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5.1 Length and Dot Product in Rn 

 Length: 

The length of a vector                                in Rn is given by 
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1|||| nvvv  v

 Notes: Properties of length 
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is called a unit vector. 

),,,( 21 nvvv v

 Notes: The length of a vector is also called its norm.  

Elementary Linear Algebra: Section 5.1, p.232 
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 Ex 1: 

(a) In R5, the length of                                        is given by  

 

 

(b) In R3 the length of                                    is given by  
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1
17

17

17

3

17

2

17

2
||||

222

















 









v

),,(
17

3

17

2

17

2 v

(v is a unit vector) 

Elementary Linear Algebra: Section 5.1, p.232 
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 A standard unit vector in Rn: 

 

  





   0   2

   0    1

       

c

c

cvu

u and v have the same direction 

u and v have the opposite direction 

 Notes: (Two nonzero vectors are parallel) 

        1,,0,0,0,,1,0,0,,0,1,,, 21  neee

 Ex: 

the standard unit vector in R2: 

 

the standard unit vector in R3: 

      1,0,0,1, ji

        1,0,0,0,1,0,0,0,1,, kji

Elementary Linear Algebra: Section 5.1, p.232 
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 Thm 5.1: (Length of a scalar multiple) 

Let v be a vector in Rn and c be a scalar. Then 
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  Pf: 
),,,( 21 nvvv v

),,,( 21 ncvcvcvc  v

Elementary Linear Algebra: Section 5.1, p.233 
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 Thm 5.2: (Unit vector in the direction of v) 

If v is a nonzero vector in Rn, then the vector 
 

has length 1 and has the same direction as v. This vector u 

is called the unit vector in the direction of v. 

||||v

v
u 

Pf: 

v is nonzero 0
1

0 
v

v

v
v

1
u   (u has the same direction as v) 

1||||
||||

1

||||
||||  v

vv

v
u (u has length 1 ) 

Elementary Linear Algebra: Section 5.1, p.233 
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 Notes: 

     (1) The vector           is called the unit vector in the direction of v. 

 

     (2) The process of finding the unit vector in the direction of v  

           is called normalizing the vector v.  

||||v

v

Elementary Linear Algebra: Section 5.1, p.233 
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 Ex 2: (Finding a unit vector) 

Find the unit vector in the direction of                          ,  

and verify that this vector has length 1. 
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      is a unit vector. 

)2,1,3( v   14213 222  v

 Sol: 

)2,1,3( v

Elementary Linear Algebra: Section 5.1, p.233 
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 Distance between two vectors: 

The distance between two vectors u and v in Rn is  

||||),( vuvu d

 Notes: (Properties of distance) 

(1) 

(2)             if and only if  

(3) 

0),( vud

0),( vud vu 

),(),( uvvu dd 

Elementary Linear Algebra: Section 5.1, p.234 
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 Ex 3: (Finding the distance between two vectors) 

The distance between u = (0, 2, 2) and v = (2, 0, 1) is 

312)2(

||)12,02,20(||||||),(

222 

 vuvud

Elementary Linear Algebra: Section 5.1, p.234 
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 Dot product in Rn: 

The dot product of                                    and  

is the scalar quantity 

 Ex 4: (Finding the dot product of two vectors) 

The dot product of u=(1, 2, 0, -3) and v=(3, -2, 4, 2) is 

7)2)(3()4)(0()2)(2()3)(1(  vu

nnvuvuvu  2211vu

),,,( 21 nuuu u ),,,( 21 nvvv v

Elementary Linear Algebra: Section 5.1, p.235 
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 Thm 5.3: (Properties of the dot product) 

   If  u, v, and w are vectors in Rn and c is a scalar,  

      then the following properties are true. 

       (1) 

       (2) 

       (3) 

       (4) 

       (5)         , and                  if and only if 

uvvu 

wuvuwvu  )(

)()()( vuvuvu ccc 

2||||vvv 

0 vv 0 vv 0v

Elementary Linear Algebra: Section 5.1, p.235 
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 Euclidean n-space: 

Rn was defined to be the set of all order n-tuples of real 

numbers. When Rn is combined with the standard 

operations of vector addition, scalar multiplication, vector 

length, and the dot product, the resulting vector space is 

called Euclidean n-space. 

