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2.1  Operations with Matrices 

 Matrix: 
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(i, j)-th entry: ija

row:  m 

column:  n 

size:  m×n 

Elementary Linear Algebra: Section 2.1, p.40 
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 i-th row vector: 
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 j-th column vector: 
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 Square matrix:    m = n 

Elementary Linear Algebra: Section 2.1, p.40 
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 Diagonal matrix: 
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Elementary Linear Algebra: Section 2.1, Addition 
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Elementary Linear Algebra: Section 2.1, Addition   
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nmijnmij bBaA   ][  ,][  If

 Equal matrix: 

njmibaBA ijij  1  ,1      ifonly  and if   Then 

 Ex 1: (Equal matrix) 
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Elementary Linear Algebra: Section 2.1, p.40 
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 Matrix addition: 

nmijnmij bBaA   ][  ,][ If

nmijijnmijnmij babaBA   ][][][Then  

 Ex 2: (Matrix addition) 
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Elementary Linear Algebra: Section 2.1, p.41 
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 Matrix subtraction: 

BABA )1(

 Scalar multiplication: 

scalar :   ,][ If caA nmij 

 Ex 3: (Scalar multiplication and matrix subtraction) 
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 Find (a) 3A,  (b) –B,  (c) 3A – B 

nmijcacA  ][Then 

Elementary Linear Algebra: Section 2.1, p.41 
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(a) 
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Elementary Linear Algebra: Section 2.1, p.41 
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 Matrix multiplication: 

pnijnmij bBaA   ][  ,][ If

pmijpnijnmij cbaAB   ][][][Then 
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 Notes:  (1) A+B = B+A,  (2)  BAAB 

Size of  AB 
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Elementary Linear Algebra: Section 2.1, p.42 & p.44 
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 Ex 4: (Find AB) 
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Elementary Linear Algebra: Section 2.1, p.43 
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 Matrix form of a system of linear equations: 
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Elementary Linear Algebra: Section 2.1, p.45 
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 Partitioned matrices: 
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Elementary Linear Algebra: Section 2.1, Addition 
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Elementary Linear Algebra: Section 2.1, p.46 

 Linear combination of column vectors: 
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 Ex 7: (Solve a system of linear equations) 
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Elementary Linear Algebra: Section 2.1, p.47 
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Key Learning in Section 2.1 

 Determine whether two matrices are equal. 

 Add and subtract matrices and multiply a matrix by a scalar. 

 Multiply two matrices. 

 Use matrices to solve a system of linear equations. 

 Partition a matrix and write a linear combination of column 

vectors. 
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 row vector: 列向量 

 column vector: 行向量 

 diagonal matrix: 對角矩陣 

 trace: 跡數 

 equality of matrices: 相等矩陣 

 matrix addition: 矩陣相加 

 scalar multiplication: 純量乘法(純量積) 

 matrix subtraction: 矩陣相減  

 matrix multiplication: 矩陣乘法 

 partitioned matrix: 分割矩陣 

 linear combination: 線性組合 

Keywords in Section 2.1 
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2.2  Properties of Matrix Operations 

  Three basic matrix operators:   

      (1) matrix addition 

      (2) scalar multiplication 

      (3) matrix multiplication 

  Zero matrix: 
nm0

  Identity matrix of order n: nI

Elementary Linear Algebra: Section 2.2, 52-55 
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Then (1)  A+B = B + A 

(2)  A + ( B + C ) = ( A + B ) + C 

(3)  ( cd ) A = c ( dA ) 

(4)  1A = A 

(5)  c( A+B ) =  cA + cB 

(6)  ( c+d ) A = cA + dA 

scalar:,      ,,,  If dcMCBA nm

 Properties of matrix addition and scalar multiplication: 

Elementary Linear Algebra: Section 2.2, p.52 
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calar cMA nm s:     ,  If 

AA nm  0 (1)Then  

nmA A  0)((2)

nmnm  or A c cA   000)3(

 Notes: 

(1) 0m×n:  the additive identity for the set of all m×n matrices 

(2) –A: the additive inverse of A 

 Properties of zero matrices: 

Elementary Linear Algebra: Section 2.2, p.53 
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(1) A(BC) = (AB)C 

(2) A(B+C) = AB + AC 

(3) (A+B)C = AC + BC 

(4) c(AB) = (cA)B = A(cB) 

  Properties of identity matrix: 

AAI 

MA

n

nm



 

 )1(Then  

  If

AAI  m   )2(

  Properties of matrix multiplication: 

Elementary Linear Algebra: Section 2.2, p.54 & p.56 
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 Transpose of a matrix: 

Elementary Linear Algebra: Section 2.2, p.57 
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 Ex 8: (Find the transpose of the following matrix) 

Elementary Linear Algebra: Section 2.2, p.57 
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AA TT )(  )1(

TTT BABA  )(  )2(

)()(  )3( TT AccA 

 )(  )4( TTT ABAB 

 Properties of transposes: 

Elementary Linear Algebra: Section 2.2, p.57 
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A square matrix A is symmetric if  A = AT 

 Ex: 
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A square matrix A is skew-symmetric if  AT = –A 

 Skew-symmetric matrix: 

Sol: 
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 Symmetric matrix: 

Elementary Linear Algebra: Section 2.2, Addition 
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Elementary Linear Algebra: Section 2.2, Addition 



