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4.1 VectorsinR"

= An ordered n-tuple:

a sequence of n real number (X, X,,--+,X,)

n
= n-space: R

the set of all ordered n-tuple
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n=1 R = 1-space
= set of all real number

2
n=2 R =2-space
= set of all ordered pair of real numbers (x;,x,)

2 B 3-space

= set of all ordered triple of real numbers (x;, x,, X3)

n=4 R*=4-space

= set of all ordered quadruple of real numbers (X;, X5, X3, X4)
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= Notes:

(1) An n-tuple (x,,X,,---,X,) can be viewed as a point in R"

with the x:’s as its coordinates.
(2) An n-tuple (x,x,,---, X ) can be viewed as a vector

X:(Xl’xz""’

= FoC

a point

v

Elementary Linear Algebra: Section 4.1, p.152

00)

X.) In R"with the x;’s as its components.

(%, %)

a vector

v
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u :(ul,uz’...’un), V:(V1’V21""Vn) (tWO vectors in Rn)

= Equal:
u=yVv |fand0n|y|f u]_:V]_; u2:V21'”1un:Vn

= Vector addition (the sum of u and v):
U+V=(U +V,U+V,, -, U +V )

= Scalar multiplication (the scalar multiple of u by c):
cu = (cu,,cu,,---,cu, )

= Notes:
The sum of two vectors and the scalar multiple of a vector
in R" are called the standard operations in R™.

Elementary Linear Algebra: Section 4.1, p.153
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= Negative:
—U=(=Uu,-uU,,~U,,....—U.)
= Difference:
Uov (v vy U Y

= /Zero vector:
0=(0,0,...,0)

= Notes:
(1) The zero vector 0 in R" is called the additive identity in R".

(2) The vector —v is called the additive inverse of v.

Elementary Linear Algebra: Section 4.1, p.155 7/136



= Thm 4.2: (Properties of vector addition and scalar multiplication)
Let u, v, and w be vectors in R" , and let ¢ and d be scalars.
(1) u+visavector in R"
(2) ut+v =v+u
(3) (utv)+w = u+(v+w)
(4) u+0=u
(5) u+(-u)=0
(6) cu isa vectorin R"
(7) c(u+v) = cu+cv
(8) (c+d)u = cu+du
(9) c(du) = (cd)u
(10) 1(u) = u

Elementary Linear Algebra: Section 4.1, p.156 8/136



« Ex 5: (Vector operations in R%)
Letu=(2,-1,5,0),v=(4, 3,1,-1),and w=(-6, 2, 0, 3) be
vectors in R”. Solve x for x in each of the following.
(a) Xx=2u— (v + 3w)
(b) 3(X+w) = 2u — V+X

Sol: (8) x=2u—(v+3w)
=2U—V—-3W
=(4,-2,10,0)-(4,3,1,-1)—(-18,6,0,9)
=(4-4+18,-2-3-6,10-1-0,0+1-9)
=(18,-11,9,-8).
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(b) 3(x+w)=2u-v+Xx
3X+3wW =2U—V+X
3X—X=2U—-V—-3w
2X =2U—-V—-3wW
X=U—3V—-2W
(2501 2 - - g 30 )

(04,24

1212’
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= Thm 4.3: (Properties of additive identity and additive inverse)
Let v be a vector in R" and ¢ be a scalar. Then the following is true.
(1) The additive identity is unique. That is, if u+v=v, thenu =0

(2) The additive inverse of v is unique. That is, If v+u=0, thenu = —v

(3) Ov=0

(4) c0=0

(5) If cv=0, then c=0 or v=0
(6)-(-Vv)=v

Elementary Linear Algebra: Section 4.1, p.157 11/136



» Linear combination:
The vector x is called a linear combination of v,,Vv,,...,V_,

If it can be expressed in the form
X ey ‘6N L By 00 C ¢ Cdlg
R EXD.
Given x = (— 1, - 2,—2),u=(0,14),v=(-1,1,2), and
w = (3,1,2) InR’, find a, b, and ¢ such that x = au+bv+cw.

Sol: hor 8% =
a + b v 9
da £ 7h e — )

—a=1b=-2 c=-1

Thus x=u-2v-w
Elementary Linear Algebra: Section 4.1, p.158 12/136



= Notes:

A vector u=(u,;,U,,...,u ) in R" can be viewed as:

a 1xn row matrix (row vector): u=[u,, U,,---,uU,]

or u,

a nx1 column matrix (column vector): u=

(The matrix operations of addition and scalar multiplication

give the same results as the corresponding vector operations)

Elementary Linear Algebra: Section 4.1, p.158 13/136



\Vector addition

u+v=_U,U, -, u)+(,V,, V)
— (U, U+, - U V)

u+v=[u,u, --,ul+[v,Vv,, V]
—[u, £ U, £V, - U+ ]

u, Vo

u Y U, +V
R

Elementary Linear Algebra: Section 4.1, p.158

Scalar multiplication

GU -0 1 ]
=(cu et cl )

gu—cfl i1 -
=fleu, cu - oy

u, cu,
u cu

cu=¢l °|=| *
u | el
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Key Learning in Section 4.1

= Represent a vector as a directed line segment.

= Perform basic vector operations in R? and represent them
graphically.

= Perform basic vector operations in R".

= \Write a vector as a linear combination of other vectors.
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Keywords in Section 4.1

= ordered n-tuple : 3 & &n3g

" n-space : nsm 7 &

= equal : fp &

= vector addition : = & 4¢ &

= scalar multiplication : & 3k ;2
" negative : § w &

= difference : » & £

= 7ero vector : & w &

= additive identity : 4c ;£ H =~ %
= additive inverse : 4c ;= &
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4.2 Vector Spaces

= Vector spaces:
Let V be a set on which two operations (vector addition and

scalar multiplication) are defined. If the following axioms are
satisfied for every u, v, and w in V and every scalar (real number)
c and d, then V is called a vector space.

Addition:

(1) u+tvisinV

(2) u+v=v+u

B u+t(v+w)=(u+v)+w

(4) V has a zero vector 0 such that foreveryuinV,u+0=u

(5) For every u In V, there is a vector in V denoted by —u
such thatu + (-u) =0

Elementary Linear Algebra: Section 4.2, p.161 17/136



Scalar multiplication:
(6) cuisinV.

