said to be of size mxn .

(3) If m=n, then the matrix is called square of order n.

(4) For a square matrix, the entries a,,, a,, ..., a,, are called

the main diagonal entries.

Elementary Linear Algebra: Section 1.2, p.13 21/64



« BEX 1 Matrix

2]
(00
00
1 5
e
2
7

« Note:

One very common use of matrices Is to represent

a system of linear equations.

Elementary Linear Algebra: Section 1.2, p.13

}

30
2

7T

A2

4_

Size
1x1

2% 2

1x4

3x2
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= a System of m equations in n variables:

a X, t+  apX, + agX + ... + QX = b1
Xk Ak R EX g XD
aX o toak b oAk b a = b
a Xk dm X s e e e e
Matrix form: Ax=Db
d;; dp a13 e Qg B X ]
1
dyy Q,, dy a,, X
G i 2 L
A= a31 asz. a33 a3n X = : b
Xn
a'ml amz am3 amn

Elementary Linear Algebra: Section 1.2, p.13
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= Augmented matrix:

a'll a'12 a13
a'21 a22 a23
a3l a'32. a33
_a'ml amZ a‘m3

« Coefficient matrix:

all a12 a13
a‘21 a'22 a23
a31 a32. a33
_aml am 2 am3

Elementary Linear Algebra: Section 1.2, p.13

jQb)

1n

Q

2n

Q)

3n

mn

QD

1n

QD

2n

Q

3n

mn

=[A]b]
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= Elementary row operation:

(1) Interchange two rows. bR © R,
(2) Multiply a row by a nonzero constant. ™ :(k)R. >R, k#0

(3) Add a multiple of a row to another row. (k) (k)R +R, - R,

- Row equivalent:

Two matrices are said to be row equivalent if one can be obtained
from the other by a finite sequence of elementary row operation.

Elementary Linear Algebra: Section 1.2, p.14 25/64



= EX 2: (Elementary row operation)

Elementary Linear Algebra: Section 1.2, p.14

L 2y
a1
.
. 31
T @ 0
5 7 1 0
1 7 4 3
5 - 2 |
0 3 17 8
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= EX 3: Using elementary row operations to solve a system

X =~ 2y 487 = 9§ 1 9 3 g

% 4 3y =4 -1 30 =4

ok 50 50 o i 2 6B 1T

¥ - 2y . & g 1 .2 3 g

¢ 5 5 5 43 8 1 AR R OB

2X — by . K7 = 1¢f 2 -5 5 17

x 2y 3 - 9 1 7 3 0
¢ . = 5 s s L LR R

_ v 5 4 0 11

Elementary Linear Algebra: Section 1.2, p.15 27/64



Linear System

Xy b SR

Voo 832 =
22 = 4
X Y
Vo 82 = 5
o

X i

T y .
7 = 2

Elementary Linear Algebra: Section 1.2, p.15

Associated

Augmented Matrix

3

Elementary
Row Operation

(MR, +R, > R,

1

=)
07 L OIR > Ry
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= Row-echelon form: (1, 2, 3)
= Reduced row-echelon form: (1, 2, 3, 4)

(1) All row consisting entirely of zeros occur at

the bottom of the matrix.

(2) For each row that does not consist entirely of zeros,
the first nonzero entry is 1 (called a leading 1).

(3) For two successive (nonzero) rows, the leading 1 in the higher

row Is farther to the left than the leading 1 in the lower row.

(4) Every column that has a leading 1 has zeros in every position

above and below its leading 1.

Elementary Linear Algebra: Section 1.2, p.15 29/64



= EX 4: (Row-echelon form or reduced row-echelon form)

e L - [0 110 5] (reduced row -
D (row -echelon 00 113

[0 0 1|-2| form) 0000 echelon form)
s - @ I

0 ml—_i (row - echelon (reduced row -
0 00 1 form echelon form)
0 00 0 1] )

) 4 P

SRR 00 0O U

oL 1 91 ) 2

Elementary Linear Algebra: Section 1.2, p.16 30/64



« Gaussian elimination:

The procedure for reducing a matrix to a row-echelon form.

= Gauss-Jordan elimination:
The procedure for reducing a matrix to a reduced row-echelon

form.

= Notes:
(1) Every matrix has a unigue reduced row echelon form.