28/123 

ab = ba (Commutative law for multiplication) 

undefined. is ,defined is  then ,  If BAABpm  (1)

mmmm MBAMABnpm     (3) ,then ,  If

nnmm MBAMABnmpm     (2) , then , ,  If (Sizes are not the same) 

(Sizes are the same, but matrices are not equal) 

 Real number: 

 Matrix: 

BAAB 
pnnm   

Three situations: 

Elementary Linear Algebra: Section 2.2, Addition 
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 Ex 4: 

      Sow that AB and BA are not equal for the matrices. 

and 

Elementary Linear Algebra: Section 2.2, p.55 
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(Cancellation is not valid) 

0  ,  cbcac

b a  (Cancellation law) 

 Matrix: 

0      CBCAC

(1) If C is invertible, then A = B 

 Real number: 

BA  then ,invertiblenot  is C If (2)

Elementary Linear Algebra: Section 2.2, p.55 
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 Ex 5:  (An example in which cancellation is not valid) 

       Show that  AC=BC 

Elementary Linear Algebra: Section 2.2, p.55 
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Key Learning in Section 2.2  

 Use the properties of matrix addition, scalar multiplication, 

and zero matrices. 

 Use the properties of matrix multiplication and the identity 

matrix. 

 Find the transpose of a matrix. 
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 zero matrix: 零矩陣 

 identity matrix: 單位矩陣 

 transpose matrix: 轉置矩陣 

 symmetric matrix: 對稱矩陣 

 skew-symmetric matrix: 反對稱矩陣 

Keywords in Section 2.2 
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2.3 The Inverse of a Matrix 

nnMA 

,such that  matrix  a exists  thereIf nnn IBAABMB  

 Note: 

A matrix that does not have an inverse is called 

noninvertible (or singular). 

Consider 

Then  (1) A is invertible (or nonsingular) 

          (2) B is the inverse of A 

 Inverse matrix: 

Elementary Linear Algebra: Section 2.3, p.62 



35/123 

If B and C are both inverses of the matrix A, then B = C. 

Pf: 

CB

CIB

CBCA

CIABC

IAB











)(

)(

Consequently, the inverse of a matrix is unique. 

 Notes: 

(1) The inverse of A is denoted by 1A

IAAAA   11  )2(

 Thm 2.7: (The inverse of a matrix is unique) 

Elementary Linear Algebra: Section 2.3, pp.62-63 
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   1nEliminatioJordan -Gauss
||   AIIA

 Ex 2: (Find the inverse of the matrix) 
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 Find the inverse of a matrix by Gauss-Jordan Elimination: 

Elementary Linear Algebra: Section 2.3, pp.63-64 
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Elementary Linear Algebra: Section 2.3, pp.63-64 
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If A can’t be row reduced to I, then A is singular. 

 Note: 

Elementary Linear Algebra: Section 2.3, p.64 
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 Ex 3: (Find the inverse of the following matrix) 

Elementary Linear Algebra: Section 2.3, p.65 
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So the matrix A is invertible, and its inverse is 
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Elementary Linear Algebra: Section 2.3, p.65 
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IA 0(1)

0)(      )2(
factors 
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 Power of a square matrix: 

Elementary Linear Algebra: Section 2.3, Addition 
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  If A is an invertible matrix, k is a positive integer, and c is a scalar 

  not equal to zero,  then 

AAA  111 )( and  invertible  is (1)   

kk

k

kk AAAAAAA   )()( and  invertible  is (2) 1

factors 

1111

   

0 ,
1

)(  and  invertible  is  c  (3)
11


 cA

c
cAA

TTT AAA )()(  and  invertible  is  (4) 11  

 Thm 2.8: (Properties of inverse matrices) 

Elementary Linear Algebra: Section 2.3, p.67 
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 Thm 2.9: (The inverse of a product) 

    If A and B are invertible matrices of size n, then AB is invertible and 

111)(   ABAB

111)(  So

unique. is inverse its then ,invertible is  If

  ABAB

AB

Pf:  

IBBIBBBIBBAABABAB

IAAAAIAIAABBAABAB









1111111

1111111

)()()())((

)()()())((

 Note: 

  1

1

1

2

1

3

11

321


 AAAAAAAA nn 

Elementary Linear Algebra: Section 2.3, p.68 
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 Thm 2.10: (Cancellation properties) 

   If C is an invertible matrix, then the following properties hold: 

       (1) If AC=BC, then A=B   (Right cancellation property) 

       (2) If CA=CB, then A=B   (Left cancellation property) 

Pf: 

BA

BIAI

CCBCCA

CBCCAC

BCAC















)()(

)()(

11

11 e x ists) C so ,in v e r t ib le is ( C
1-

 Note: 

If C is not invertible, then cancellation is not valid. 

Elementary Linear Algebra: Section 2.3, p.69 
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 Thm 2.11: (Systems of equations with unique solutions) 

      If A is an invertible matrix, then the system of linear equations 

       Ax = b has a unique solution given by 

 bAx 1

Pf:  

( A is nonsingular) 

bAx

bAIx

bAAxA

bAx

1

1

11

         

        

      















This solution is unique. 

.equation    of  solutions    twowere  and  If 21 bAxxx 

21then AxbAx  21  xx  (Left cancellation property) 

Elementary Linear Algebra: Section 2.3, p.70 
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bAx 

     bAIbAAAbA
A 111 |||

1
 



 Note: 

     

 

Elementary Linear Algebra: Section 2.3, p.70 

(A is an invertible matrix) 

 Note: 

For square systems (those having the same number of equations 

as variables), Theorem 2.11 can be used to determine whether the 

system has a unique solution. 

   n

A

n bAbAIbbbA 1

1

1

21 |||||||
1
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Key Learning in Section 2.3 

▪ Find the inverse of a matrix (if it exists). 

