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2.1 Operations with Matrices

= Matrix:
Ay, Qy Q3 vy,
Ay 8y Ay ot Ay,
A= [aij]mxn =| 83 Qg dgg v dg, eM .
_aml am2 am3 o a'mn mxn

(I, })-thentry: a
row: m
column: n

size: mxn

Elementary Linear Algebra: Section 2.1, p.40 3/123



= I-th row vector:

ri:[an s oo ain] row matrix

« |]-th column vector:

column matrix

- Square matrix. m=n

Elementary Linear Algebra: Section 2.1, p.40 4/123



= Diagonal matrix:

A=diag(d,,d,,---,d.) =

nxn

= lrace:

If A=[a;]

nxn

Then Tr(A)=a,+a,, +---+a,

Elementary Linear Algebra: Section 2.1, Addition 5/123
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Elementary Linear Algebra: Section 2.1, Addition
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= Equal matrix:
If A= [aij]mxn’ B = [bij]mxn
Then A=B 1f andonly f a; =Db;, V1<i<m, 1< j<n

- Ex 1: (Equal matrix)
1 2 a b
A B =
.

If A=B
e a-t b2 -3 d -4

Elementary Linear Algebra: Section 2.1, p.40 7/123



« Matrix addition:
If A = [aij]mxn’ B o [bij]mxn
Then A+B=[a,]..,+[0;]n. =[a; +0;].

« EX 2: (Matrix addition)

—12+13_—1+12+3_05
ot bt 2 0l 1.2 13
e
L e

Elementary Linear Algebra: Section 2.1, p.41 8/123



= Scalar multiplication:
If A=[a;],.,, c:scalar
Then cA=[caq; ],

« Matrix subtraction:
A-B=A+(-1B

=« Ex 3: (Scalar multiplication and matrix subtraction)

1 . na
A- 20 4 B 1 4 3
21 . 1

Find (a) 3A, (b)-B, (c)3A—B

Elementary Linear Algebra: Section 2.1, p.41 9/123



Sol:

AN M O
SRR
O O ™M
™M o O
_ | |
I
_\)\1)_)__
WY RS
e L
= = = L= L0
o= |
Mm M M
QU e B o |
505 _ _
& 5
o 99 |l
_ 3 oo
_412_ O < ™M
| |
N O N o
|
_
—
™ o =
_ =5 | |
1 I
< m
™ |
© o
N’ N’

i bl

—6
4

7 0

0 O
-4 3|=|-10 4

2

1

£

o b 1P

Al

JA-B=|-9 0
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- Matrix multiplication:
If A: [aij]mxn’ B o [bij]nxp
Then AB = [aij]mxn [bij]nxp = [Cij]
—

Size of AB

mx p

in~nj

n
where ¢, => a,b, =a;b, +a,b,, +---+a,b
k=1

a‘l al Saia a]_ 2 e i o
.1 .2 .n b11 blj bln
a1 2il 7 Man
a. a. - a : : ) R
R | : : : Ci G @ Rty
S p
j nn L Y
_anl s v ann_ % =

« Notes: (1) A+B = B+A, (2) AB = BA

Elementary Linear Algebra: Section 2.1, p.42 & p.44 11/123



- Ex 4: (Find AB)

-1 3
-3 2
A=l 4 -2 B= { }
-4 1
[ 5 O_
Sol: . .
-DE3)+3)(4) (D) +(3)D)
AB=|(4)(-3)+(-2)(-4) (4)()+(-2)QD)

OO0 02 +0)Q) |

1 1
—| -4 6
15 10

Elementary Linear Algebra: Section 2.1, p.43 12/123



= Matrix form of a system of linear equations:

A X T X, +-0-+ a8 X, :bl
8, X, +8,,X, +:+a,, X =h,

2n“'n

< : m linear equations

a X +a. X +--+a X =b

L ml

d; Q0 A X bl x
a, a,  a x| b Single matrix equation
AXx =Db
mxnnxl mx1
_aml amz amn__Xn_ _bm_
1 1 I
A X b

Elementary Linear Algebra: Section 2.1, p.45 13/123



= Partitioned matrices: _
submatrix

:F Aiiz}
A A
I
r_

(r)

T
| '3
A, 1 Ay 1 Ay
o | Gy | Gp3 | Ay :@ C €
gy 1 Ay 1 By

Elementary Linear Algebra: Section 2.1, Addition 14/123



« LInear combination of column vectors:

. -
A a:21 a..22 a?n :[Cl . Cn] v X.2
8 Ayy By | e
_ Ay X HapXy o0+ A, X, . _ail_ _a12_ _aln_
. . 8, . %22 o B,
| QX H A Xy T+ 8 X |y [ @ | Ao | | A |
C, C, C

Elementary Linear Algebra: Section 2.1, p.46 15/123



= EX 7: (Solve a system of linear equations)

SN Y AR U S VY S :
b5k b s (infinitely many solutions)
oo B = B

1 2 3 5 Xl_ 0] 1 2 3]
=A=|4 5 6| Xx= x2,b=3,01=4,02=5,03=6
/7 8 9_ _6_ wa _8_ _9_
[ X, +2X, +3X, 2 3] [0
= AX=| 4X, +5X, +6X, U4 1+X|5(+X%|6|=|3|=b
| 7% +8X, +9X, 8 9 6
1 1
—=14|+15 +( 1) (one solution : x=| 1| ie. x,=1X,=1x,=-1)
7 1

Elementary Linear Algebra: Section 2.1, p.47 16/123



Key Learning in Section 2.1

= Determine whether two matrices are equal.

= Add and subtract matrices and multiply a matrix by a scalar.
=« Multiply two matrices.

= Use matrices to solve a system of linear equations.

= Partition a matrix and write a linear combination of column
vectors.
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Keywords in Section 2.1

= FOW Vector: 7| = &
= column vector: 7 = &

. diagonal matrix: ¥f & 42

= frace: ¥ #c

- equality of matrices: 4p & 45

matrix addition: #& "L 4p 4¢

scalar multiplication: » £ 3 ;2 (¥ £ %)

matrix subtraction; %& "L 4p ;&

matrix multiplication: #&* 3k /2

« partitioned matrix: 4 L]

« linear combination: &+ % &

18/123



2.2 Properties of Matrix Operations

= Three basic matrix operators:
(1) matrix addition
(2) scalar multiplication
(3) matrix multiplication

« ZEromatrix: 0

mxn

« ldentity matrix of ordern: 1,

Elementary Linear Algebra: Section 2.2, 52-55 19/123



- Properties of matrix addition and scalar multiplication:

If AB,CeM_ ., c,d:scalar
Then (1) A+B=B +A
2) A+(B+C)=(A+B)+C
(3) (cd)A=c(dA)
(4) 1A=A
(5) c(A+B )= cA+cB
(6) (ctd) A=cA +dA