(7) c(u+vVv)=cu+cv
(8) (c+d)u=cu+du
(9) c(du) =(cd)u

(10) 1(u) =u

Elementary Linear Algebra: Section 4.2, p.161 18/136



= Notes:
(1) A vector space consists of four entities:

a set of vectors, a set of scalars, and two operations

V I nonempty set
c : scalar
+(u,Vv) =u+v: Vector addition

e(c,u)=cu: scalar multiplication

(v, + ) iscalleda vector space

(2) V ={0}: zero vector space

Elementary Linear Algebra: Section 4.2, Addition 19/136



= Examples of vector spaces:
(1) n-tuple space: R"
(Ug, Uy, U )+ (Vy, Voo, V) = (U +V, U, + Vs, -+, U +V ) vector addition
k(u,,u,,---,u)=(ku,ku,,---,ku) scalar multiplication
(2) Matrix space: V =M __ (the set of all mxn matrices with real values)

EX: :(m=n=2)

ull u12 V11 V12 ull +V11 u12 o V12 e
{ + = vector addition

u21 u22 V21 V22 u21 T V21 u22 95 V22
ull u12 kull kulZ A :
K = scalar multiplication
u21 u22 ku21 ku22

Elementary Linear Algebra: Section 4.2, Addition 20/136



(3) n-th degree polynomial space: V =P, (X)
(the set of all real polynomials of degree n or less)

p(x) +C|(X) w (ao +bo) s (a1 +b1)x+”'+(an +bn)xm

kp(x) =ka, + kax+---+ka X"

(4) Function space: V =c¢(—o0,00) (the setof all real-valued
continuous functions defined on the entire real line.)

(T +9)(x) = 1(x)+9(x)
(kF)(x) = kf (X)

Elementary Linear Algebra: Section 4.2, Addition 21/136



= Thm 4.4: (Properties of scalar multiplication)

Let v be any element of a vector space V, and let ¢ be any
scalar. Then the following properties are true.

(1) Ov=0

(2) c0=0

(3) Ifcv=0, thenc=0 or v=0
(4) (-)v=-v

Elementary Linear Algebra: Section 4.2, p.164 22/136



= Notes: To show that a set is not a vector space, you need
only find one axiom that is not satisfied.

» Ex 6: The set of all integer is not a vector space.

L 1 yop
Q) =LeV (it is not closed under scalar multiplication)

scalar; noninteger
Integer

» Ex 7: The set of all second-degree polynomials Is not a vector space.

Bl leiplag -« aid gta-— ¢ x 1
= p(X)+q(x) =x+1eV
(it is not closed under vector addition)

Elementary Linear Algebra: Section 4.2, p.165 23/136



s Ex o
V=R?=the set of all ordered pairs of real numbers
vector addition: (Ug, Uy) +(Vy, V,) = (U +Vp, U, +Vy)
scalar multiplication: c(u,,u,) = (cu,,0)
Verify V Is not a vector space.

Sol:
Ll = O) - (Y
-+ the set (together with the two given operations) is
not a vector space

Elementary Linear Algebra: Section 4.2, p.165 24/136



Key Learning in Section 4.2

= Define a vector space and recognize some important vector
spaces.
= Show that a given set Is not a vector space.
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Keywords in Section 4.2:

vector space : w & 7 ¥
n-space : ns& 7 [

matrix space : &' 7
polynomial space : % 78 ;8 5 &
function space : Sz ¥
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4.3 Subspaces of Vector Spaces

= Subspace:
(V,+,8) :avector space
W = ¢
W cV

(W,+,e) : avector space (under the operations of addition and
scalar multiplication defined in V)

} . a nonempty subset

— W Is a subspace of V

= Trivial subspace:

Every vector space V has at least two subspaces.

(1) Zero vector space {0} is a subspace of V.
(2) V is asubspace of V.

Elementary Linear Algebra: Section 4.3, p.168 27/136



= Thm 4.5: (Test for a subspace)
If W Is a nonempty subset of a vector space V, then W Is

a subspace of V if and only if the following conditions hold.

(1) If u andv are in W, then u+v isin W.

(2) If uisin W and c iIs any scalar, then cu is in W.

Elementary Linear Algebra: Section 4.3, p.168 28/136



« Ex: Subspace of R?
® {o} 0=(0,0)
(2) Lines through t he origin
(3) R?

« EX:  Subspace of R?3
(1) 3 0=(0,0,0)
(2) Lines through the origin
(3) Planes through t he origin

4 R

Elementary Linear Algebra: Section 4.3, p.168 29/136



= Ex 2: (A subspace of M,.,)
Let W be the set of all 2x2 symmetric matrices. Show that

W is a subspace of the vector space M, ,, with the standard

operations of matrix addition and scalar multiplication.

Sol:
“WcM,, M,,:vector sapces

Let A,A, eW (A =AA =A)
AW, A eW=(A+A) =A +A =A+A (A+hAell)
keR,AeW = (kA)" = kA" =KkA (KAeW )

W is a subspace of M,_,

Elementary Linear Algebra: Section 4.3, p.169 30/136



« EX 3: (The set of singular matrices Is not a subspace of M., ,)
Let W be the set of singular matrices of order 2. Show that

W is not a subspace of M, , with the standard operations.

Sol:
e 0 O
A EW,BZ eW
e
1 0
AL R = g W

-.W, Is not a subspace of M,,

Elementary Linear Algebra: Section 4.3, p.169 31/136



= Ex 4: (The set of first-quadrant vectors is not a subspace of R?)
Show that W ={(x,, x,): x, >0and x, > 0} , with the standard
operations, is not a subspace of R’.

Sol:
Let u=(1,1)eW

oy o (not closed under scalar
o e

-.W is not a subspace of R”

Elementary Linear Algebra: Section 4.3, p.170 32/136



» Ex 6: (Determining subspaces of R?)
Which of the following two subsets is a subspace of R*?
(a) The set of points on the line given by x+2y=0.
(b) The set of points on the line given by x+2y=1.

Sol:
(8) W={(x,y) | x+2y=0}={(-2t,t) | teR}

Let v, =(-2t,t)eW v,=(-2t,t)eW
oV +V, = (= 2(t, +t,),t, +1,)eW (closed under addition)
kv, = (—2(kt, ).kt )eW (closed under scalar multiplication)

-.W isasubspace of R’

Elementary Linear Algebra: Section 4.3, p.171 33/136



(b) W ={(x,y) | x+2y=1}  (Note: the zero vector is not on the line)

Let v=(1,0)eW
(v =(-10)eW

-.W is not a subspace of R*

Elementary Linear Algebra: Section 4.3, p.171
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« Ex 8: (Determining subspaces of R?)

Which of the following subsets is a subspace of R®?
(@) W ={(x,x,.D) | x,X, R}

() W — i x 1 () R

Sol:
(@) Let v=(0,01)eW

— (—1)v =(0,0,-1) g W
-.W is not a subspace of R®
(0) Let Vv=(v v, tV V)W U=(U U +U U)W
VU= (v, +ug, (v, +u )+ (v, +u,) v, +uy ) e W
kv = (kv,, (kv, )+ (kv ), kv, ) e W
-.W is a subspace of R’

Elementary Linear Algebra: Section 4.3, p.172 35/136



= Thm 4.6: (The intersection of two subspaces is a subspace)

If V andW are both subspaces of a vector space U,
then the intersection of V and W (denoted byV nU)
IS also a subspace of U.