(2) A row-echelon form of a given matrix is not unigue.

(Different sequences of row operations can produce

different row-echelon forms.)

Elementary Linear Algebra: Section 1.2, pp.17-19 31/64



« EX: (Procedure of Gaussian elimination and Gauss-Jordan elimination)
»—Produce leading 1

glg 2 0 817 r, @ 8 -6 4 12 28
218 -6 4 12 28 ~-10 0 -2 0 8 12
B o b d i _2 8 -1 4 -5 4

L‘The first nonzero column

Produce leading 1

leading 1 .
r(5) 1 1)4 -3 2 6 14 I’l(3_2) 1 4/2/3:2 6 14
_1__,0-20 8 12 oo g @ 1
ar - - ol o] 5[0 -17 —24
L i ' e .
Zeros elements below leading 1 The first nonzero Submatrix
column

Elementary Linear Algebra: Section 1.2, Addition 32/64



(4)
r.32

Elementary Linear Algebra: Section 1.2, Addition

1
0 0
0 0

14
0 0
00

leading 1
~3/ 2 6
0 -4

14 |
-6

G 0 -17 -24

(=5)
PX

e

0

\_ Zeros elements below leading 1

Zeros elsewhere

/b oo\

-3 2| 6

1 0

(row -echelon form)

1
0 0
0 0

3 20 >
1040 2
o012

(row -echelon form)

14 |

(-6)
I,-31

it
0
0

0

6 14
4 0
3| 6

'\ Submatrix
Produce leading 1

0 7
i ¢
P

(row -echelon form)

o O B~

O -~ O

OO O N

0
0
1

N N oo

_(reduced row - echelon form)
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= EX 7. Solve a system by Gauss-Jordan elimination method
(only one solution)

X gy arn Y
—X + 3y = -4
2X = Dy o S7 - 1y
Sol:
augmented matrix

L s a e
-1 38 4 = - 5 5 3 5 0 1385
- a1 0 2 4
1
e X .
g 135 ei10 1 4 |
5 01 001 7 .
(row -echelon form) (reduced row -echelon form)

Elementary Linear Algebra: Section 1.2, p.19 34/64



= EX 8 : Solve a system by Gauss-Jordan elimination method
(infinitely many solutions)

2%+ 4%, — 2% = 0

Sol: augmented matrix
Bt e
[2 4 —2 O} I ’r1(2 3),I‘2( 1)"’2(12)‘{1 oy 2} (reduced row -
S b 10 1 -3 —1] echelon form)
the correspond ing system of equations Is
X ot A e 2

Xooov—aXae o

leading variable :x, x,
free variable : X,

Elementary Linear Algebra: Section 1.2, p.20 35/64



X, = 1+ 3x

Let x —t
% =25,
X, =—-143t, teR
Xt

So this system has infinitely many solutions.

Elementary Linear Algebra: Section 1.2, p.20 36/64



= Homogeneous systems of linear equations:

A system of linear equations is said to be homogeneous
If all the constant terms are zero.

Ay X+ dypp X, + dggX

d. X+ ad X, + ad X, +

Elementary Linear Algebra: Section 1.2, p.21

w W w
+ + +

+ + +

jabj
[N

35

QD QD
5

X X X

>S5

>

>S5

o O
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= Trivial solution:

X,= o = Xow ey =)

« Nontrivial solution:
other solutions
« Notes:
(1) Every homogeneous system of linear equations is consistent.

(2) If the homogenous system has fewer equations than variables,
then it must have an infinite number of solutions.

(3) For a homogeneous system, exactly one of the following is true.
(a) The system has only the trivial solution.
(b) The system has infinitely many nontrivial solutions in
addition to the trivial solution.

Elementary Linear Algebra: Section 1.2, p.21 38/64



= EX 9: Solve the following homogeneous system
X = 4 O = {
2% 4+ x4+ Sx. = 0
Sol: augmented matrix
(

L e
2 130

leading variable :x, x,

) @
[ 1 0 2 O)|(reduced row -
’ l:O 1 -1 O} echelon form)

free variable : X,
Lebx = |
e adho ~h x —Bhe R

Whent=0,x, =X, =X, =0 (trivial solution)

Elementary Linear Algebra: Section 1.2, p.21 39/64



Key Learning in Section 1.2

= Determine the size of a matrix .