Elementary Linear Algebra: Section 2.2, p.52 20/123



= Properties of zero matrices:
If AeM__,
Then (1) A+0_ . =A
(@) A+(-A)=0,,,
Blea=0 = =001 A0

c:scalar

= Notes:
(1) 0, the additive identity for the set of all mxn matrices

(2) —A: the additive inverse of A

Elementary Linear Algebra: Section 2.2, p.53 21/123



= Properties of matrix multiplication:
(1) A(BC) = (AB)C
(2) A(B+C) = AB + AC

(3) (A+B)C = AC + BC
(4) c(AB) = (cA)B = A(cB)

= Properties of identity matrix:

If AeM_
Then (1) Al =A
2) | A=A

Elementary Linear Algebra: Section 2.2, p.54 & p.56 22/123



- Transpose of a matrix:

a, &, - a4,
dyy Ay ot Ay

If A= N
_laml Apy o amn__
Adyg| |8yl - aml_
Then A" =% |72 7 PPrdlem
1&n| [B2nf 7 |8l

Elementary Linear Algebra: Section 2.2, p.57 23/123



=« EX 8: (Find the transpose of the following matrix)

iitaned
@ A{ﬂ &) A=|4 5 6
e s
Sol: (a) o)

A 8} — A |2 8]
(b) 1.2 3 1 4
A=l4 5 6|=A"=|2 5
o .

(c) fa
At )4 :>AT={O .
o .4

Elementary Linear Algebra: Section 2.2, p.57

(©) A=
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- Properties of transposes:
D (A') =A
() (A1B) A (B
(3) (cA)' =c(A")
(4) (AB)T =BT AT

Elementary Linear Algebra: Section 2.2, p.57 25/123



= Symmetric matrix:
A square matrix A is symmetric if A=A"

« Skew-symmetric matrix:

A square matrix A is skew-symmetric if AT =-A

« EX: 5 .
T2 4
If A=|a 4 5| Issymmetric, find a, b, c?
‘b c 6
Sol: . . . .
1. 2.3 a b -
A= A
A= a 4 5 T:
5 e — a=2,b=3,c=5
b c b 3 5 6

Elementary Linear Algebra: Section 2.2, Addition 26/123



L2
If A=|la 0 3
b.c 0
Sol: .
01 0 -a
e 0 .

A=-A'" = a=-1b=-2,c=-3
« Note: AA' is symmetric
Pf (AAT)T:(AT)TAT:AAT

- AA' is symmetric

Elementary Linear Algebra: Section 2.2, Addition

IS a skew-symmetric, find a, b, ¢?

B
—C

0
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= Real number:
ab =ba (Commutative law for multiplication)

« Matrix:
AB = BA

mxnnxp

Three situations:
(1) If m= p,then ABis defined , BA is undefined.

2) If m=p,m=n,then ABe M BA e M, (Sizes are not the same)

mxm?

3) If m=p=n,then ABeM__, BAeM_ .

(Sizes are the same, but matrices are not equal)

Elementary Linear Algebra: Section 2.2, Addition 28/123



- EX 4:
Sow that AB and BA are not equal for the matrices.

P 3 2 -
A= and B =

Elementary Linear Algebra: Section 2.2, p.55 29/123



« Real number:

ac=Dbc, c#0

= a=b (Cancellation law)
« Matrix:

MR S e Ry

(1) If Cis invertible, then A=B

(2) If Cisnot invertible,then A B (Cancellation is not valid)

Elementary Linear Algebra: Section 2.2, p.55 30/123



« EX 5. (An example in which cancellation is not valid)

Show that AC=BC

o of 2 o

Sol: .
1 3

AL =
_O 1_
.

BC =
_2 3_
o0 AC
But AzB

Elementary Linear Algebra: Section 2.2, p.55

..
__1 2_
7
__1 2 32
BC

31/123



Key Learning in Section 2.2

= Use the properties of matrix addition, scalar multiplication,
and zero matrices.

= Use the properties of matrix multiplication and the identity
matrix.

= Find the transpose of a matrix.
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Keywords in Section 2.2

« ZEro matrix: % 4L

. identity matrix: ¥ =L

. transpose matrix: #& % &'
. Symmetric matrix: ¥ fLeL

. skew-symmetric matrix: ~ ¥ fLeL
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2.3 The Inverse of a Matrix

« Inverse matrix:

Consider Ae M .
If there exists a matrix Be M_ . suchthat AB=BA=1_,

Then (1) Ais invertible (or nonsingular)

(2) B is the inverse of A

= Note:
A matrix that does not have an inverse is called
noninvertible (or singular).

Elementary Linear Algebra: Section 2.3, p.62 34/123



« Thm 2.7: (The inverse of a matrix Is unigue)
If B and C are both inverses of the matrix A, then B = C.
Pf: AB =1

C(AB) =ClI

(CAB=C
IB=C
B=C

Conseguently, the inverse of a matrix Is unique.

= Notes:
(1) The inverse of A is denoted by A™

(0 BA A5 |

Elementary Linear Algebra: Section 2.3, pp.62-63 35/123



= Find the inverse of a matrix by Gauss-Jordan Elimination:
[ A | | ] Gauss -Jordan Eliminatio n >l| I A—l ;

- EX 2: (FInd the inverse of the matrix)
A:{ 1 4}
-1 -3

AX =1
b ey 1.0
_"'1 _3:||:X21 ij . [O J
e e e 10
Xy —3Xy  —Xp _3X2j . [O J

Sol:

Elementary Linear Algebra: Section 2.3, pp.63-64 36/123



_ X, + 4, — i 1)
x-S = 0
Xo + 4x. = 0 )
X g
(1):>|:_% _g (])' 02 Gy >|:é' (])_ _?_:| o h g o
(2):>|:_i _g (i:| r(l) r( 4) >|:(])_ (j)- —Z:I]-:l :>X12 o, 4’ X22 :1
Thus
-3 -4
X:A1—|: 11 12:|:|: :|(AX:|:AA-1)
X21 22 1 1

Elementary Linear Algebra: Section 2.3, pp.63-64 37/123



= Note:

1 4 : 1 0 |Gauss-dordanElimination 17 Q0 : —3 —4
. 1 e 01 1

A I I A

If A can’t be row reduced to I, then A Is singular.