▪ Use properties of inverse matrices. 

▪ Use an inverse matrix to solve a system of linear equations. 
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 inverse matrix: 反矩陣 

 invertible: 可逆 

 nonsingular: 非奇異 

 noninvertible: 不可逆 

 singular: 奇異 

 power: 冪次 

Keywords in Section 2.3 
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2.4 Elementary Matrices 

 Row elementary matrix: 

      An nn matrix is called an elementary matrix if it can be obtained 

      from the identity matrix In  by a single elementary operation. 

 Three row elementary matrices: 

)( )1( IrR ijij 

)0(           )( )2( )()(  kIrR k

i

k

i

)( )3( )()( IrR k

ij

k

ij 

Interchange two rows. 

Multiply a row by a nonzero constant. 

Add a multiple of a row to another row. 

 Note: 

     Only do a single elementary row operation. 

Elementary Linear Algebra: Section 2.4, p.74 
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2 Ir square)(not  No
t)constan nonzero aby  bemust 
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))(( esY 323 Ir ))(( esY 2

(2)

12 Ir
)operations row        

elementary  two(Use No

 Ex 1: (Elementary matrices and nonelementary matrices) 

Elementary Linear Algebra: Section 2.4, p.74 
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 Notes: 

ARAr ijij )(   )1(

ARAr k

i

k

i

)()( )(   )2( 

ARAr k

ij

k

ij

)()( )(   )3( 

EAAr

EIr





)(

)(

 Thm 2.12:  (Representing elementary row operations) 

       Let E be the elementary matrix obtained by performing an 

       elementary row operation on Im. If that same elementary row 

       operation is performed on an mn matrix A, then the resulting 

       matrix is given by the product EA. 

Elementary Linear Algebra: Section 2.4, p.75 
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 Ex 2: (Elementary matrices and elementary row operation) 

Elementary Linear Algebra: Section 2.4, p.75 
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Sol: 
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 Ex 3: (Using elementary matrices) 

   Find a sequence of elementary matrices that can be used to write 

      the matrix A in row-echelon form. 

Elementary Linear Algebra: Section 2.4, p.76 
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1
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3 ArrrB 

B

row-echelon form 

Elementary Linear Algebra: Section 2.4, p.76 
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Matrix B is row-equivalent to A if there exists a finite number 

of elementary matrices such that 

AEEEEB kk 121

 Row-equivalent: 

Elementary Linear Algebra: Section 2.4, p.76 
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 Thm 2.13: (Elementary matrices are invertible) 

      If E is an elementary matrix, then       exists and  

      is an elementary matrix. 

 Notes: 

ijij RR 1)(  )1(

)
1

(
1)( )(  )2( k

i

k

i RR 

)(1)( )(  )3( k

ij

k

ij RR  

1E

Elementary Linear Algebra: Section 2.4, p.77 
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3 ER

 Ex: 

    Elementary Matrix              Inverse Matrix 

Elementary Linear Algebra: Section 2.4, p.77 

12R (Elementary Matrix) 

)2(

13R (Elementary Matrix) 

)2(

3R (Elementary Matrix) 
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Pf:  (1) Assume that A is the product of elementary matrices. 

           (a) Every elementary matrix is invertible. 

           (b) The product of invertible matrices is invertible. 

      Thus A is invertible.  

(2) If A is invertible,            has only the trivial solution. (Thm. 2.11)   0xA

   00  IA 

IAEEEEk  123 
11

3

1

2

1

1

 kEEEEA 
Thus A can be written as the product of elementary matrices. 

 Thm 2.14: (A property of invertible matrices) 

      A square matrix A is invertible if and only if it can be written as 

      the product of elementary matrices. 

Elementary Linear Algebra: Section 2.4, p.77 
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(
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1

IARRRR  )1(

1

)3(

12
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1
(

2

)2(

21    Therefore

 Ex 4: 

      Find a sequence of elementary matrices whose product is 

Elementary Linear Algebra: Section 2.4, p.78 
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1)2(

21

1
)

2

1
(

2

1)3(

12

1)1(

1 )()()()(   Thus  RRRRA

)2(

21

)2(

2

)3(

12

)1(

1 RRRR 



































10

21

20

01

13

01

10

01
 

 Note: 

If A is invertible 

][][ 1

123

 AIIAEEEEk 

IAEEEEk 123  Then 

123

1 EEEEA k

Elementary Linear Algebra: Section 2.4, p.78 
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      If A is an nn matrix, then the following statements are equivalent. 

       (1)  A is invertible. 

       (2) Ax = b has a unique solution for every n1 column matrix b. 

       (3)  Ax = 0 has only the trivial solution. 

       (4)  A is row-equivalent to  In .              

       (5)  A can be written as the product of elementary matrices. 

 Thm 2.15: (Equivalent conditions) 

Elementary Linear Algebra: Section 2.4, p.78 



62/123 

LUA  L is a lower triangular matrix 

U is an upper triangular matrix  

If the nn matrix A can be written as the product of a lower 

triangular matrix L and an upper triangular matrix U, then 

A=LU is an LU-factorization of A 

 Note: 

If a square matrix A can be row reduced to an upper triangular  

matrix U using only the row operation of adding a multiple of  

one row to another row below it, then it is easy to find an LU-

factorization of A. 