- Write an augmented or coefficient matrix from a system of
linear equations.

« Use matrices and Gaussian elimination with back-substitution to
solve a system of linear equations.

= Use matrices and Gauss-Jordan elimination to solve a system of
linear equations.

= Solve a homogeneous system of linear equations.
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Keywords In Section 1.2

= Matrix; &'

« IOW. 7|

« column: =

« entry. ~ %

« SIZE: = /)

« Square matrix: - L

« Order; f¥

« main diagonal: & ¥ & s

= augmented matrix: 3 R 'L
= coefficient matrix: % #Hcae

41/64



Keywords In Section 1.2

elementary row operation: £ A& 7|:& &

row equivalent: 7| % i}

row-echelon form: 71452525 3¢

reduced row-echelon form: 71 #2545 5%
leading 1: 4g 41

« Gaussian elimination: & #7:)’ 2 2

« Gauss-Jordan elimination: 3 27-% % i’ 2 2
- free variable: p d % #c

= leading variable: 4f -+ % #ic

« homogeneous system: % =t & %t

« trivial solution: &g 7% %

= nontrivial solution: =& X jiz
42/64



1.3 Applications of Systems of Linear Equations

= Polynomial Curve Fitting:

The procedure to fit a polynomial function
to a set of data points in the plane is called
polynomial curve fitting.

= N points in the xy-plane:
(%1, Y1), (4 Ya)s ==+ (Xns Vi)
= a polynomial function of degree n-1.

P(X) =8y +aX+a,X° +--+a, X"

= N linear equations in n variables a;, a,, a,, ..

agtaXxtax +-ota Xloy,

arantaxt +a X oy

Elementary Linear Algebra: Section 1.3, p.25

(X5 V)

.,and a_ ;:
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= EX 1: (Polynomial Curve Fitting)

Determine the polynomial p(x)= a,+a,x+a,x? whose graph passes
through the points (1, 4), (2, 0), and (3, 12).

y

Sol: Substitute x = 1, 2, and 3 into p(X) o]

104+

p(l) =q +a1(1)+a2(1)2 =dgt+ady+ay =4

p(2) =a, + & (2) +a,(2)° = a, + 2a, + 4a, =0

il
6
p(3) =8y +a(3) +8,(3)° =8y +38 +9a, =12 *

The solution of this system is
a,=24,a,=-28,anda, =8

So the polynomial function is
p(X) = 24 — 28X + 8x>

Elementary Linear Algebra: Section 1.3, p.25 44/64




= EX 2: (Polynomial Curve Fitting)

Find a polynomial that fits the points (-2, 3), (-1, 5), (0, 1),
(1, 4), and (2, 10).

Sol: Choose a fourth-degree polynomial function

P(X) = 8y + 3 X + 8,X° + 8K + a, X y

(2, 10)

Substitute the given points into p(x)
- H+ a— a3+ =29
ao o 1

a0+ a1+ a2+ a3+ a.4:4

ag + 2a, +4a, +8a5 +16a, =10

Elementary Linear Algebra: Section 1.3, p.26 45/64



The solution Is

ag=1a _ a i a - and a U
4 4 4 U

So the polynomial function is

5., 0L

17
AT e T e 4
p( ) 4 24

3
D G
4 24

Elementary Linear Algebra: Section 1.3, p.26
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- EX 3: (Translating Large x- VValues Before Curve Fitting)
Find a polynomial that fits the points
(2011, 3), (2012,5), (2013,1), (2014, 4), (2015, 10).
(X1, Y1) (X2, ¥2) (X3, ¥a) (X4 Ya) (Xs, ¥s)
Sol: Use the translation z = x - 2013 to obtain
(-2,3), (1,5), (0,1), (1,4), (2 10). (thesameasEx.2)
(Z1, Y1) (25, ¥>) (23, ¥3) (24 Ya) (Z, V)
So the polynomial function is

p(z):1—§z+10—1z2 o
4 24 4 24
Letz=x-2013
101

p(x):l-%(x—2013)+ (x—2013)2+%(x—2013)3—%(x—2013)4

24

Elementary Linear Algebra: Section 1.3, p.26 47/64



- EX 4: (An Application of Curve Fitting)

Find a polynomial that relates the periods of the three planets that
are closest to the Sun to their mean distances from the Sun, as
shown in the table. Then use the polynomial to calculate the
period of Mars and compare it to the value shown in the table.