Elementary Linear Algebra: Section 2.3, p.64 38/123



« EX 3: (Find the inverse of the following matrix)

11 0
A= 1 0 -1
-6 2 3
Sol:
1 1.0 1300
A =1 1 0 -1-010
6 2 2 001
. 1.t 6 1080 . 1 1.0 100
Lomel S e e g s
5 2 3 001 0 4 3 601

L e . 118 10090
bl gl e Bl e D
DD dad o Gt 1

Elementary Linear Algebra: Section 2.3, p.65 39/123



. 110 1 B8 0 . [100:-2 -3 1
% 510 10: -3 -3-1|] —=25010: -3 -3-1
0 0 LoD da 001: -1 -4 -1
=[I A
So the matrix A is invertible, and its inverse IS
R et d
W 2 a9
-2 -4 -1
« Check:
AAL = ATA=

Elementary Linear Algebra: Section 2.3, p.65 40/123



= Power of a square matrix:
(DA = |

(2)A = AA--- A

(B)Ar : AS o AI’+S

(AF)S:AI’S
d, 0

0 d,
(D= . .
0 g

k factors

(k >0)

r, s :integers

Elementary Linear Algebra: Section 2.3, Addition

d° 0
0 d
0 0

41/123



- Thm 2.8: (Properties of inverse matrices)

If A Is an invertible matrix, k Is a positive integer, and c Is a scalar

not equal to zero, then

(1) A™ is invertible and (A™)™ =

(2) A“ is invertible and (A)T=AT'AT.AT=(AY) =AF

k factors

(3) cA is invertible and (cA)™ =%A‘1, c=0

(4) A is invertible and (A") " =(A)'

Elementary Linear Algebra: Section 2.3, p.67 42/123



« Thm 2.9: (The inverse of a product)

If A and B are invertible matrices of size n, then AB is invertible and

(AB) '=B'A™
Pf:

(AB)(B'A ) =ABB YA =A()A ' =(ADA = AA " =|
(B*A)(AB)=B*'(A'AB=B*(1)B=B*(IB)=B'B=1
If AB isinvertible, then its inverse Is unique.
So (AB)'=B*A™

= Note:

(AAA-A) =A - ATAAT

Elementary Linear Algebra: Section 2.3, p.68 43/123



= Thm 2.10: (Cancellation properties)
If C Is an invertible matrix, then the following properties hold:
(1) If AC=BC, then A=B (Right cancellation property)
(2) If CA=CB, then A=B (Left cancellation property)

Pf:
AC = BC

(AC)C* =(BC)C™  (Cisinvertible,so C™ exists)
A(CC™) = B(CC™)
Al = Bl
A=B
= Note:

If C is not invertible, then cancellation is not valid.

Elementary Linear Algebra: Section 2.3, p.69 44/123



- Thm 2.11: (Systems of equations with unigue solutions)
If A Is an invertible matrix, then the system of linear equations
Ax = b has a unique solution given by
x=A"D
Pf: Ax=D
A'Ax=A"D ( A is nonsingular)
Ix—A b
XA b
If x, and X, were two solutions of equation Ax=h.

then Ax, =b=AXx, = X =X, (Left cancellation property)

This solution is unique.

Elementary Linear Algebra: Section 2.3, p.70 45/123



= Note:

For square systems (those having the same number of equations
as variables), Theorem 2.11 can be used to determine whether the
system has a unigue solution.

= Note:
Ax=Db (Aisan invertible matrix)

[Albl 2 JaA|ADBLlI|AD

Alb b I I bl 2 0 ab | | A
1 2 i 1 n

Elementary Linear Algebra: Section 2.3, p.70 46/123



Key Learning in Section 2.3

= Find the inverse of a matrix (if it exists).
= Use properties of inverse matrices.
= Use an inverse matrix to solve a system of linear equations.
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Keywords in Section 2.3

= INVerse matrix; x &t
« Invertible: ¥ ip

« Nonsingular: -+ 2

= Noninvertible: # ¥ 34
« Singular: & 2

« pOower: % =x

48/123



2.4 Elementary Matrices

= Row elementary matrix:
An nxn matrix is called an elementary matrix if it can be obtained

from the identity matrix I, by a single elementary operation.

= Three row elementary matrices:

1) Ry =r;(1) Interchange two rows.

(2)RYM = (1) (k = 0) Multiply a row by a nonzero constant.

(3) Ri(,-k) = ri,-(k) (1) Add a multiple of a row to another row.
= Note:

Only do a single elementary row operation.

Elementary Linear Algebra: Section 2.4, p.74 49/123



« EX 1: (Elementary matrices and nonelementary matrices)

(@)

Yes (1,7 (1,))

(d)

Yes (s (15))

106

0 3
00

OOk
OO
oOr o

0
1_

100
(b)[01o

No (not square)

ofi

Yes (r3(1,))

Elementary Linear Algebra: Section 2.4, p.74

}

100
()0 10
1000

No (Row multiplication
must be by a nonzero constant)

10 0
(f)J)0 2 O
on 1
No (Use two elementary

row operations)

50/123



« Thm 2.12: (Representing elementary row operations)

Let E be the elementary matrix obtained by performing an
elementary row operation on |_. If that same elementary row
operation is performed on an mxn matrix A, then the resulting

matrix is given by the product EA.

= E

r(A) =EA
= Notes:

(1) rij(A) % RijA
(2) (A =RYA
(®) K(A)=R{A

Elementary Linear Algebra: Section 2.4, p.75 51/123



= EX 2: (Elementary matrices and elementary row operation)

(@)

(b)

()

0
1

10
0 0
0 1

oON | RO
R, O O

)b )

0
1
3

1

10
) -
0

oz

2
%
2

1

0

1
6

Elementary Linear Algebra: Section 2.4, p.75

1
0
0

—
2
2

0
—2
A

1
6 |
0

1
=1

—4
3
3

s
1
S

(r12 (A) % R12 A)

1 1 1
() Y
7 (r22 (A) -~ R22 A)
1_
(s’ (A) =R;A)

52/123



« EX 3: (Using elementary matrices)
Find a sequence of elementary matrices that can be used to write

the matrix A In row-echelon form.

0 i 3 &5
A=|1 -3 0 2
2 -6 2 0
Sol: . | v . .
0 1 0 1 0 O
E, =n,(l;)=|1 0 O Ezzrlg_Z)(|3): o 1 ¥
091 ) 01
1 10 0
E )b 10
.
Elementary Linear Algebra: Section 2.4, p.76 53/123



1 00]1 0 2
A-r k) EA 10 100 1 35
-201)2-620

& 100(1-30
A=r?(A)=EA=/010)0 3
00 % 0 2

row-echelon form

. B=E,E,EA or B=r,? (r( 2 (r,(A))

Elementary Linear Algebra: Section 2.4, p.76 54/123



- Row-equivalent:

Matrix B is row-equivalent to A if there exists a finite number

of elementary matrices such that

B=EFE,, -EEA

Elementary Linear Algebra: Section 2.4, p.76 55/123



- Thm 2.13: (Elementary matrices are invertible)
If E Is an elementary matrix, then g *exists and

IS an elementary matrix.