LUA

UEEEA

UAEEE

k

k







 11

2

1

1

12





 LU-factorization: 

Elementary Linear Algebra: Section 2.4, p.79 
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12 RRL

 Ex 5: (LU-factorization) 

Elementary Linear Algebra: Section 2.4, pp.79-80 
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(b) 
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1)2(

13 RRRRL

Elementary Linear Algebra: Section 2.4, pp.79-80 
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bLUxLUA    then ,If

bLyUxy   then ,  Let

 Two steps: 

(1) Write  y = Ux  and solve Ly = b  for  y 

(2) Solve Ux = y  for x 

bAx 

  Solving Ax=b with an LU-factorization of A: 

Elementary Linear Algebra: Section 2.4, p.80 
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Sol: 

LUA 
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bLyUxy   solve and ,Let  )1(
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y

 Ex 7: (Solving a linear system using LU-factorization) 

Elementary Linear Algebra: Section 2.4, p.81 
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yUx  system following  theSolve )2(
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xx
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Thus, the solution is 





















1

2

1

x

So 

Elementary Linear Algebra: Section 2.4, p.81 
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Key Learning in Section 2.4 

 Factor a matrix into a product of elementary matrices. 

 Find and use an LU-factorization of a matrix to solve a 

system of linear equations. 
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 row elementary matrix:  列基本矩陣 

 row equivalent:  列等價 

 lower triangular matrix:  下三角矩陣 

 upper triangular matrix:  上三角矩陣 

 LU-factorization:  LU-分解 

Keywords in Section 2.4 



70/123 

2.5 Markov Chains 

Elementary Linear Algebra: Section 1.3, p.84 

 Stochastic Matrices 

  {S1, S2, …, Sn} is a finite set of state of a given population. 

  P is called the matrix of transition probabilities. 

10  ijp

  pij = 0 is certain to not change from the jth state to the ith state. 

  pij = 1 is certain to change from the jth state to the ith state. 
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S1      S2                Sn  
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4
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4
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not stochastic 

not stochastic 

stochastic 
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 Ex 1: (Examples of Stochastic Matrices and Nonstochastic Matrices) 
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70.005.010.0

15.080.020.0

15.015.070.0

P

















000,65

000,20

000,15

X














































000,48

750,28

250,23

000,65

000,20

000,15

70.005.010.0

15.080.020.0

15.015.070.0

PX

A          B      None 
   A 

   B 

None 

   A 

   B 

None 

   A 

   B 

None 

 Ex 2: (A Consumer Preference Model) 
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042,39

283,30
3 XP

















777,23

812,43

411,32
5 XP

   A 

   B      After 1 year 

None 

   A 

   B      After 3 year 

None 

   A 

   B      After 5 year 

None 

















566,19

147,47

287,33
10 XP

   A 

   B      After 10 year 

None 

















048,19

619,47

333,33

X

   A 

   B      Steady state matrix 

None 

XXP 













































048,19

619,47

333,33

048,19

619,47

333,33

70.005.010.0

15.080.020.0

15.015.070.0

 Ex 3: (A Consumer Preference Model) 
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Example 2: Population Movement 

 In 2007, 82 million of people live in cities and 163 million of 
people live in the surrounding suburbs. Represent this information 
by the matrix  

 

 The probability of a person who stayed in the city in 2007, will be 
staying in the city in the next year (2008) is 0.96. Thus the 
probability of moving to the suburbs is 0.04.  

 The probability of a person who stayed in the suburb in 2007, will 
be moving to the city next year is 0.01; the probability of 
remaining in suburb is then 0.99. 

 

 

 suburb

city

99.004.0

01.096.0

suburbcity        

(to))from(







P









631

82
0X
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Example 2: (cont’d) 

 City population in 2008 (1 year after)  
= people who remained from 2007 + people who moved in 
from the suburbs  
= ( 0.96  82 ) + (0.01  163 ) = 80.35 million 

 Suburban population in 2008 (1 year after)  
= people who moved in from the city + people who stayed 
from 2007                 
= ( 0.04  82 ) + (0.99  163 ) = 164.65 million 

 Can arrive at these numbers using matrix multiplication 























64.651

80.35

631

82

99.004.0

01.096.0
01 PXX









631

82
0X
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77 

Will there be a 
steady-state result? 
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An n-step transition matrix 

Xi+n = P
n
Xi 



79/123 Elementary Linear Algebra: Section 2.5, p.87 

 Steady state matrix: 

XXP 

 Regular stochastic matrix: 

A stochastic matrix P is regular when some power of P has only 

positive entries. 

,...,, 0

3

0

2

0 XPXPPX

 Note: 

The matrix Xn eventually reaches a steady state. That is, as long 

as the matrix P does not change, the matrix product PnX 

approaches a limit     . The limit is the steady state matrix. X

When P is a regular stochastic matrix, the corresponding 

regular Markov chain 

 

approaches a unique steady state matrix     . X
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 Ex 4: (Regular Stochastic Matrices) 

Elementary Linear Algebra: Section 2.5, p.87 

(a) The stochastic matrix 

















70.005.010.0

15.080.020.0

15.015.070.0

P

is regular because P  has only positive entries. 