Elementary Linear Algebra: Section 4.3, p.170 36/136



Key Learning in Section 4.3

= Determine whether a subset W of a vector space V iIs a
subspace of V.
= Determine subspaces of R".
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Keywords in Section 4.3

- Subspace : + 7 ¥

« trivial subspace : & X3 7 &
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4.4 Spanning Sets and Linear Independence

= | Inear combination:

A vector v Ina vector space V iscalleda linear combination of
the vectors u,,u,,---,u, InV If v can be written in the form

V=cU, +CU, +...+CU, C,,C,, -+ ,Cy SCalars

Elementary Linear Algebra: Section 4.4, p.175 39/136



= Ex 2-3: (Finding a linear combination)
vl 23) vy (017 v —{ 101
Prove (a) w=(1,1,1) isa linear combination of v,,Vv,,V,

. (b) w=(1,-2,2) isnot a linear combination of v ,Vv,,V,
ol:

(@ w=cV,+C,V,+C.V,
(1,1,1)=c,(1,23)+¢,(012)+c,(-101)
~{C € 76 ¢ 3¢ [ Jc (|

C, e 1

—Vin =1

S50 L6 6

Elementary Linear Algebra: Section 4.4, p.176 40/136



3

-1

1

1

Guass—Jordan Eliminatian

e 1 e I U ¢

N
74

T

Gl G

(this system has infinitely many solutions)

fieed

—>W =2V, -3V, +V,

Elementary Linear Algebra: Section 4.4, p.176

i)
.
0 0
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(b)

1.8 11 IR B
- 2 1 O _2 Guass—Jordan Eliminatin N O 1 2 _4
2 2 12 00 a7

— this system has no solution (.-0=7)

=W #C,V, +C,V, +C,V,

Elementary Linear Algebra: Section 4.4, p.176 42/136



= the span of a set: span (S)

If S ={v,, v,,..., v, } IS a set of vectors in a vector space V,
then the span of S Is the set of all linear combinations of
the vectors in S,

span(S) ={c,v, +C,v, +---+C,V, | VC, e R}
(the set of all linear combinations of vectors In S)

= 2 spanning set of a vector space:

If every vector in a given vector space can be written as a
linear combination of vectors in a given set S, then S is
called a spanning set of the vector space.

Elementary Linear Algebra: Section 4.4, p.177 43/136



= Notes:
span (S) =V
— S spans (generates) V
V i1sspanned (generated) by S
S Isa spanning set of V

= Notes:
(1) span(g) = {0}
(2) S cspan(S)

@) 5.5, cV
S, €S, = span(S,) < span(s,)

Elementary Linear Algebra: Section 4.4, p.177 44/136



= Ex 5: (A spanning set for R?)
Show that the set S ={(1,2,3),(0,1,2),(-2,0,1)} sapns R’

Sol:
We must determine whether an arbitrary vector u = (u,, U,, U,)

in R° can be as a linear combination of v,,v,,and v,.
ueR’=u=cVv,+C,V, +CV,
— = =26 U
20 & © =u,
OB~ /G L & ]
The problem thus reduces to determining whether this system
Is consistent for all values of u,, u,,and u,.

Elementary Linear Algebra: Section 4.4, p.177 45/136



—2

L 00
1

C0 N e
IND o 0 C2)

— Ax =D has exactly one solution for every u.

= span(S) =R’

Elementary Linear Algebra: Section 4.4, p.177 46/136



= Thm 4.7: (Span(S) is a subspace of V)

If S={v,, V,,..., V. } IS a set of vectors In a vector space V,
then

(a) span (S) Is a subspace of V.

(b) span (S) is the smallest subspace of V that contains S.

(Every other subspace of V that contains S must contain span (S).)

Elementary Linear Algebra: Section 4.4, p.178 47/136



= Linear Independent (L.I.) and Linear Dependent (L.D.):

S={v,,V,,---,V, | :asetofvectorsin a vector space V
ey ey o ten ()

(1) If the equation has only the trivial solution (c, =c, =---=c¢, =0)
then S iscalled linearly independent.

(2) If the equation has a nontrivial solution (i.e., not all zeros),
then S iscalled linearly dependent.

Elementary Linear Algebra: Section 4.4, p.179 48/136



= Notes:
(1) ¢ is linearly independent

(2) 0€S = Sis linearly dependent.
(3) v=0={v}is linearly independent
4) S, c5,
S, Is linearly dependent = S, is linearly dependent

S, Islinearly independent = S, is linearly independent

Elementary Linear Algebra: Section 4.4, p.179 49/136



= Ex 8: (Testing for linearly independent)
Determine whether the following set of vectors in R*is L.I. or L.D.

S =1{(1,2,3),(0,1,2),(-2,0,1)}

Sol: C, - Zc U
eV, +cy ey =0 o 26 8 =0
e t2¢ - ¢ U
1 0 -2]|0] 10 00
_ 12 1 g g el g ] [
s 2 10 g a 1.4

— ¢, =¢,=c, =0 (only the trivial solution )

= Sislinearly independent
Elementary Linear Algebra: Section 4.4, p.180 50/136



= EX 9: (Testing for linearly independent)
Determine whether the following set of vectors in P, is L.I. or L.D.
S ={1+x—2x2, 245x — X%, X+x?}
% \% %
Sol: 1 : :
C,V{+C,V,+CaVy = 0

i.e. Cy(1+x—2x2) + C,(2+5X — X?) + C5(X+x?) = 0+0x+0x?

o @ 1 glo L 0
=~ e5cHc -0 1 5 110 =5 |1 1 -
oy cic o0 | 7 1 10 00 a0

— This system has infinitely many solutions.
(i.e., This system has nontrivial solutions.)

— S is linearly dependent. (Ex:c,=2,c,=—-1,c;=3)
Elementary Linear Algebra: Section 4.4, p.181 51/136



= EX 10: (Testing for linearly independent)
Determine whether the following set of vectors in 2x2

matrix space is L.l. or L.D.

S

Sol:
C,V{+C,V,+CaVy = 0

> 1l [0l [ oo oo
o il 1oz oo o

Elementary Linear Algebra: Section 4.4, p.181 52/136



—  2c,+3C,+ c3 =0

Cy =0
2¢,+2¢c;=0
C;+C, =0
= 2 3 110
I 0 8.0 Gauss - Jordan Elimination
o 2 2.0
1100

) O OO be

) 0 b O

) ok O G

CH 0 G GO

= C; = C, = C;= 0 (This system has only the trivial solution.)

— S is linearly independent.

Elementary Linear Algebra: Section 4.4, p.181
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« Thm 4.8: (A property of linearly dependent sets)
A set S = {v,;,V,,...,V, }, k=2, is linearly independent if and
only If at least one of the vectors v; In S can be written as

a linear combination of the other vectors in S.