« Notes:
(1) (Rij)_l R Rij

@ R®)*=R”

()1 _ p(H)
) (Ry”) =R

Elementary Linear Algebra: Section 2.4, p.77 56/123



N

Elementary Matrix

0 10|

1
0

00
01

=R, (Rlz)_l
o
01=R3® (R;") =
1_

1

(%)
=R,* (R )_1

Elementary Linear Algebra: Section 2.4, p.77

_1_

OoOr O
OO
OO

N O
OoOroO
OO

oOoPRr
OoOroOo
N OO

Inverse Matrix

v R12 (Elementary Matrix)

— N3 (Elementary Matrix)

2
= Ré )(Elementary Matrix)
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- Thm 2.14: (A property of invertible matrices)
A square matrix A is invertible if and only If it can be written as

the product of elementary matrices.

Pf: (1) Assume that A is the product of elementary matrices.
(a) Every elementary matrix is invertible.
(b) The product of invertible matrices is invertible.
Thus A Is invertible.

(2) If A is invertible, Ax = 0 has only the trivial solution. (Thm. 2.11)
= [A:0] > [1:0]
—E, ---E,E,E,A=
~A-FEFFE F

Thus A can be written as the product of elementary matrices.
Elementary Linear Algebra: Section 2.4, p.77 58/123



« EX 4:
Find a sequence of elementary matrices whose product Is

1 2
A —
L
Sol:

A a e 1 S 2 I,1(—1) 1 2 rl(2—3) 1 2
a8 13 8 g
o
g PR ~

0 1 0 1

1
Ayl 2
Therefore R;;”R2RSYRIPVA=1

Elementary Linear Algebra: Section 2.4, p.78 59/123



Thus A=(R ™) (RS 3))‘1(R )‘1(R( e

- RERORIRY
L o e
10 113 110 210 1
= Note:

If A is invertible

Then E, ---E,E,EA=1
A'=E, ---E,E,E,

E ---E.EE[A:I]=[1:A"]

Elementary Linear Algebra: Section 2.4, p.78 60/123



- Thm 2.15: (Equivalent conditions)
If A Is an nxn matrix, then the following statements are equivalent.
(1) Ais invertible.

(2) Ax = b has a unigue solution for every nx1 column matrix b.

(3) Ax = 0 has only the trivial solution.
(4) Aisrow-equivalentto I, .

(5) A can be written as the product of elementary matrices.

Elementary Linear Algebra: Section 2.4, p.78 61/123



= L U-factorization:
If the nxn matrix A can be written as the product of a lower

triangular matrix L and an upper triangular matrix U, then
A=LU is an LU-factorization of A

A=LU L is a lower triangular matrix

= Note: U is an upper triangular matrix

If a square matrix A can be row reduced to an upper triangular
matrix U using only the row operation of adding a multiple of
one row to another row below It, then it is easy to find an LU-

factorization of A.

E,---E,E,A=U
A-FE L . F 1]

A=LU
Elementary Linear Algebra: Section 2.4, p.79 62/123



- EX 5: (LU-factorization)

(a) A=B ﬂ (b) A=

sol: (a) _
A:H (ﬂ%[cl) —Zz}zu
R AU

A (R U U

1 O
= R(—l) -1 R(l) o
( 12 ) 12 1 1

Elementary Linear Algebra: Section 2.4, pp.79-80

N w O
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(b)

A —

1

0
2

-3 0]

L3
Al

2
r1(3 )

R A

b 4

= A=(RS?)(RIY) U = LU

e L (R( 2))—1(R(4))—1

(10

N O

ok
HOO

ook

0
1

]

OO

2 R(4)
R13 R23

Elementary Linear Algebra: Section 2.4, pp.79-80

N O

0
1
—4

OO

1

0
01 3
0o
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= Solving Ax=Db with an LU-factorization of A:

Ax=b If A=LU,then LUx=Db
Let y=Uxthen Ly=D

« TWO steps:
(1) Write y = Ux and solve Ly =Db for y

(2) Solve Ux =y for x

Elementary Linear Algebra: Section 2.4, p.80 65/123



« EX 7: (Solving a linear system using LU-factorization)

S

Sol:

Ao

(1) Let y=Ux,and solve Ly =D

. 4
s
s 11

‘1
0O 10}y,
e nd b Y,

3X,

X, + 3X,
2% = 10x + 2Zx

Y1

Son
-1

9
]
—20

0

Elementary Linear Algebra: Section 2.4, p.81

1 -3 0
0 A
_O 0 14_
Yi = o
-

LU

y, =—20-2y, +4y,
—_20-2(-5)+4(-1) =-14

66/123



(2) Solve the following system Ux =y

1 -3 0}|%]| | -5
D1 S4x 1=} 1
_O 0 14 X, ol

SO K ]
X, =~1-3%. =-1-(3)(-1) =2
X —-9+3x — - B5+3(2) 1

Thus, the solution Is

Elementary Linear Algebra: Section 2.4, p.81 67/123



Key Learning in Section 2.4

= Factor a matrix into a product of elementary matrices.

« FiInd and use an LU-factorization of a matrix to solve a
system of linear equations.
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Keywords in Section 2.4

. row elementary matrix: 71 & » s&r

row equivalent: 71| % i

lower triangular matrix: T = & 4B
. upper triangular matrix: ' = % &L

—

- LU-factorization: LU-%
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2.5 Markov Chains

«» Stochastic Matrices
{S., S,, ..., S;} Is a finite set of state of a given population.

p;; = 0 Is certain to not change from the jth state to the ith state.
p;; = 1 Is certain to change from the jth state to the ith state.

0<p; =1 Form
C9 9 e S
P [P - [Pu] S
p_ p:;l p-:|2_2- p:zl-n 5.2 .
e e
[Pnd [Pnd 0 | Pnd S A
=F =1 =1

P is called the matrix of transition probabilities.
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« EX 1: (Examples of Stochastic Matrices and Nonstochastic Matrices)

1 0 O] 01 02 03
0O 1 0 0.2 03 04
0 0 1 03 04 05
stochastic not stochastic
1 1
2 3 4 2 4 4
1453 142
4 4 3 3
124 i s
43 3 44 '
stochastic not stochastic

Elementary Linear Algebra: Section 1.3, p.25 71/123



= EX 2: (A Consumer Preference Model)

A B None Satellite 20% Satellite
_07 O O 15 O 15" A |""/) Company A 150, Company B

P=1020 080 0.15| B “70% \ \ / \ g00r
010 005 070 Nore
(15,000 A

X =120,000| B —
165,000 | None [ )