(b) The stochastic matrix 











0          50.0

00.1     50.0
P

has only positive entries. 
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 Ex 4: (Regular Stochastic Matrices) 

Elementary Linear Algebra: Section 2.5, p.87 

(c) The stochastic matrix 



















00

01

10

3

1

3

1

3

1

P

is not regular because every power of P has two zeros in 

its second column. 
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 Ex 5: (Finding a Steady State Matrix) 

Elementary Linear Algebra: Section 2.5, p.88 

Find the steady state matrix X of the Markov chain whose 

matrix of transition probabilities is the regular matrix 

















70.005.010.0

15.080.020.0

15.015.070.0

P

Sol: 

Letting                 .  Then use the matrix equation               to 

 

 

obtain 
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x

x

x
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1
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2

1
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15.080.020.0

15.015.070.0

x

x

x

x

x

x
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or 

3321

2321

1321

70.005.010.0

15.080.020.0

15.015.070.0

xxxx

xxxx

xxxx







Use these equations and the fact that x1 + x2 + x3 = 1 to write 

the system of linear equations below. 

1                          

030.005.010.0   

015.020.020.0   

015.015.030.0

321

321

321

321









xxx

xxx

xxx

xxx
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 Ex 5: (Finding a Steady State Matrix) 

Elementary Linear Algebra: Section 2.5, p.88 

Use any appropriate method to verify that the solution of this 

system is 

21

4

321

10

23

1

1    and       ,  xxx

So the steady state matrix is 







































1905.0

4762.0

3333.0

21

4

21

10

3

1

X

Check:                XXP 
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 Finding the Steady State Matrix of a Markov chain: 

1. Check to see that the matrix of transition probabilities P  

    is a regular matrix. 

XXP 

2. Solve the system of linear equations obtained from the matrix  

    equation               along with the equation 

3. Check the solution found in Step 2 in the matrix equation 

XXP 

121  nxxx ...
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 Absorbing state: 

1. The Markov chain has at least one absorbing state.  

2. It is possible for a member of the population to move from any 

    nonabsorbing state to an absorbing state in a finite number of  

    transitions. 

An absorbing Markov chain has the two properties listed below. 

 Absorbing Markov chain: 

Consider a Markov chain with n different states {S1, S2, . . . , Sn}. 

The ith state Si is an absorbing state when, in the matrix of 

transition probabilities P, pii = 1. That is, the entry on the main 

diagonal of P is 1 and all other entries in the ith column of P are 0. 
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 Ex 6: (Absorbing and Nonabsorbing Markov Chains) 

Elementary Linear Algebra: Section 2.5, p.89 

(a) For the matrix 



















5.006.0

5.010

004.0

P

From 

 

S1   S2   S3 

S1 

S2        To 

S3 

the second state, represented by the second column, is 

absorbing. Moreover, the corresponding Markov chain is 

also absorbing because it is possible to move from S1 to S2 

in two transitions, and it is possible to move from S3 to S2 

in one transition. 



88/123 Elementary Linear Algebra: Section 2.5, p.89 

(b) For the matrix 





















5.0   6.0    0     0  

5.0   4.000

0      5.015.0

0        005.0

P

From 

 

S1   S2    S3     S4 

the second state is absorbing. However, the corresponding 

Markov chain is not absorbing because there is no way to 

move from state S3 or state S4 to state S2.  

S1 

S2         

S3 

S4 

To 
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 Ex 6: (Absorbing and Nonabsorbing Markov Chains) 

Elementary Linear Algebra: Section 2.5, p.89 

(a) For the matrix 





















0    1.0    0    2.0

0   4.001.0

0    3.012.0

0   2.005.0

P

From 

 

S1   S2    S3     S4 

has two absorbing states: S2 and S4. Moreover, the 

corresponding Markov chain is also absorbing because it 

is possible to move from either of the nonabsorbing 

states, S1 or S3, to either of the absorbing states in one 

step. 

S1 

S2         

S3 

S4 

To 
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Ex 7: (Finding Steady State Matrices of Absorbing Markov Chains) 

Elementary Linear Algebra: Section 2.5, p.90 



















5.0   0   6.0

5.0   1      0

0     0   4.0

 )a( P

Use the matrix equation               , or XXP 



















































3

2

1

3

2

1

5.0   0   6.0

5.0   1      0

0     0   4.0

x

x

x

x

x

x

along with the equation x1 + x2 + x3 = 1 to write the system of 

linear equations 
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1                  

05.0           6.0   

05.0                         

0                       6.0

321

31

3

1









xxx

xx

x

x

The solution of this system is x1 = 0, x2 = 1, and x3 = 0, so the 

steady state matrix is X = [0 1 0]T. Note that     coincides with 

the second column of the matrix of transition probabilities P. 

X
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Ex 7: (Finding Steady State Matrices of Absorbing Markov Chains) 

Elementary Linear Algebra: Section 2.5, p.90 





















1   1.0   0   2.0

0   4.0   0   1.0

0   3.0   1   2.0

0   2.0   0   5.0

 )b( P

Use the matrix equation               , or XXP 

























































4

3

2

1

4

3

2

1

1   1.0   0   2.0

0   4.0   0   1.0

0   3.0   1   2.0

0   2.0   0   5.0

x

x

x

x

x

x

x

x

along with the equation x1 + x2 + x3 + x4 = 1 to write the 

system of linear equations 
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1              

0         1.0        0.2   

0         6.0       6.0   

0         3.0        0.2   

0         0.2       6.0

4321

31

31

31

31











xxxx

xx

xx

xx

xx

The solution of this system is x1 = 0, x2 = 1 – t, x3 = 0, and x4 = 

t, where t is any real number such that 0 ≤ x ≤ 1. So, the steady 

matrix is     = [0  1 − t  0  t]T. The Markov chain has an infinite 

number of steady state matrices. 