Pf:
(=) cyvtev,t+...+c Vv, =0

" S Is linearly dependent

— ¢; = 0 for some |

G Cia Ciia Cx
:>Vi=—V AR U Y V|1+ Vo b e Ve
C. C. C. C.

Elementary Linear Algebra: Section 4.4, p.182 54/136



(<)

Let v,=d,v,*...+d; v, +di, Vi F.. AV,
o PR S o PR VAREAV/S o PR VAR S oMYA 0
= ¢,=d,, ...,¢;;=d. 4, ¢;=-1,¢;;,=0i,4,..., ¢,=d, (nontrivial solution)

= S is linearly dependent

= Corollary to Theorem 4.8:
Two vectors u and v In a vector space V are linearly dependent

If and only if one Is a scalar multiple of the other.

Elementary Linear Algebra: Section 4.4, p.182-183 55/136



Key Learning in Section 4.4

= Write a linear combination of a set of vectors in a vector
space V.

= Determine whether a set S of vectors in a vector space V Is
a spanning set of V.

= Determine whether a set of vectors in a vector space V is
linearly independent.
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Keywords In Section 4.4

- linear combination @ &+ = &
« Spanning set © 4 = & &
« trivial solution : %z 7% f%
= linear independent : &% jH =

« linear dependent : 4w |4 4p i
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4.5 Basis and Dimension

« Basis:

: G fi Linearly
V @ avector space
S={vy, V,, ...,V }V -

{(a) Sspans V (i.e., span(S)=V)
(b) Sis linearly independent

— S Is called a basis for V

= Notes:
(1) D is a basis for {0}

(2) the standard basis for R3:
Lk =100y 1 — (010 k(001

Elementary Linear Algebra: Section 4.5, p.186 58/136



(3) the standard basis for R":
e o el Gye=(0] 0Oje=(00 |

Ee R HIOgB0) (0 100) (00101 (00011}
(4) the standard basis for mxn matrix space:
LE e e

EX: 2x2 matrix space:

I G0 1y 0le 0
{o OHO 0H1 OHO J
(5) the standard basis for P (x):

e
EX P 1 x xe %)

Elementary Linear Algebra: Section 4.5, p.186 59/136



= Thm 4.9: (Uniqueness of basis representation)

If S={v,,v,,---,v | isabasis for a vector space V, then every

vector in V can be written in one and only one way as a linear

combination of vectors in S.
Pf:

.+ S isa basis :>{ = e

2. Sis linearly independent
wspan(S) =V Let v =cvHC,Vot.. ACV,

V = b,v,+bov,+.. . +bv,
= 0 = (c,—by)v,+(c,— by)v,+...+(c,— b )V,
"+ S Is linearly independent

= Cc,=b;,Cc=h,,....,c.=hb, (i.e, uniqueness)
Elementary Linear Algebra: Section 4.5, p.188 60/136



= Thm 4.10: (Bases and linear dependence)
If S={v,,v,,---,v,} isa basis for a vector space V, then every

set containing more than n vectors in V s linearly dependent.

Bl
Let S, ={u;, U,,....,u.},m>n

span(S) =V

u, =¢,v,+C,v,+---+C,V,_

ey CoVy +CppVyo +o--+Cp,V,,

U =C . V, +C, N, 4+ C VWV

Elementary Linear Algebra: Section 4.5, p.189 61/136



Let Kk u,+k,u,+...+k u.=0

= dyv;+dov,t...+d v,=0  (where d, = ¢, K, +Ci K+ . . +Ci K )
" SIsL..

~o=0 v e ckicki ¢k O

Im ' *m

C,. K, +CpK, +---+C,. kK =0

2Zm''m

C.K +C K, +---+cC Kk =0

- Thm 1.1: If the homogeneous system has fewer equations
than variables, then it must have infinitely many solution.

m > n = k,u;+k,u,+...+k u. = 0 has nontrivial solution

— S, Is linearly dependent

Elementary Linear Algebra: Section 4.5, p.189 62/136



= Thm 4.11: (Number of vectors in a basis)
If a vector space V has one basis with n vectors, then every
basis for V has n vectors. (All bases for a finite-dimensional

vector space has the same number of vectors.)

Pf:
S={Vy, Vy, ..., V. }

- two bases for a vector space
S'={u,, u,, ..., u.}

S is a basis | Thm.4.10 \
. — 0m
S Sk |

> o
S is LI ) Tmao =
st VO ANSRA R

S' Is a basis

J
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= Finite dimensional:
A vector space V s called finite dimensional,
If it has a basis consisting of a finite number of elements.

= Infinite dimensional:
If a vector space V is not finite dimensional,
then it is called infinite dimensional.
= Dimension:
The dimension of a finite dimensional vector space V is

defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

= dim(V) = #(S) (the number of vectors in S)
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dim(V) =n

_ Linearly
Generating ( B5geg ) Independent
Sets Sets

(2) dim(V) =n, ScV #S)>n #OS)=n #(S)<n

= Notes:

(1) dim({0}) = 0 = #(2)

S i ageneratingset = #(S)>n
S:alL.l set = #(S) <n
S : abasis = #(S)=n

(3) dim(V) =n,W isasubspace of V. = dim(W) <n
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« =X

(1) Vector space R" = basis{e;,e,, ..., €.}
= dim(R") =n

(2) Vector space M, = basis {E;; | 1<i<m, 1<j<n}
= dim(M,,,.,)=mn

(3) Vector space P, (x) = basis {1, x, X%, ..., X"}
= dim(P,(x)) = n+1

(4) Vector space P(x) = basis{1,x, x4, ...}
= dim(P(x)) =
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« EX 9: (Finding the dimension of a subspace)
(a) W={(d, c—d, ¢): cand d are real numbers}
(b) W={(2b, b, 0): b is a real number}

Sol: (Note: Find a set of L.I. vectors that spans the subspace)

(@) (d,c—d,c)=c(0,1,1)+d(1,-1,0)
=S5S={0,1,1),(1,-1,0)}(Sis L.l. and S spans W)
— S is a basis for W
= dim(W) = #(S5) = 2

(b) - (2b,b,0)=b(2,1,0)
= S={(2,1,0)}spans W and Sis L.I.
— S is a basis for W
= dim(W) =#(S) =1
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= Ex 11: (Finding the dimension of a subspace)

Let W be the subspace of all symmetric matrices in M,,,.

What iIs the dimension of W?
Sol:

w-fs Y
‘s o0 o1 o]0 4
o[ o G sesen

= SisabasisforW = dim(W) =#(S) =3

a,b,cER}

Elementary Linear Algebra: Section 4.5, p.192
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= Thm 4.12: (Basis tests in an n-dimensional space)
Let V be a vector space of dimension n.

(1) If S={v,,v,,---,v.} isa linearly independent set of
vectors in V, then S is a basis for V.