070 0.5 0.15][15,000] [23,250] A
PX =|0.20 0.80 0.15]/20,000 |=| 28,750 | B
010 0.05 0.70] 65,000 | |48,000 |None
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= EX 3: (A Consumer Preference Model)

PX =

(23,250°
28,750
48,000 |

30,283
39,042
130,675 |

133,333
47,619

19,048 |

1 0.70
0.20

0.10

A
B
None

A
B
None

A
B
None

0.15
0.80
0.05

After 1 year

After 3 year

Steady state matrix

0.15
0.15

0.70

133333
47,619

19,048 |

132,411

P°X ~| 43,812

23,777

33,287 |

PYX ~| 47,147

119,566
33333

~| 47,619 |= X
119,048 |

A
B
None

After 5 year

A
B  After 10 year
None
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SUAVIEREET Stochastic matrices are used by city planners to analyze trends in land use.
Such a matrix has been used by the city of Toronto, for example. The researchers collect data
and write them in the form of a stochastic matrix P. The rows and columns of P represent
land uses. We illustrate typical categories for a five-year period in the matrix that follows.
The element P;; is the probability that land that was in use j in 2000 was in use i in 2005.

» Use in 2000

1 2 3 g 3 Use in 2005

s SIS s N | 1. Residential

N R e L

A8 5.8 3% 201 3 Commeraial

330 bl 2 | o4 Parkaog
L2 080 05 A3 ] 5 Vabdns

Let us interpret some of the information contained in this matrix. For example,
P> = 0.30. This tells us that land that was office space in 2000 had a probability of 0.30
of becoming parking area by 2005. The fourth row of P gives the probabilities that var-
ious areas of the city have become parking areas by 2005. These relatively large figures
reveal the increasingly dominant role of parking in land use.
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Example 2: Population Movement

= In 2007, 82 million of people live in cities and 163 million of
people live In the surrounding suburbs. Represent this information

by the matrix v 82
"7 |163
= The probability of a person who stayed in the city in 2007, will be

staying in the city in the next year (2008) is 0.96. Thus the
probability of moving to the suburbs is 0.04.

= The probability of a person who stayed in the suburb in 2007, will
be moving to the city next year Is 0.01; the probability of
remaining in suburb is then 0.99.
(from) (to)

city suburb

,_[096 001] city
- 10.04 0.99| suburb
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Example 2: (cont’d)

82
- [163}
= City population in 2008 (1 year after)
= people who remained from 2007 + people who moved in
from the suburbs

=(0.96 x 82 ) + (0.01 x 163 ) = 80.35 million

= Suburban population in 2008 (1 year after)
= people who moved in from the city + people who stayed
from 2007
=(0.04 x 82) + (0.99 x 163 ) = 164.65 million

- Can arrive at these numbers using matrix multiplication

. _o i [096 001827 [80.35
5 Xl‘PXO‘[om 0.99}[163}_[164.65}

_____________________
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Using 2007 as the base year, let X, be the populatlon in 2008, one year later. We can write

______________________

______________________

Assume that the population flow represented by the matnx Pis unchanged over the years.
The population distribution X, after 2 years is given by

X, = PX,

After 3 years the population dlsmbuht_{(_)_n_ is glvenby
Xy = BX,

Alernveamswesst . o
X, = PX,_,

The predictions of this model (to four _(_ie_c_i_l_r_l_e_l_nlaces) are
L ; 82} city i Y i 80.35}, il [ 78.7825],
| 163 | suburb | 164.65 1 166.2175

[ 77.2934

X3 = jl’ X4

_» Will there be a
| 167.7066

steady-state result?

: 75.8787}
1169.1213 |

and so on.



St

Observe how the city population is decreasing annually, while that of the suburbs is
increasing. We return to this model in section 3.5. There we find that the sequence X,, X,

approaches [

49
196

|

. If conditions do not change, city population will gradually

approach 49 million, while the population of suburbia will approach 196 million.
Further, note that the sequence X, X,, X3, . .. X, can be directly computed from
X, as follows.

X, = PX,

XoalPKe o XKoo= PR 0K, = POX

The matrix P" is a stochastic matrix that takes X, into X, in n steps. This result can be
generalized. That is, P" can be used in this manner to predict the distribution n stages
later, from any given distribution.

An n-step transition matrix
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- Steady state matrix:
PX =X
The matrix X, eventually reaches a steady state. That is, as long

as the matrix P does not change, the matrix product P"X
approaches a limit X. The limit Is the steady state matrix.

= Regular stochastic matrix:
A stochastic matrix P is regular when some power of P has only
positive entries.

= Note:

When P is a regular stochastic matrix, the corresponding
regular Markov chain

PX,,P*X,,P°X,,... .
approaches a unique steady state matrix X.
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= EX 4: (Regular Stochastic Matrices)

(a) The stochastic matrix

070 0.15 0.15]
P={020 0.80 0.15
010 0.05 0.70]

IS regular because P has only positive entries.

(b) The stochastic matrix
5 _[050 1.00
- 10.50 0

has only positive entries.
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= EX 4: (Regular Stochastic Matrices)

(c) The stochastic matrix

o - O
o O -

Wik Wk Wk

|
L

IS not regular because every power of P has two zeros In
Its second column.
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= EX 5: (Finding a Steady State Matrix)

Find the steady state matrix X of the Markov chain whose
matrix of transition probabilities is the regular matrix

[0.70
P=|0.20
0.10
Sol: -Xl
Letting X =| x,
| X3
obtain

0.15 0.15
0.80 0.15
0.05 0.70 |

L 00 015 015

0.20 0.80 0.15

0.10 0.05 070

Elementary Linear Algebra: Section 2.5, p.88

. Then use the matrix equation PX = X to
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or

0.70x, +0.15x%, +0.15X%, = X,
0.20x, +0.80x, +0.15x, = X,
0.10x; +0.05x, +0.70x%, = X,

Use these equations and the fact that x; + X, + X3 = 1 to write
the system of linear equations below.

—0.30%;, +0.15x%, + 0.15%, =0
0.20x, —0.20x, +0.15%, =0
0.10x, +0.05x, —0.30%x, =0

X, + X, + X =1

Elementary Linear Algebra: Section 2.5, p.88 83/123



= EX 5: (Finding a Steady State Matrix)

Use any appropriate method to verify that the solution of this
system is

Tl __ 10 a4
X, =7, X, =5 and X, =

So the steady state matrix Is

s | [0.3333]
X =|1|~|0.4762
4| |0.1905

| 21 | 7o i

Check: PX = X

Elementary Linear Algebra: Section 2.5, p.88 84/123



= Finding the Steady State Matrix of a Markov chain:

1. Check to see that the matrix of transition probabilities P
IS a regular matrix.

2. Solve the system of linear equations obtained from the matrix
equation PX = X along with the equation X, +X, +...+ X, =1

3. Check the solution found in Step 2 in the matrix equation
PX =X

Elementary Linear Algebra: Section 2.5, p.87 85/123



= Absorbing state:

Consider a Markov chain with n different states {S,, S,, . . ., S;}.
The ith state S; Is an absorbing state when, in the matrix of
transition probabilities P, p; = 1. That is, the entry on the main
diagonal of P is 1 and all other entries in the ith column of P are 0.