X
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Key Learning in Section 2.5 

 Use a stochastic matrix to find the nth state matrix of a 

Markov chain. 

 Find the steady state matrix of a Markov chain. 

 Find the steady state matrix of an absorbing Markov chain. 
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 matrix of transition probabilities:  轉移機率矩陣 

 stochastic: 隨機 

 stochastic matrix:  隨機矩陣 

 state matrix: 狀態矩陣 

 Markov chain: 馬可夫鏈 

 steady state: 穩定狀態 

 regular stochastic matrix: 正規隨機矩陣 

 regular Markov chain: 正規馬可夫鏈 

 steady state matrix: 穩定狀態矩陣 

 absorbing Markov chains: 吸收馬可夫鏈 

 

Keywords in Section 2.5 
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 a method of using matrix multiplication to encode and decode 

messages. 

  0 = __  7 = G  14 = N  21 = U 

  1 = A  8 = H  15 = O  22 = V 

  2 = B  9 = I  16 = P  23 = W 

  3 = C  10 = J  17 = Q  24 = X 

  4 = D  11 = K  18 = R  25 = Y 

  5 = E  12 = L  19 = S  26 = Z 

  6 = F  13 = M  20 = T 

 Cryptography 

2.6 More Applications of Matrix Operations 

Elementary Linear Algebra: Section 2.6, p.94 
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      0251 41415 1305 13020 5513

M    E    E    T     _    M    E    _    M    O     N     D  A     Y     _ 

 Notes: 

(1) The use of a blank space fill out the last uncoded row matrix. 

(2) To encode a message, choose an n × n invertible matrix A  

      and multiply the uncoded row matrices (on the right) by A  

      to obtain coded row matrices. 

 Ex 1: (Forming Uncoded Row Matrices) 

Elementary Linear Algebra: Section 2.6, p.94 
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411

311

221

A

   212613

411

311

221

5513 




















   125333

411

311

221

13020 




















Uncoded 

Row Matrix 
Encoding 

Matrix A 
Coded 

Row Matrix 

 Ex 2: (Encoding a Message) 

Elementary Linear Algebra: Section 2.6, p.95 
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   422318

411

311

221

1305 




















   56205

411

311

221

41415 




















   772324

411

311

221

0251 




















Uncoded 

Row Matrix 
Encoding 

Matrix A 
Coded 

Row Matrix 

Elementary Linear Algebra: Section 2.6, p.95 
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      172324 56205 422318 125333 212613 

17  23  24  56  20  5  42  23  18  12  53  33  21  26  13 

  21 nxxxX 

XAXAYA   11 )(

  the sequence of coded row matrices 

  cryptogram 

  an uncoded 1 × n matrix 

  Y = XA is the corresponding encoded matrix 

  to obtain 

Elementary Linear Algebra: Section 2.6, p.95 



101/123 























411

311

221
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17  23  24  56  20  5  42  23  18  12  53  33  21  26  13 





















100411
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110100

561010

8101001

      172324 56205 422318 125333 212613 

Gauss-Jordan eliminiation 

  the sequence of coded row matrices 

 Ex 3: (Decoding a Message) 

Elementary Linear Algebra: Section 2.6, p.96 
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Coded  

Row Matrix 
Encoding Matrix A-1 Decoded  

Row Matrix 

   5513

110

561

8101

212613 






















   13020

110

561

8101

125333 






















   1305

110

561

8101

422318 






















   41415

110

561
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56205 
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110

561

8101

772324 






















Elementary Linear Algebra: Section 2.6, p.96 
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Coded 

Row Matrix 
Encoding 

Matrix A-1 

Decoded 

Row Matrix 

   5513

110

561

8101

212613 






















   13020

110

561
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125333 






















   1305

110
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8101

422318 






















   41415

110

561

8101

56205 






















Elementary Linear Algebra: Section 2.6, p.96 
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      0251 41415 1305 13020 5513

M   E   E    T    _   M   E    _   M   O    N    D  A    Y    _ 

0   25   1   4   14   15   13   0   5   13   0   20   5   5   13

Coded 

Row Matrix 
Encoding 

Matrix A-1 

Decoded 

Row Matrix 

   0251

110

561

8101

772324 






















  the sequence of decoded row matrices 

  the message 

Elementary Linear Algebra: Section 2.6, p.96 
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 Input-output matrix: 

(2) The values of dij must satisfy                  and the sum of the 

      entries in any column must be less than or equal to 1.  

10  ijd

(1) dij  be the amount of output the jth industry needs from the  

      ith industry to produce one unit of output per year. 





















nnnn

n

n

ddd

ddd

ddd

D









21

22221

11211

I1      I2                In  

User (Output) 

… 
I1 

I2 

 

In 
…

 

Supplier (Input) 

Elementary Linear Algebra: Section 2.6, p.97 
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 Ex 4: (Forming an Input-Output Matrix) 

Elementary Linear Algebra: Section 2.6, p.97 

Consider a simple economic system consisting of three 

industries: electricity, water, and coal. Production, or output, 

of one unit of electricity requires 0.5 unit of itself, 0.25 unit 

of water, and 0.25 unit of coal. Production of one unit of 

water requires 0.1 unit of electricity, 0.6 unit of itself, and 0 

units of coal. Production of one unit of coal requires 0.2 unit 

of electricity, 0.15 unit of water, and 0.5 unit of itself. Find 

the input-output matrix for this system. 