) If S={v,,v,,---,v,} spansV, thenS is a basis for V.

dim(V) =n

Linearly
Independent
Sets

Generating
Sets

Bases

#(S) >N #(S) <n
#(S) =n
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Key Learning in Section 4.5

= Recognize bases in the vector spaces R", P, and M,
= Find the dimension of a vector space.
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Keywords in Section 4.5

« DasIs : A& &
- dimension : & &
- finite dimension : 7 &R

- infinite dimension : & *L A B
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4.6 Rank of a Matrix and Systems of Linear Equations

" row vectors: Row vectors of A
_ a11 a12 N aln | A(l) [all’ 120 aln] v A(l)
A a21 a22 e a2n . AYZ) [a'21’ RN 2n] A(z)
_aml App o amn_ _A(m)_ [aml, vy amn] = A(n)
= column vectors: Column vectors of A
a, a2 . a apy || A a,
a, || a a,,
A a.21 a.zz a?n . [A(l) A A(n)] - el
am1 a‘m2 amn a a a

' ' || .
0 e
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Let A be an mxn matrix.
= Row space:

The row space of A Is the subspace of R" spanned by
the row vectors of A.
RS (A) ={x: An T a2 Ag) -+ amAm) i o0 =R
= Column space:

The column space of A is the subspace of R™ spanned by
the column vectors of A.

CS(A)={BA® + B,A? +...+ B AV|B,, B,,+- B, € R}
= Null space:

The null space of A is the set of all solutions of Ax=0 and
It is a subspace of R".

NS(A) ={x e R"| Ax =0}
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- Thm 4.13: (Row-equivalent matrices have the same row space)
If an mxn matrix A Is row equivalent to an mxn matrix B,

then the row space of A Is equal to the row space of B.

= Notes:
(1) The row space of a matrix is not changed by elementary
row operations.
RS(r(A)) = RS(A) r: elementary row operations

(2) Elementary row operations can change the column space.
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- Thm 4.14: (Basis for the row space of a matrix)
If a matrix A iIs row equivalent to a matrix B in row-echelon
form, then the nonzero row vectors of B form a basis for the

row space of A.
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= Ex 2: ( Finding a basis for a row space)

e 3 e 3
B L0
Find a basis of row spaceof A= (-3 0 6 -1
5.4 2
2.0 4 2
a0k P19 1 g 3 1 oW
L g 1 1 0 W
. b o8 GE ¢ 0001 W
9 dq4 4 | 0O 0 0 O
20 4 2 8 0908 0
divveli o els vy b: b, bs b
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a basis for RS(A) = {the nonzero row vectors of B} (Thm 4.14)
={w,, w,, w;} = {(1,3,1,3),(0,1,1,0),(0,0,0,1)}

= Notes:

(1) b.—-2p tb —a —-2a +a
(2) {b,,b,,b,}isL.Il ={a,,a,,a,}IsL.L
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« EX 3: (Finding a basis for a subspace)
Find a basis for the subspace of R’ spanned by

S —{(~1,2.5),(3.0.3), (5.1, 8)}

Sol: ) L 5 0
A= e g s Bl LW
5 1 8| V, e

a basis for span({vy, v,, V3})

= a basis for RS(A)

= {the nonzero row vectors of B} (Thm 4.14)
= {w;, w,}

={(1,-2,-5),(0,1, 3)}
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= EX 4-5: (Finding a basis for the column space of a matrix)

Find a basis for the column space of the matrix A given in Ex 2.

Sol. (Method 1);

0
2 1
i
3 0

A

3
1
0
4
0

=
0
6
1

9
s

3
A4
—2

1

2
0
U

Elementary Linear Algebra: Section 4.6, pp.197-198

| S o g e B

D PO PU S )

3
5
—1

0

2
-6
~1
0

= = =
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CS(A)=RS(AT)

. a basis for CS(A)
= a basis for RS(AT)
= {the nonzero vectors of B}
= {wy, Wy, W}k
il 0lloy
0 1 0
=11=30 | 9 | 1 |f (abasis for the column space of A)
3 -5|]-1
208 L

= Note: This basis is not a subset of {c,, C,, Cs, C,}-
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ssol tMethod 29 n g 5 1 3¢ s 4 g
T 1 B g 1 10

A=l 3 0 B 1 B0 0O G [

49 1 6.0 0 0

2.0 4 9 09 0

i B B Vi V2 V3 V4

Leadingl => {v,,V,, V,}Isa basis for CS(B)
{c,, c,, c,} Is a basis for CS(A)

= Notes:
(1) This basis is a subset of {c,, C,, C5, C,}.
(2) vy=-2v,;+V,, thus c;=-2c;+¢c,.

Elementary Linear Algebra: Section 4.6, pp.197-198 81/136



- Thm 4.16: (Solutions of a homogeneous system)
If A 1S an mxn matrix, then the set of all solutions of the

homogeneous system of linear equations Ax = 0 Is a subspace

of R" called the nullspace of A.
Pt NS(A) ={xR"| Ax=0

NS(A)=¢ (.- A0=0)

Let X, X € NS(A) (i.e. AX.=0, AX.=0)

Then (A +X.)=AXx+AXx.=0+0=0 Addition
(2)A(cx) =c(Ax)=¢(0)=0  Scalar multiplication

Thus NS(A) isa subspace of R"

= Notes: The nullspace of A iIs also called the solution space of

the homogeneous system Ax = 0.
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= Ex 7. (Finding the solution space of a homogeneous system)

Find the nullspace of the matrix A.

Sol: The nullspace of A is the solution space of Ax = 0.

N

10
3 6
10

2 1
5 4
0 2

G B

o X =25 3L X, =8 X = f X, =

= X=

1

N

X
X

3

Xy

Aoy
S
—t

t

0

2
A—13 ©
$o 2
12 g 3
S
o g g
% .
0
+ 1 . =SV, +1tv,
1

= NS(A) ={sv, +tv, |s,t e R}
Elementary Linear Algebra: Section 4.6, p.201

3
5 4

0 3
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- Thm 4.15: (Row and column space have equal dimensions)
If A Is an mxn matrix, then the row space and the column
space of A have the same dimension.

dim(RS(A)) = dim(CS(A))

= Rank:
The dimension of the row (or column) space of a matrix A
Is called the rank of A and is denoted by rank(A).
rank(A) = dim(RS(A)) = dim(CS(A))
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= Nullity:
The dimension of the nullspace of A is called the nullity of A.

nullity(A) = dim(NS(A))

= Note: rank(AT) = rank(A)

Pf:  rank(A") = dim(RS(A")) = dim(CS(A)) = rank(A)
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- Thm 4.17: (Dimension of the solution space)
If A Is an mxn matrix of rank r, then the dimension of
the solution space of Ax=0 Is n—r. That s
n = rank(A) + nullity(A)

= Notes:

(1) rank(A): The number of leading variables in the solution of Ax=0.