= Absorbing Markov chain:
An absorbing Markov chain has the two properties listed below.

1. The Markov chain has at least one absorbing state.

2. 1t Is possible for a member of the population to move from any
nonabsorbing state to an absorbing state in a finite number of

transitions.
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= EX 6: (Absorbing and Nonabsorbing Markov Chains)

(a) For the matrix

From 40% @
-

A
\

S S S5

b0 1055 1o "| ~ 50— 1f

100%/ \50%
S
_0'6 0 0'5_ 3 Figure 2.2

the second state, represented by the second column, is
absorbing. Moreover, the corresponding Markov chain is
also absorbing because it is possible to move from S, to S,
In two transitions, and it is possible to move from S; to S,
In one transition.
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(b) For the matrix

Lo @ @

5 S 5 5
05 0 0 0 Sl“

P = S
3 ;
::-Of

0 0 04 05
0 0 06 05

Figure 2.3

the second state is absorbing. However, the corresponding
Markov chain is not absorbing because there is no way to
move from state S, or state S, to state S,.
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= EX 6: (Absorbing and Nonabsorbing Markov Chains)

(a) For the matrix @ @

From

1 . @
Al
3
Off’

Sy S 53 S, | foom
f5. 9 07 0 & o o
1
B2 B8 S @
= >
01 0 04 0| S
_02 O 01 O_ 84_, Figure 2.4
has two absorbing states: S, and S,. Moreover, the
corresponding Markov chain is also absorbing because it
Is possible to move from either of the nonabsorbing

states, S; or S;, to either of the absorbing states in one
step.
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Ex 7: (Finding Steady State Matrices of Absorbing Markov Chains)

010 0
@P=(0 105
06 0 05

Use the matrix equation PX = X, or

04 0 O0x | [x
0 105X |=|X
106 0 0.59] x, Xq

along with the equation x; + X, + X; = 1 to write the system of
linear equations
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—0.6x, -
0.5%x, =0
0.6X; —0.5%, =0
X+ X+ X =4

The solution of this system is x, = 0, x, = 1, and x; = 0, so the
steady state matrix is X = [0 1 0]". Note thatX coincides with
the second column of the matrix of transition probabilities P.
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Ex 7: (Finding Steady State Matrices of Absorbing Markov Chains)
05 0 0.2 0]

021030
0.1 0 04 0
00011

Use the matrix equation PX = X, or

05 0 02 b« X,
02 103 0| X, X
0.1 0 0.4 0 | x, X4
102 0 011]x, X,

(b) P =

N

along with the equation x; + X, + X3 + X, = 1 to write the
system of linear equations
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~0bx « 0% =0

0.2x, +0.3x; =
0.6x, —0.6X%, =
0.2x, +0.1x, =

X+X+ X +X =1

The solution of this systemisx; =0, X, =1 -1, X, =0, and x, =
t, where t is any real number such that 0 < x < 1. So, the steady
matrix isX =[0 1—t O t]". The Markov chain has an infinite
number of steady state matrices.
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Key Learning in Section 2.5

= Use a stochastic matrix to find the nth state matrix of a
Markov chain.

= FiInd the steady state matrix of a Markov chain.
« Find the steady state matrix of an absorbing Markov chain.
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Keywords in Section 2.5

. matrix of transition probabilities: ## # # & 4L
« Stochastic: " 1%

. stochastic matrix: sf#s4E'L

. State matrix: & it &L

- Markov chain: & ¥ % 44

= Steady state: 42 T_ K i

- regular stochastic matrix:; i L5 #%45"E

. regular Markov chain: i .5 7 % 4&

. Steady state matrix: £ % ik s5'L

. absorbing Markov chains: ¥ Jc § ¥ 4 &
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2.6 More Applications of Matrix Operations

= Cryptography

a method of using matrix multiplication to encode and decode

IMeSsSages.

o Ul WN RO
1l
'I'll'I'IDOUJ]>|

Elementary Linear Algebra: Section 2.6, p.94
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= EX 1: (Forming Uncoded Row Matrices)

[13 5 5][20 0 13][5 0 13|[15 14 4|1 25 0]
M EBE BT M E M O N DA ¥

= Notes:
(1) The use of a blank space fill out the last uncoded row matrix.
(2) To encode a message, choose an n x n invertible matrix A
and multiply the uncoded row matrices (on the right) by A

to obtain coded row matrices.
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Y
A=|-1 1 3
Ly
Uncoded Encoding Coded
Row Matrix Matrix A Row Matrix
2 2
s 5 51-1 1 3 |-03 26 21
L ol 4
L2 2
20 0 13]-1 1 3 |-[383 -53 -12]
bl

Elementary Linear Algebra: Section 2.6, p.95

= EX 2: (Encoding a Message)
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Uncoded
Row Matrix

5 0 i3

[15 14 4]

1 25 0

Elementary Linear Algebra: Section 2.6,

Encoding

Matrix A
1 -2 2
-1 1 3
1 -1 -4
1 -2 2
-1 1 3
1 -1 -4
oo g
-1 1 3
1 -1 -4

p.95

Coded
Row Matrix

g 93 49

5 —-20 56]

=[-24 23 77]
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the sequence of coded row matrices

3 26 21l33 53 wlis 23 @5 90 5Bell-24 73 17|

cryptogram

13 —26 21 33 —53 -12 18 —23 —42 5 —-20 —56 —24 23 17

an uncoded 1 x n matrix

L o o x|
Y = XA is the corresponding encoded matrix
to obtain

YA = (XA)A™ = X
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= EX 3: (Decoding a Message)

o
A=|-1 1 3
1

13 —26 21 33 —53 —12 18 —23 —42 5 -20 —56 —24 23 17

. 0 2 100 L 00 1 g o
1 3 g1 0 wes | 10 @ @
. 1 1.8 01 o010 1 1

Gauss-Jordan eliminiation

the sequence of coded row matrices
[13 -26 21][33 -53 -12|[18 -23 -42|[5 -20 56][-24 23 17]
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Coded  Encoding Matrix Al Decoded

Row Matrix 1 .10 8] Row Matrix
13 -26 21}]-1 -6 -5|=[3 5 5]
0 -1 -1]