Sol: 

The column entries show the amounts each industry requires 

from the others, and from itself, to produce one unit of 

output. 
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 Ex 4: (Forming an Input-Output Matrix) 

Elementary Linear Algebra: Section 2.6, p.97 

The row entries show the amounts each industry supplies to the 

others, and to itself, for that industry to produce one unit of 

output. For instance, the electricity industry supplies 0.5 unit to 

itself, 0.1 unit to water, and 0.2 unit to coal. 



















5.0025.0

15.06.025.0

2.01.05.0

P

User (Output) 

 

E        W        C 

E 

W        Supplier (Input) 

C 
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 Leontief input-output model: 

niniii xdxdxdx  ...2211

Let the total output of the ith industry be denoted by xi. If the 

economic system is closed (that is, the economic system sells its 

products only to industries within the system, as in the example 

above), then the total output of the ith industry is 





















nnnn

n

n

ddd

ddd

ddd

D









21

22221

11211

I1      I2                In  

User (Output) 

… 
I1 

I2 

 

In 

…
 

Supplier (Input) 

Elementary Linear Algebra: Section 2.6, p.97 

(Closed System) 

 Closed system: 
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ininiii exdxdxdx  ...2211

If the industries within the system sell products to nonproducing 

groups (such as governments or charitable organizations) outside 

the system, then the system is open and the total output of the ith 

industry is 

Elementary Linear Algebra: Section 2.6, p.98 

(Open system) 

 Open system: 

where ei represents the external demand for the ith industry’s 

product. The system of n linear equations below represents the 

collection of total outputs for an open system. 

nnnnnnn

nn

nn

exdxdxdx

exdxdxdx

exdxdxdx







...

...

...

...

2211

222221212

112121111

The matrix form of this system is X = DX + E, where X is the 

output matrix and E is the external demand matrix.  
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Ex 5: (Solving for the output Matrix of an open system) 

Elementary Linear Algebra: Section 2.6, p.98 

An economic system composed of three industries has the 

input-output matrix shown below. 



















02.003.023.0

37.0015.0

043.01.0

P

User (Output) 

 

A        B        C 

A 

B        Supplier (Input) 

C 

Sol: 

Letting I be the identity matrix, write the equation X = DX + E 

as IX − DX = E, which means that (I − D)X = E. Using the 

matrix D above produces 
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Ex 5: (Solving for the output Matrix of an open system) 

Elementary Linear Algebra: Section 2.6, p.98 

























98.003.023.0

37.0115.0

043.09.0

DI

So, the output matrix is 

Using Gauss-Jordan elimination, 

















 

08.116.030.0

43.014.130.0

21.055.025.1

)( 1DI



















































 

800,37

950,50

750,46

000,25

000,30

000,20

08.116.030.0

43.014.130.0

21.055.025.1

)( 1 EDIX

A 

B      

C 
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Ex 5: (Solving for the output Matrix of an open system) 

Elementary Linear Algebra: Section 2.6, p.98 

To produce the given external demands, the outputs of the 

three industries must be approximately 46,750 units for 

industry A, 50,950 units for industry B, and 37,800 units for 

industry C. 
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  Determine a line that appears to best fit the points 

  (1, 1), (2, 2), (3, 4), (4, 4), and (5, 6). 

xy  50.

 A procedure used in statistics to develop linear models. 

 A method for approximating a line of best fit for a given set of 

data points. 

 Least Squares Regression analysis 

 Ex 6: (A Visual Straight-Line Approximation) 

Elementary Linear Algebra: Section 2.6, p.99 
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Model 1: f(x) = 0.5 + x Model 2: f(x) = 1.2x 

xi yi F(xi) [yi - F(xi)]
2 xi yi F(xi) [yi - F(xi)]

2 

1 1 1.5 (-0.5) 2 1 1 1.2 (-0.2) 2 

2 2 2.5 (-0.5) 2 2 2 2.4 (-0.4) 2 

3 4 3.5 (+0.5) 2 3 4 3.6 (+0.5) 2 

4 4 4.5 (-0.5) 2 4 4 4.8 (-0.8) 2 

5 6 5.5 (+0.5) 2 5 6 6.0 (0.0) 2 

Sum 1.25 Sum 1.00 sum of squared error 
Elementary Linear Algebra: Section 2.6, p.99 
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 Notes: 

(1) The sums of squared errors confirm that the second model 

      fits the given points better than the first model. 

(2) Of all possible linear models for a given set of points, the  

      model that has the best fit is defined to be the one that  

      minimizes the sum of squared error. 

(3) This model is called the least squares regression line, and  

      the procedure for finding it is called the method of least  

      squares. 

Elementary Linear Algebra: Section 2.6, p.100 
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  a set of points 

  the least squares regression line 

  minimizes the sum of squared error 

  the system of linear equations 

 Definition of Least Squares Regression Line 

Elementary Linear Algebra: Section 2.6, p.100 
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  the error 

  the system of linear equations 

  define Y, X, A, and E 

  the matrix equations 

Elementary Linear Algebra: Section 2.6, p.100 



118/123 

EXAY 

YXXXA TT 1)( 

EET

 Notes: 

(1) The matrix has a column of 1’s (corresponding to a0) and a 

      column containing the xi’s. 

(2) This matrix equation can be used to determine the 

      coefficients of the least squares regression line. 