Planet

Mercury  \enus Earth Mars

Mean Distance
Period

0.387] [0.723] 1.000 1.524
0.241 0.615 1.000 1.881

Sol: Choose a quadratic polynomial function
p(X) = ay + & X + a,x*
Substitute these points into p(x)
a, +(0.387)a, + (0.287)%a, = 0.241

ay +(0.723)a, + (0.723)%a, = 0.615

dg +

a1+ a2:1

Elementary Linear Algebra: Section 1.3, p.27 48/64



The approximate solution of the system is

a, ~—0.0634, a, ~0.6119, a, ~ 0.4515

An approximate of the polynomial function is
p(x) =—0.0634 + 0.6119x + 0.4515%°

Let x =1.524 (the mean distance of Mars) to produce p(x) (the period of Mars)

)

The actual period of Mars Is 1.881 years.

(0.723, 0.615)
Mercury (0.387, 0.241)

1 1 1 i X
0.5 1.0 1.5 2.0

Mean distance from the Sun
(in astronomical units)

Elementary Linear Algebra: Section 1.3, p.27 49/64

P(1.524) ~1.918 years ‘
201 (1.524, 1.881)
) Mars
= . y=px)
5 15 )
g NOte £ 10 Earth
= (1.000, 1.000)




= Notes:
(1) A polynomial that fits some of the points in a data set is not
necessarily an accurate model for other points in the data set.
(2) Generally, the farther the other points are from those used

to fit the polynomial, the worse the fit.

Elementary Linear Algebra: Section 1.3, p.28 50/64



= Note:

Types of functions other than polynomial functions may
provide better fits.

Taking the natural logarithms of the given distances and periods

produces the following results. iny
Planet Mercury  \enus Earth Mars u Iny=21n x
Mean Distance (x) 637 0725 i qcd T At
In x 0949 0324 0000 0421 f——+m
Period (y) 0.241 0.615 1.000 1.881 /M
Iny —1.423  —0.486 0.000 0.632

Fitting a polynomial to the logarithms of the distances and periods
produces the linear relationship.

In yzgln e e

Elementary Linear Algebra: Section 1.3, p.28 51/64



= Network Analysis:

In a network model, the total flow into a junction is equal to the
total flow out of the junction.

o 25
X+ X5 =25 ,

= Notes:

(1) Networks composed of branches and junctions are used as

models in such fields as economics, traffic analysis, and

electrical engineering.

(2) Each junction in a network gives rise to a linear equation.
(3) The flow through a network composed of several junctions

can be analyzed by solving a system of linear equations.
Elementary Linear Algebra: Section 1.3, p.29 52/64



Ex 5: (Analysis of a Network)

Set up a system of linear equations to represent the network
shown in figure. Then solve it.

Sol: Each of the network’s junctions

gives rise to a linear equation.

X + X, = 20
X3 — X4 20

Xo + Xq oy

Xq — X =-10
— Xy + X5 =10

Elementary Linear Algebra: Section 1.3, p.29

Junction 1
Junction 2
Junction 3
Junction 4
Junction 5

@ 2:0
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the augmented matrix reduced row-echelon form

108 a8 Jn i 000 1 10
gl 1070 0100 1 30
0 1 1 0 0 20 | Gauss-Jordaneliminaion |0 0 1 0 -1 -10
L0 o iy 00 1 -1 10

0 g 0v- k1 il a0 0 6.0 0 |

That

X — X5 =—10, X, + X; =30, X3 — X; =-10, and x, — X; =10
Let x-.=t

X =t—10, X, =—t+30, X3 =t-10, X, =t +10,and x; =t (t is any real number)

So this system has infinitely many solutions.

Elementary Linear Algebra: Section 1.3, p.29 54/64



= Notes:
(1) All the current flowing into a junction must flow out of it.
(2) The sum of the products IR (I is current and R Is resistance)
around a closed path is equal to the total voltage in the path.
(3) An analysis of such a system uses two properties of
electrical networks known as Kirchhoft’s Laws.
(4) An electrical network is another type of network where

analysis is commonly applied.