-1 -10 -8
33 53l g B D8 O 13
0 1 3
-1 -10 -8
18 -23 -42]-1 -6 -5|=[5 0 13]
0 1 1
-1 10 -8
5 2 )1 6 545 14 /]
0 -1 -1]

-1 -10 -8
24 23 77]1-1 -6 -5|-1 25 O]
0 -1 -1

Elementary Linear Algebra: Section 2.6, p.96 L - 102/123



Coded Encoding
Row Matrix Matrix A

-1 10

N3 -26 21]1-1 -6
g

1 10

33 ~-53 -12]-1 -p6
o

-1 -10

18 -23 -42]1-1 -6
01

110

5 -20 56]-1 -6
0 1

Elementary Linear Algebra: Section 2.6, p.96

Decoded
Row Matrix

- 13 5 5]

—[20 0 13]

-5 0 13|

=[15 14 4]

103/123



Coded Encoding Decoded

Row Matrix Matrix A Row Matrix
(-1 -10 -8]

-24 23 771]-1 -6 -5|-J1 25 0]
0o 1 1

the sequence of decoded row matrices
i3 5 5020 0 13115 0 13115 14 4111 95 ¢}

the message

3.5 5 20 013 5 0 1315 44 4 1 250
M EE T M E M O N DA Y
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= Input-output matrix:

User (Output)
5L .
d11 d12 dln |1

- Supplier (Input)

dnl dn2 dnn o
(1) d;; be the amount of output the jth industry needs from the

Ith industry to produce one unit of output per year.

(2) The values of d;; must satisfy 0<d; <1and the sum of the
entries in any column must be less than or equal to 1.

Elementary Linear Algebra: Section 2.6, p.97 105/123



= EX 4: (Forming an Input-Output Matrix)

Consider a simple economic system consisting of three
Industries: electricity, water, and coal. Production, or output,
of one unit of electricity requires 0.5 unit of itself, 0.25 unit
of water, and 0.25 unit of coal. Production of one unit of
water requires 0.1 unit of electricity, 0.6 unit of itself, and 0
units of coal. Production of one unit of coal requires 0.2 unit
of electricity, 0.15 unit of water, and 0.5 unit of itself. Find
the Input-output matrix for this system.

Sol:

The column entries show the amounts each industry requires
from the others, and from itself, to produce one unit of
output.

Elementary Linear Algebra: Section 2.6, p.97 106/123



= EX 4: (Forming an Input-Output Matrix)
User (Output)

(8 3

B W
0s 01 07 ¢

P=|025 0.6 0.15|W [ Supplier (Input)
Uz 8 ar

The row entries show the amounts each industry supplies to the
others, and to itself, for that industry to produce one unit of
output. For instance, the electricity industry supplies 0.5 unit to
itself, 0.1 unit to water, and 0.2 unit to coal.
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= Leontief input-output model:

User (Output)

Lok : I,
ot d,,

o d,, d.22 d,,
_dnl dn2 dnn_

= Closed system:

- Supplier (Input)

Let the total output of the ith industry be denoted by x:.. If the
economic system Is closed (that is, the economic system sells its
products only to industries within the system, as In the example

above), then the total output of the ith industry is

X =d x +d X, +..+d x  (Closed System)

Elementary Linear Algebra: Section 2.6, p.97
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= Open system:

If the industries within the system sell products to nonproducing
groups (such as governments or charitable organizations) outside
the system, then the system is open and the total output of the ith
Industry Is

X =dyx +d, X +..+d;x, +e (Open system)
where e; represents the external demand for the ith industry’s
product. The system of n linear equations below represents the
collection of total outputs for an open system.

XX+l Xk pd xR

X =d x+d X+ . +d X te

x —docrd o o dox e

nn-n

The matrix form of this system is X = DX + E, where X Is the

output matrix and E is the external demand matrix.
Elementary Linear Algebra: Section 2.6, p.98 109/123



Ex 5: (Solving for the output Matrix of an open system)

An economic system composed of three industries has the
Input-output matrix shown below.

User (Output)

2 B c
01 043 0 14

P=10.15 0 0.37|B [ Supplier (Input)
10.23 0.03 0.02C -

Sol:

Letting | be the identity matrix, write the equation X = DX + E
as IX — DX = E, which means that (I — D)X = E. Using the
matrix D above produces
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Ex 5: (Solving for the output Matrix of an open system)

09 —-043 0
| -D=|-0.15 1 —0.37
—0.23 —-0.03 0.98
Using Gauss-Jordan elimination, _
'1.25 055 0.21
(1-D)*~|0.30 1.14 0.43

0.30 0.16 1.08

So, the output matrix is
'1.25 0.55 0.21| 20,000| |[46,750]| A

X =(1-D)*E~|0.30 1.14 0.43| 30,000 |=|50,950 | B
0.30 0.16 1.08 | 25000| |37,800| C

Elementary Linear Algebra: Section 2.6, p.98 111/123




Ex 5: (Solving for the output Matrix of an open system)

To produce the given external demands, the outputs of the
three iIndustries must be approximately 46,750 units for

iIndustry A, 50,950 units for industry B, and 37,800 units for
Industry C.
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= Least Squares Regression analysis

A procedure used in statistics to develop linear models.

A method for approximating a line of best fit for a given set of
data points.

« EX 6: (A Visual Straight-Line Approximation)
Determine a line that appears to best fit the points

(1,1), (2, 2), (3, 4), (4,4),and (5,6). |

y=0.5+x

(] ('S L= N (=)}
| I 1 | I
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6 -'ﬁ\‘(s.@') S 64 Model I (5.6)® 6+ Model 2 (5.6)
5T \ T T :
44 3.4)0/ e(4.4) 44 3. 4e Lo 4) 44 3.4)e \5(4.4)
3+ \ 3 AN ) 34+ A
(NS, v '~ 054y y=1.2x
4 22,2 7705+ 24 6.2 IT0HY) 21 *(2,2)
1+//41. 1) 1 1+ .1
—tt—t 7 N —— >
| 2 3 4 5 ) 1 2 3 4 5 6 | 2 3 4 5 6

Model 1: f(x) = 0.5 + X Model 2: f(x) = 1.2x
i Vi FOO) [ -FOOIE [ % Y FO) | i - FOGI?

X

11 1a b tas? i 1n ) copy
2 2 gl By Lo g aal L 04)?
3 4 35| (#05)2 |3 4 36 | (+0.5)?
4 4 45| (052 |4 4 48 | (-08)?
5 6 55| (052 |5 6 60 (0.0)2

Sum (125> [sum Qoo > sum of squared error

Elementary Linear Algebra: Section 2.6, p.99 114/123




= Notes:

(1) The sums of squared errors confirm that the second model
fits the given points better than the first model.