 Matrix From for Linear Regression 

  the regression model 

  the least squares regression line 

  the sum of squared error 

Elementary Linear Algebra: Section 2.6, pp.100-101 
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  Find the least squares regression line for the points 

  (1, 1), (2, 2), (3, 4), (4, 4), and (5, 6). 























51

41

31

21

11

X

 Sol:  Choose a fourth-degree polynomial function 























6

4

4

2

1

Y

 Ex 7: (Finding the Least Squares Regression Line) 

Elementary Linear Algebra: Section 2.6, p.101 
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xy 2.12.0 

  the coefficient matrix 

  the least squares regression line 

Elementary Linear Algebra: Section 2.6, p.101 
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Key Learning in Section 2.6 

 Use matrix multiplication to encode and decode messages. 

 Use matrix algebra to analyze an economic system (Leontief 

input-output model). 

 Find the least squares regression line for a set of data. 
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 cryptogram:  密碼學 

 encode: 編碼 

 decode:  解碼 

 uncoded row matrices: 未編碼的列矩陣 

 coded row matrices: 已編碼的列矩陣 

 input: 輸入 

 output: 輸出 

 input-output matrix: 輸入-輸出矩陣 

 closed: 封閉的 

 open: 開放的 

 external demand matrix: 外部需求矩陣 

 sum of squared error: 誤差平方 

 least squares regression line:  最小平方回歸線 

 method of least squares: 最小平方法 

 

Keywords in Section 2.6 
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 Fight Crew Scheduling 

 

Many real-life applications of linear systems 

involve enormous numbers of equations and 

variables. For example, a flight crew scheduling 

problem for American Airlines required the 

manipulation of matrices with 837 rows and more 

than 12,750,000 columns. To solve this 

application of linear programming, researchers 

partitioned the problem into smaller pieces and 

solved it on a computer. 

2.1 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.1,  p.47 
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 Information Retrieval 
 

Information retrieval systems such as Internet search 

engines make use of matrix theory and linear algebra to 

keep track of, for instance, keywords that occur in a 

database. To illustrate with a simplified example, 

suppose you wanted to perform a  search on some of the 

m available keywords in a database of n documents. You 

could represent the occurrences of the m keywords in the 

n documents with A, an m  n matrix in which an entry 

is 1 if the keyword occurs in the document and 0 if it 

does not occur in the document. You could represent the 

search with the m1 column matrix x in which a 1 entry 

represents a keyword you are searching and 0 represents 

a keyword you are not searching. Then, the n1 matrix 

product ATx would represent the number of keywords in 

your search that occur in each of the n documents. For a 

discussion on the PageRank algorithm that is used in 

Google’s search engine, see Section 2.5 (page 86). 

2.2 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.2,  p.58 
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 Beam Deflection 

 

     Recall Hooke’s law, which states that for 

relatively small deformations of an elastic object, 

the amount of deflection is directly proportional 

to the force causing the deformation. In a simply 

supported elastic beam subjected to multiple 

forces, deflection d is related to force w by the 

matrix equation 

d = Fw 

     where is a flexibility matrix whose entries depend 

on the material of the beam. The inverse of the 

flexibility matrix, F‒1 is called the stiffness matrix. 

In Exercises 61 and 62, you are asked to find the 

stiffness matrix F‒1 and the force matrix w for a 

given set of flexibility and deflection matrices. 

2.3 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.3,  p.64 
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 Computational Fluid Dynamics 
 

     Computational fluid dynamics (CFD) is the 
computer-based analysis of such real-life 
phenomena as fluid flow, heat transfer, and 
chemical reactions. Solving the conservation of 
energy, mass, and momentum equations involved 
in a CFD analysis can involve large systems of 
linear equations. So, for efficiency in computing, 
CFD analyses often use matrix partitioning and 
LU-factorization in their algorithms. Aerospace 
companies such as Boeing and Airbus have used 
CFD analysis in aircraft design. For instance, 
engineers at Boeing used CFD analysis to simulate 
airflow around a virtual model of their 787 aircraft 
to help produce a faster and more efficient design 
than those of earlier Boeing aircraft. 

2.4 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.4,  p.79 
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Google’s PageRank algorithm makes use of Markov 

chains. For a search set that contains n web pages, 

define an n × n matrix A such that aij = 1 when page 

j references page i and aij = 0 otherwise. Adjust A to 

account for web pages without external references, 

scale each column of A so that A is stochastic, and 

call this matrix B. Then define 

  

 

where p is the probability that a user follows a link 

on a page, 1 − p is the probability that the user goes 

to any page at random, and E is an n × n matrix 

whose entries are all 1. The Markov chain whose 

matrix of transition probabilities is M converges to a 

unique steady state matrix, which gives an estimate 

of page ranks. Section 10.3 discusses a method that 

can be used to estimate the steady state matrix. 

2.5 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.5,  p.86 

E
n

p
pBM




1
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 Data Encryption 
 
Information security is of the utmost importance 

when conducting business online. If a malicious 

party should receive confidential information such 

as passwords, personal identification numbers, 

credit card numbers, Social Security numbers, bank 

account details, or sensitive company information, 

then the effects can be damaging. To protect the 

confidentiality and integrity of such information, 

Internet security can include the use of data 

encryption, the process of encoding information so 

that the only way to decode it, apart from an 

“exhaustion attack,” is to use a key. Data encryption 

technology uses algorithms based on the material 

presented here, but on a much more sophisticated 

level, to prevent malicious parties from discovering 

the key. 

2.6 Linear Algebra Applied 

Elementary Linear Algebra: Section 2.6,  p.94 