(The number of nonzero rows in the row-echelon form of A)

(2) nullity (A): The number of free variables in the solution of Ax = 0.
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= Notes:
If A Is an mxn matrix and rank(A) =r, then

Fundamental Space  Dimension

RS(A)=CS(A") r

CS(A)=RS(AT) r
NS(A) n—r
NS(AT) m-—r
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« EX 8: (Rank and nullity of a matrix)

Let the column vectors of the matrix A be denoted by a,, a,,

as, a4, and a.. 8 > 0

0 -1 -3 1 3
2 ol g 3

0 3 9 0 -12

a, a, a; a, as
(a) Find the rank and nullity of A.

(b) Find a subset of the column vectors of A that forms a basis for
the column space of A.

(c) If possible, write the third column of A as a linear combination
of the first two columns.
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Sol: Let B be the reduced row-echelon form of A.

P02 1 10 248 1
g 1 3 1 3 01 30 -4

A: B:
-2 -1 1 -1 3 By 0 1 i
g o 80 1 o 090 0
g d @ A a b, b, b; b, b

(@) rank(A)=3 (the number of nonzero rows in B)

nuillity (A)=n-rank(A)=5-3=2
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(b) Leading 1

—={b,,b,,b,}isa basis for CS(B)
{a,,a,,a,}isabasis for CS(A)

L1 0

0 s L
a, = _2,a2= _1,and a, = L
o e o

(c) b,=-2b, +3b, = a;=-2a, +3a,
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= Thm 4.18: (Solutions of a nonhomogeneous linear system)
If X, 1s a particular solution of the nonhomogeneous system
AXx = b, then every solution of this system can be written in
the form x = x, + X, , wher X, Is a solution of the corresponding

homogeneous system Ax = 0.

Pr. Let x be any solution of Ax = b.

= A(X—Xx,)=Ax—Ax, =b-b=0.
= (X—X,) isasolutionof Ax=0
Let X, =X-X,

= X=X, +X,
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- EX 9: (Finding the solution set of a nonhomogeneous system)

Find the set of all solution vectors of the system of linear equations.

Sol:

Xl
3%,
Xl

16
o

17

-+ X2
£ 2
) 1 5
5 0 8
5 5 ¢

Elementary Linear Algebra: Section 4.6, p.203

2 X,
5X4

e

_|_

N

X4

S|
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X, s - 0 13 2 -l
X, =5 4 o -l o I 7
= X = = =S Tl 0
X, s = U r b 1 0 0
ol e e OF 1 0 kb

le. X, = Is a particular solution vector of Ax=Db.

X, = Ssu, + tu, Isasolutionof Ax=0
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« Thm 4.19: (Solution of a system of linear equations)
The system of linear equations Ax = b Is consistent if and only

If b is in the column space of A.

Pf:
et o T o
11 12 o 1n Xl bl
a a . g X b
A L ox— 0 ad b
_aml a'm2 oy a'mn_ _Xn_ _bm_

be the coefficient matrix, the column matrix of unknowns,
and the right-hand side, respectively, of the system Ax = b.
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Then

AX

Ay
a'21

a

ml_|

¥
a22

+ X,

a

m2

a‘11X1 97 a12)(2 aln Xn
a0 21X1 o a'22)(2 o aZan
_amlxl Tadia R o doa e .
Ay,

a

mn

Hence, Ax = b Is consistent if and only if b Is a linear combination
of the columns of A. That Is, the system is consistent if and only if
b Is in the subspace of R™ spanned by the columns of A.

Elementary Linear Algebra: Section 4.6, p.204
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= Note:

If rank([A|b])=rank(A)

Then the system Ax=Db Is consistent.

= EX 10: (Consistency of a system of linear equations)

(1 1 -1
L0 1

w

X
X3
X

w

(vl

s

Elementary Linear Algebra: Section 4.6, p.204

N

-l

0
0 1

0 0

1
2
0
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1 190 1 2
[Aib]=|1 0 1: 3|——|0 1 -2:-4
37 1 1 e8 0o 0

G &b W, W, W, V

h 4

SV =3W, —4w,
= b=3c,—-4c,+0c;, (bisinthe column space of A)

— The system of linear equations Is consistent.

8 Check:
rank (A) =rank ([A : b]) =2
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= Summary of equivalent conditions for square matrices:
If A Is an nxn matrix, then the following conditions are equivalent.

(1) Ais invertible

(2) Ax = b has a unique solution for any nx1 matrix b.
(3) Ax =0 has only the trivial solution

(4) A isrow-equivalentto I

(5) | AlZ0

(6) rank(A) =n

(7) The nrow vectors of A are linearly independent.

(8) The n column vectors of A are linearly independent.
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Key Learning in Section 4.6

= Find a basis for the row space, a basis for the column
space, and the rank of a matrix.

= Find the nullspace of a matrix.
= Find the solution of a consistent system Ax = b in the form

Xk X
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Keywords in Section 4.6

« FOW space : 7| 7

« column space: = 7 ¥
- null space: % 7 F

= solution space : f% 7 R
« rank: f%

« Nullity : % = #c
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4.7 Coordinates and Change of Basis

- Coordinate representation relative to a basis
LetB={v, V,, ...,V } be an ordered basis for a vector space V
and let x be a vector in V such that

X=CV,+C,V,+:-+C. V..

The scalarsc,, c,, ..., ¢ are called the coordinates of x relative
to the basis B. The coordinate matrix (or coordinate vector)
of x relative to B is the column matrix in R" whose components
are the coordinates of x.

[X]B % CEZ
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= EXx 1: (Coordinates and components in RM)
Find the coordinate matrix of x =(-2, 1, 3) in R3

relative to the standard basis
$=4{(1,00),(0,1,0),(0,0,1)}

Sol:
wx=(-2,1,3)=-2(1,0,0)+1(0,1,0) +3(0, 0,2),
-
K= L
s 3_
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= Ex 3: (Finding a coordinate matrix relative to a nonstandard basis)

Find the coordinate matrix of x = (1, 2,-1) in R3

relative to the (nonstandard) basis
B'={u, u, u}={(1,0,1),(0,-1,2), (2, 3,-5)}
Sol:x=cu,+c,u,+cu, = (1,2,-1)=¢,(1,0,) +c,(0,-1,2)+c,(2,3,-5)

Cl
— -
c. - Jc
L 7
— 10 -1 3
L 2 5

o

. 2
e

Elementary Linear Algebra: Section 4.7, p.209

= 1
= 2
= -1

100
0 10
00 1

l.e.

5
—8
-2

1
0
1

0. 21¢
1 s
2 ol
— q
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= Change of basis problem:
You were given the coordinates of a vector relative to one
basis B and were asked to find the coordinates relative to

another basis B'.