Elementary Linear Algebra: Section 1.3, p.30 55/64



Ex 6: (Analysis of an Electrical Network)

Determine the currents 1, 1,, and I, for the electrical network

shown in the following figure. 1 v
1

— WA ————
- Ry =30 a2
Sol. : Path 1 |

two junctions (Kirchhoff’s first law) ( .
I, +13=1, Junction 1 or Junction 2 Path 2
two paths (Kirchhoff’s second law) M-
R, +R1,=3l, +2],-7 Pathl Ry=4Q 8V
Rol, + Ryl =21, +41,=8 Path2
The system of three linear equations
l,— I,+ 13=0
31, + 21, ~ 7
21, +41,=8
Elementary Linear Algebra: Section 1.3, p.30 56/64
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the augmented matrix

Gauss-Jordan elimination

reduced row-echelon form

MRt ol

3.2 0 7

0 2 18
That is

L-b -2 andl. -1

Elementary Linear Algebra: Section 1.3, p.30

v

0 O
1.0
gl

4
2
1
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Ex 7: (Analysis of an Electrical Network)

Determine the currents 1, I,, 15, 1,, I, and I, for the electrical
network shown in the following figure.

Sol:
four junctions (Kirchhoff’s first law)

10V
L+l =1,

Junction 1 =
b+li=l  junction2 e
ls+le=1s  junction3 "
litle=1s  junction 4

three paths (Kirchhoff’s second law)

21, + 41, _10 Path1
Al L) =17 Path2

21, +4l,=14 Path3
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The system of seven linear equations The augmented matrix

L L0 =0 1 110 0 8 0
L =0 1 141 9 00
. il 06 10 11 0

l,— I+ 1,=0 b0 g1 110

21, +41, g 2 4 ) 8 5 Do
AL f oLy 1 0 4 1 9 5 1
3.4 14 g 0 00 2 4 14

Using Gauss-Jordan elimination solve this system to obtain
1,=1, 1,=2, 1,=1, 1,=1, |.=3, and |,=2

So 1,=1 amp, 1,=2 amp, 1,=1 amp, |,=1 amp, 1:=3 amp, and 1,=2 amp.
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Keywords in Section 1.3

« Polynomial Curve Fitting: % 78 ;% & 40§ 3T
« Network Analysis: 3§ & 47

« Kirchhoff’s Laws: 5. # 7 X T &

= Junction: £ £ gL

« Path: & §,
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Key Learning in Section 1.3

- Set up and solve a system of equations to fit a polynomial
function to a set of data points.

= Set up and solve a system of equations to represent a network.
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1.1 Linear Algebra Applied

= Balancing Chemical Equations

In a chemical reaction, atoms reorganize in one or more
substances. For example, when methane gas (CH,)
combines with oxygen (O,) and burns, carbon dioxide
(CO,) and water (H,O) form. Chemists represent this
process by a chemical equation of the form
(X))CH, + (X2)O0p — (X3)CO; + (X4)H,0.

A chemical reaction can neither create nor destroy atoms.
So, all of the atoms represented on the left side of the
arrow must be accounted for on the right side of the
arrow. This is called balancing the chemical equation. In
the above example, chemists can use a system of linear
equations to find values of x,, X,, X5, and x, that will
balance the chemical equation.
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1.2 Linear Algebra Applied

= Global Positioning System

The Global Positioning System (GPS) is a network of

24 satellites originally developed by the U.S. military as
a navigational tool. Today, GPS technology is used in a
wide variety of civilian applications, such as package
delivery, farming, mining, surveying, construction,
banking, weather forecasting, and disaster relief. A GPS
receiver works by using satellite readings to calculate its
location. In three dimensions, the receiver uses signals
from at least four satellites to “trilaterate” its position. In
a simplified mathematical model, a system of three linear
equations in four unknowns (three dimensions and time)
Is used to determine the coordinates of the receiver as
functions of time.
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1.3 Linear Algebra Applied

« Traffic Flow

Researchers in Italy studying the acoustical noise levels
from vehicular traffic at a busy three-way intersection
used a system of linear equations to model the traffic
flow at the intersection. To help formulate the system of
equations, “operators” stationed themselves at various
locations along the intersection and counted the
numbers of vehicles that passed them.
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