(2) Of all possible linear models for a given set of points, the
model that has the best fit is defined to be the one that
minimizes the sum of squared error.

(3) This model is called the least squares regression line, and
the procedure for finding it is called the method of least

squares.
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= Definition of Least Squares Regression Line

a set of points
(% Ya)s (%o, ¥2)s - (X5 Vi)

the least squares regression line
f(x)=a,+aX

minimizes the sum of squared error

[ys = F )1 +1y, = 0T +---Ly, = (6T
the system of linear equations

y, = T00)+1yi— T04)]

V2= F0) 1y, = £ ()]

Yo = 1:(Xn)'l_[yn o f(Xn)]

Elementary Linear Algebra: Section 2.6, p.100 116/123



the error
& =Y — f(x)

the system of linear equations

Y1 = (g +a %)+
Y, =(8y +aX,) +€,

y, = (8, +aXx,)+e,
define Y, X, A, and E

Y1 1
-
| Yn | 1
the matrix equations
Y =XA+E

Elementary Linear Algebra: Section 2.6, p.100
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= Notes:
(1) The matrix has a column of 1’s (corresponding to a,) and a
column containing the x;’s.
(2) This matrix equation can be used to determine the

coefficients of the least squares regression line.

= Matrix From for Linear Regression

the regression model
Y=XA+E

the least squares regression line
A=(X"X)'X'Y

the sum of squared error
E'E
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= EX 7: (Finding the Least Squares Regression Line)
Find the least squares regression line for the points

(1,1), (2, 2), (3,4), (4,4), and (5, 6).

Sol: Choose a fourth-degree polynomial function

>
i
N e =V S

a9~ W N
<
|

SO B~ B~ DB

Elementary Linear Algebra: Section 2.6, p.101
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T 11 11
X'X =
{12445}

e o i T

1
g_[s 15} _1-
4 15 55| °T
9)

2 ol = n
| | |
I I

T 11 1.1
XY =
[12445}

OO B~ B DN B

the coefficient matrix

1155 150171 |- 02
A=(X"X)" XY == -~
o 15[—15 5 }{63} [1.2}

the least squares regression line
y =—0.2+1.2x
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Key Learning in Section 2.6

= Use matrix multiplication to encode and decode messages.

- Use matrix algebra to analyze an economic system (Leontief
Input-output model).

« Find the least squares regression line for a set of data.
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Keywords in Section 2.6

« Cryptogram:. %45 %5

= encode: ¥ #5

« decode: f#%5

= uncoded row matrices: & g c17)| 4B
= coded row matrices: = nfg ez sE L

« Input: ﬂi%l »

-« Output: ﬁ;r] 2

- input-output matrix: ﬂﬂ;:j » ﬁ;:] ape

= closed: 3 e7

« Open: B 2z

. external demand matrix: ¢k 3R £ RKErL
- sum of squared error; %% T =

- least squares regression line: # /| T 3 f}ﬂﬁp’f‘fé’i

- Mmethod of least squares: # /| T 3 ;&
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2.1 Linear Algebra Applied

= Fight Crew Scheduling

Many real-life applications of linear systems
involve enormous numbers of equations and
variables. For example, a flight crew scheduling
problem for American Airlines required the
manipulation of matrices with 837 rows and more
than 12,750,000 columns. To solve this
application of linear programming, researchers
partitioned the problem into smaller pieces and
solved it on a computer.
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2.2 Linear Algebra Applied

« Information Retrieval

Information retrieval systems such as Internet search
engines make use of matrix theory and linear algebra to
keep track of, for instance, keywords that occur in a
database. To illustrate with a simplified example,
suppose you wanted to perform a search on some of the
m available keywords in a database of n documents. You
could represent the occurrences of the m keywords in the
n documents with A, an m X n matrix in which an entry
Is 1 if the keyword occurs in the document and O if it
does not occur in the document. You could represent the
search with the m X1 column matrix x in which a 1 entry
represents a keyword you are searching and O represents
a keyword you are not searching. Then, the nX1 matrix
product A™x would represent the number of keywords in
your search that occur in each of the n documents. For a
discussion on the PageRank algorithm that is used in
Google’s search engine, see Section 2.5 (page 86).
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2.3 Linear Algebra Applied

= Beam Deflection

Recall Hooke’s law, which states that for
relatively small deformations of an elastic object,
the amount of deflection is directly proportional
to the force causing the deformation. In a simply
supported elastic beam subjected to multiple
forces, deflection d is related to force w by the
matrix equation

d=Fw
where is a flexibility matrix whose entries depend
on the material of the beam. The inverse of the
flexibility matrix, Fis called the stiffness matrix.
In Exercises 61 and 62, you are asked to find the

stiffness matrix F1and the force matrix w for a
given set of flexibility and deflection matrices.
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2.4 Linear Algebra Applied

= Computational Fluid Dynamics

Computational fluid dynamics (CFD) is the
computer-based analysis of such real-life
phenomena as fluid flow, heat transfer, and
chemical reactions. Solving the conservation of
energy, mass, and momentum equations involved
in a CFD analysis can involve large systems of
linear equations. So, for efficiency in computing,
CFED analyses often use matrix partitioning and
LU-factorization in their algorithms. Aerospace
companies such as Boeing and Airbus have used
CED analysis In aircraft design. For Instance,
engineers at Boeing used CFD analysis to simulate
airflow around a virtual model of their 787 aircraft
to help produce a faster and more efficient design
than those of earlier Boeing aircraft.
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2.5 Linear Algebra Applied

Google’s PageRank algorithm makes use of Markov
chains. For a search set that contains n web pages,
define an n x n matrix A such that a; = 1 when page
J references page i and a; = 0 otherwise. Adjust A to
account for web pages without external references,
scale each column of A so that A is stochastic, and
call this matrix B. Then define
Mo i
n
where p is the probability that a user follows a link

on a page, 1 — p is the probability that the user goes
to any page at random, and E is an n x n matrix
whose entries are all 1. The Markov chain whose
matrix of transition probabilities is M converges to a
unigque steady state matrix, which gives an estimate
of page ranks. Section 10.3 discusses a method that
can be used to estimate the steady state matrix.
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2.6 Linear Algebra Applied

= Data Encryption

Information security is of the utmost importance
when conducting business online. If a malicious
party should receive confidential information such
as passwords, personal identification numbers,
credit card numbers, Social Security numbers, bank
account details, or sensitive company information,
then the effects can be damaging. To protect the
confidentiality and integrity of such information,
Internet security can include the use of data
encryption, the process of encoding information so
that the only way to decode it, apart from an
“exhaustion attack,” IS to use a key. Data encryption
technology uses algorithms based on the material
presented here, but on a much more sophisticated
level, to prevent malicious parties from discovering
the key.
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