= EX: (Change of basis)

Consider two bases for a vector space V

B={u,,u,}, B ={u;,u.}

It [u;]g {Z} [uz]e {ﬂ

l.e., U, =au,+bu,, u,=cu,+du,
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kl
Let veV, [V]g :{ }

k2

= Vv =ku; +K,U,
=k, (au, +bu,) +k,(cu, +du,)
= (k,a+k,c)u, + (k,p+k,d)u,

= [V];

ka+kc| [a cfKk
kb+k,d| |b d]k,

[u:]; [wy)e] [v]e

Elementary Linear Algebra: Section 4.7, p.210
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« Transition matrix from B' to B:

Let B={u,,u,,...,u } and B'={u;,u;...,u;} be two bases
for a vector space V

If [v]g Is the coordinate matrix of v relative to B
[V]g: IS the coordinate matrix of v relative to B'

then [v]; = P[V]s

- ] ol el v

where

P = [[u;]B’ [u’Z]B’ iy [u:w]B]
IS called the transition matrix from B’ to B

Elementary Linear Algebra: Section 4.7, p.210 106/136



= Thm 4.20: (The inverse of a transition matrix)
If P Is the transition matrix from a basis B' to a basis B in R",
then
(1) P is invertible

(2) The transition matrix from B to B' Is P

= Notes:

B{u u . u}p B2 il
[V]B % [[U;]B’[urz]si A [u,n]B] [V]B' = = [V]B'
Ve =llude U 1s, o LU, Je ] [V =P [V
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« Thm 4.21: (Transition matrix from B to B')
Let B={v,, V,, ..., Vv }and B'={u,, u,, ..., u_} be two bases
for R". Then the transition matrix P-* from B to B' can be found

by using Gauss-Jordan elimination on the nx2n matrix [B':B]

as follows.

[B":B] — [I,:P*
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» Ex 5: (Finding a transition matrix)
B ={(-3, 2), (4,-2)} and B' ={(-1, 2), (2,—2)} are two bases for R’
(a) Find the transition matrix from B' to B.
T
(b) Let [v]y = o find [V];

(c) Find the transition matrix from B to B' .
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Sol:

@) | 3 4 = 1 1 i 19 5 7
2 =2 2 D 0 1 2 1

B B I P

3 -2 o .
B L J (the transition matrix from B' to B)
(b)

|1 .
N R P

V], = Ll} =V =1(-12)+(2)(2,-2)=(3-2)

[V] = {_(ﬂ v (132 0L 2-6B2
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(c)

= Check:

L ] I B B0
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= Ex 6: (Coordinate representation in P5(x))
(a) Find the coordinate matrix of p = 3x3-2x?+4 relative to the
standard basis S = {1, x, x2, X3} in P,(x).
(b) Find the coordinate matrix of p = 3x3-2x4+4 relative to the
basis S = {1, 1+x, 1+ X2, 1+ X3} in P,(x).
Sol: 4

@ p=@4)(1) +(O)(X) +(-2)(x*) + B)(X*) = [p], = _(2)
. 3
0
(b) p=B)1) +(O)(A+x) +(-2)(A+x*) +(B)A+Xx’) = [p], = 5
3
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= EX: (Coordinate representation in M., ,)
9.6

Find the coordinate matrix of x = [
i 5

} relative to

the standard basis In M, ,.

o "o ollo o olls 3]
L 4o e S

- [X]B =

|
OO\I@(J‘II

Elementary Linear Algebra: Section 5.7, Addition
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Key Learning in Section 4.7

= Find a coordinate matrix relative to a basis in R"
= Find the transition matrix from the basis to the basis B' in R".
= Represent coordinates in general n-dimensional spaces.
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Keywords in Section 4.7

= coordinates of x relative to B: x4p ¥ *> B 45

coordinate matrix; A $&45

coordinate vector: & & &
change of basis problem: 8 & % 4% F° 42

transition matrix from B' to B: /£_B' 3| BedE £ 45t
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4.8 Applications of Vector Spaces

= Conic sections and rotation:

Every conic section in the xy-plane has an equation that can be
written in the form

ax® +bxy +cy’ +dx+ey+ f =0

Identifying the graph of this equation is fairly simple as long as b,
the coefficient of the xy-term, is zero.

When b Is zero, the conic axes are parallel to the coordinate axes,
and the identification is accomplished by writing the equation in
standard (completed square) form.
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= Standard forms of equations of conics:

Circle (r = radius): (x — h)> + (y — k)?> = r?

Ellipse (2a = major axis length, 28 = minor axis length):

x—h?  (y—k? Y - (y-k)?
(r}_l_{}}: f [x)_l_{}}:
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Hyperbola (2a = transverse axis length, 28 = conjugate axis length):

Y o y-k* &-h®_
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Parabola (p = directed distance from vertex to focus):
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= EX 5: (Identifying Conic Sections)

The standard form of x°—2x+4y—-3=0 s

(x=1)* =4(-1)(y-1)
vertex at (h,k)=(1,1)

The axis of the parabola is vertical. Because p = —1,

the focus is the point (1, 0).

Because the focus lies below the vertex,

the parabola opens downward.

Elementary Linear Algebra: Section 4.8, p.222

|+
m
‘ 1

(1. 1)

I
Focus 2 3
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The standard form of x2+4y? +6x—8y+9=0 IS
2 s
(39 @0
4 1
center at (h,k)=(-3,1)

The vertices of this ellipse occur at (=5, 1) b
and (—1, 1), and the end points of the .

minor axis occur at (—3, 2) and (-3, 0).

54 3 o1

(x + 3)2 L - ) |
4 |
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For second-degree equations that have an xy-term, the axes of the
graphs of the corresponding conics are not parallel to the coordinate

axes.
The required rotation @ angle (measured counterclockwise) is

a—c
cot 260 =——
b
standard basis .
Y J (cos 6, sin 0)
B={(10), (0,1} o n/ |
(—sinB.cos0) q "t~ /.~ .
new basis ’ 2o
[ NRHO)
B'={(cos 4, sind), (-sin g, cos &)} SN
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« Ex 6: (A Transition Matrix for Rotation in R?)
B’ ={(cos 4, sin @), (—sin g, cos )}
Sol: By Theorem 4.21

. cosg smdl d O
B B]_Line cosd O 1}

& 1 0 ros@d o sy
L ]_[O 1 —sind cos@}

cosd sin@ || x| [ X
—sing cos@|y| |V
X'=xcos@+ysingd Yy =-—xsin@+ ycosd
X=Xxcos@-y'sin@ y=x'sin@+y' cosd
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= Rotation of axes:

The general second-degree equation
ax® +bxy +cy® +dx+ey+ f =0
can be written in the form
a'(X)’ +c'(y) +dx' +ey'+f'=0
by rotating the coordinate axes counterclockwise through the

angle 6, where 6 is defined by

cot 29:E
b

The coefficients of the new equation are obtained from the
substitutions
X=x'cos@—-y'siné and y=X'sin@+ y'cos o
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= EX 7: (Rotation of a Conic Section)

Perform a rotation of axes to eliminate the xy-term in
5X% —6XYy +5y° +14+/2x— 2-/2y +18 =0
and sketch the graph of the resulting equation in the x’y’-plane.
Sol: The angle of rotation

cot2<9=a_C=5_65:O
O=rxl4
. 1 1
sin@=—— and cosf@ =—
J2 J2

By substituting
X=Xxcos@—-y'sinfd=—(x"-y
y ﬁ( y')

-

: 1
=X'sin@+y'cosf=—(x'+Yy
y y )
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(X)? + 4(y")2 +6X'—8y' +9=0
' 2 ' 2 / 2 > 2
(x'+3) +(y ) K +(y -

i
2? 12 4 1
new basis
ol ey ,
B = , , , '+32 (y'=-12_
{(\/E \/i) (\/é \/é)} | \ —: ) N l 1
the vertices

-5 -1 Y ‘k . 24 {x’
and /

use the equations

=L eyyamdy= L ey
obtain
(-3/2,-2+/2) and (—+/2,0)
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Key Learning in Section 4.8

« Use the Wronskian to test a set of solutions of a linear
homogeneous differential equation for linear independence.

- Identify and sketch the graph of a conic section and perform a
rotation of axes.
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Keywords in Section 4.8

« Ellipse: #F[F]

- Hyperbola: g+
= Parabola: #¢% s

« Vertex: 78 2k

- Focus: & 2k
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4.1 Linear Algebra Applied

« Force

Vectors have a wide variety of applications in
engineering and the physical sciences. For
example, to determine the amount of force
required to pull an object up a ramp that has an
angle of elevation 0, use the figure at the right.

In the figure, the vector labeled W represents the
weight of the object, and the vector labeled F
represents the required force. Using similar
triangles and some trigonometry, the required
force iIs F = W sin 4. (Verifying this.)

W
Y

F
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4.2 Linear Algebra Applied

In a mass-spring system, motion is assumed to occur
in only the vertical direction. That is, the system has
one degree of freedom. When the mass is pulled
downward and then released, the system will
oscillate. If the system is undamped, meaning that
there are no forces present to slow or stop the
oscillation, then the system will oscillate indefinitely.
Applying Newton’s Second Law of Motion to the
mass yields the second order differential equation

.’

\ M
mnmwmmwppwwwmuuu.
i gl EAMNB LT CTTG G
| | AL

(R ey e by e Uy

e

NI

X" +@*x=0
where x Is the displacement at time t and w Is a fixed

constant called the natural frequency of the system.
The general solution of this differential equation is

O Y oYY e Y YW UIAARARAAAA A R AA RAA LA |
- \ | \ 111 |
Wi L | FERREYTERT TR EUNVY

X(t) = a,sin wt +a, cos wt
where a, and a, are arbitrary constants. (Try
verifying this.) In Exercise 41, you are asked to show
that the set of all functions x(t) is a vector space.
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4.3 Linear Algebra Applied

= Digital Sampling

Digital signal processing depends on sampling, which
converts continuous signals into discrete sequences
that can be used by digital devices. Traditionally,
sampling i1s uniform and pointwise, and Is obtained
from a single vector space. Then, the resulting
sequence IS reconstructed into a continuous-domain
signal. Such a process, however, can involve a
R T significant reduction in information, which could
result in a low-quality reconstructed signal. In
applications such as radar, geophysics, and wireless
communications, researchers have determined
situations in which sampling from a union of vector
subspaces can be more appropriate.
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4.4 Linear Algebra Applied

= Image Morphing

Image morphing is the process of transforming one

Image Into another by generating a sequence of
synthetic intermediate images. Morphing has a wide
variety of applications, such as movie special effects,
age progression software, and simulating wound
healing and cosmetic surgery results. Morphing an
Image uses a process called warping, in which a piece
of an image is distorted. The mathematics behind
warping and morphing can include forming a linear
combination of the vectors that bound a triangular
piece of an Image, and performing an affine
transformation to form new vectors and a distorted
Image piece.
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4.5 Linear Algebra Applied

- The RGB color model combinations of the colors red
(r), green (g), and blue (b), known as the primary
additive colors, to create all other colors in a system.
Using the standard basis for R3, where r = (1, 0, 0), g =
(0, 1, 0) and b = (0, 0, 1) any visible color can be
represented as a linear combination c,r + c,g + c;b of the
primary additive colors. The coefficients c; are values
between 0 and a specified maximum a inclusive. When
C, = C, = c; the color is grayscale, with ¢; = 0
representing black and c; = a representing white. The
RGB color model is commonly used in computers, smart
phones, televisions, and other electronic with a color
display .
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4.6 Linear Algebra Applied

The U.S. Postal Service uses barcodes to represent such

information as ZIP codes and delivery addresses. The ZIP +

4 barcode shown at the left starts with a long bar, has a series
1 of short and long bars to represent each digit in the ZIP + 4

code and an additional digit for error checking, and ends with
a long bar. The following is the code for the digits.

2 =af
FET R F
‘i

0="||| l=|||" 2=||||| 3=||"| 4=|I||I

5=|I|I| 6=|"|| 7=I|||I 8=I||I| 9=I|I||

The error checking digit is such that when it is summed with
— the digits in the ZIP + 4 code, the result is a multiple of 10.
ZSSYORSTREET (Verify this, as well as whether the ZIP + 4 code shown is
coded correctly.) More sophisticated barcodes will also
include error correcting digit(s). In an analogous way,
bl bl matrices can be used to check for errors in transmitted
messages. Information in the form of column vectors can be
multiplied by an error detection matrix. When the resulting
product is in the nullspace of the error detection matrix, no
error in transmission exists. Otherwise, an error exists
somewhere in the message. If the error detection matrix also
has error correction, then the resulting matrix.
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4.7 Linear Algebra Applied
= Crystallography

Crystallography is the science of atomic and
molecular structure. In a crystal, atoms are in a
repeating pattern called a lattice. The simplest
repeating unit Iin a lattice i1s a unit cell.
Crystallographers can use bases and coordinate
matrices in R3 to designate the locations of atoms in a
unit cell. For example, the figure below shows the
unit cell known as end-centered monoclinic.

7

ot

One possible coordinate matrix for the top end-
centered (blue) atom is

e =[5 3 1] -
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4.8 Linear Algebra Applied

- Satellite Dish

A satellite dish Is an antenna that is designed to
transmit or receive signals of a specific type. A
standard satellite dish consists of a bowl-shaped
surface and a feed horn that is aimed toward the
surface. The bowl-shaped surface is typically in the
shape of an elliptic paraboloid. (See Section 7.4.)
The cross section of the surface is typically in the
shape of a rotated parabola.
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