Elementary Linear Algebra: Section 5.1, p.235 



15/101 

 Sol: 

6)8)(2()5)(2()a(  vu

)18,24()3,4(66)()b(  wwvu

12)6(2)(2)2()c(  vuvu

25)3)(3()4)(4(||||)d( 2  www

)2,13()68,)8(5(2)e(  wv

22426)2)(2()13)(2()2(  wvu

 Ex 5: (Finding dot products) 

)3,4(),8,5(,)2,2(  wvu

(a)            (b)                 (c)                (d)             (e) vu  wvu )(  )2( vu  2|||| w )2( wvu 

Elementary Linear Algebra: Section 5.1, p.236 
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 Ex 6: (Using the properties of the dot product) 

Given 

 

39uu 3 vu 79 vv

)3()2( vuvu 

 Sol: 

)3(2)3()3()2( vuvvuuvuvu 

Find 

254)79(2)3(7)39(3 

vvuvvuuu  )2()3()2()3(

)(2)(6)(3 vvuvvuuu 

)(2)(7)(3 vvvuuu 

Elementary Linear Algebra: Section 5.1, p.236 
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 Thm 5.4: (The Cauchy - Schwarz inequality)  

 If u and v are vectors in Rn, then 

                                    (          denotes the absolute value of       ) |||||||||| vuvu  || vu  vu 

vuvu

vvuuvu

vu







55511

11

5   ,11   ,1  vvuuvu

 Ex 7: (An example of the Cauchy - Schwarz inequality) 

            Verify the Cauchy - Schwarz inequality for u=(1, -1, 3)  

             and v=(2, 0, -1) 

 Sol: 

Elementary Linear Algebra: Section 5.1, p.237 
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 Note: 

The angle between the zero vector and another vector is 

not defined. 

 The angle between two vectors in  Rn: 
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||||||||
cos

vu

vu

1cos 



1cos

0





0cos 

2



 


0cos

2








0cos 

2
0








   
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Elementary Linear Algebra: Section 5.1, p.238 
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 Ex 8: (Finding the angle between two vectors) 

)2,2,0,4( u )1,1,0,2( v

 Sol: 

    242204
2222
 uuu
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
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
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

    61102 2222  vvv

12)1)(2()1)(2()0)(0()2)(4( vu

  u and v have opposite directions. )2( vu 

Elementary Linear Algebra: Section 5.1, p.238 
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 Orthogonal vectors: 

Two vectors u and v in Rn are orthogonal if   

0 vu

 Note: 

The vector 0 is said to be orthogonal to every vector. 

Elementary Linear Algebra: Section 5.1, p.238 
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 Ex 10: (Finding orthogonal vectors)   

 Determine all vectors in Rn that are orthogonal to u=(4, 2). 
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 Sol: 

Elementary Linear Algebra: Section 5.1, p.238 
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 Thm 5.5: (The triangle inequality)  

If u and v are vectors in Rn, then |||||||||||| vuvu 

Pf: 
)()(|||| 2

vuvuvu 

2222 ||||||2||||    ||||)(2||||

)(2)()(

vvuuvvuu

vvvuuuvuvvuu





2

22

||)||||(||

||||||||||||2||||

vu

vvuu





|||||||||||| vuvu 

 Note: 

Equality occurs in the triangle inequality if and only if  

the vectors u and v have the same direction. 

Elementary Linear Algebra: Section 5.1, p.239 
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 Thm 5.6: (The Pythagorean theorem) 

If u and v are vectors in Rn, then u and v are orthogonal 

if and only if    

222 |||||||||||| vuvu 

Elementary Linear Algebra: Section 5.1, p.239 
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 Dot product and matrix multiplication: 


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
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
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
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
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n
T vuvuvu
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v
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
















 

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(A vector                                        in Rn  

is represented as an n×1 column matrix)  

),,,( 21 nuuu u

Elementary Linear Algebra: Section 5.1, p.240 
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Key Learning in Section 5.1 

▪ Find the length of a vector and find a unit vector. 

▪ Find the distance between two vectors. 

▪ Find a dot product and the angle between two vectors, determine 

orthogonality, and verify the Cauchy-Schwarz Inequality, the 

triangle inequality, and the Pythagorean Theorem. 

▪ Use a matrix product to represent a dot product. 
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Keywords in Section 5.1 

 length:  長度 

 norm:  範數 

 unit vector:  單位向量 

 standard unit vector :  標準單位向量 

 normalizing:  單範化  

 distance:  距離 

 dot product:  點積 

 Euclidean n-space:  歐基里德n維空間  

 Cauchy-Schwarz inequality:  科西-舒瓦茲不等式 

 angle:  夾角 

 triangle inequality:  三角不等式 

 Pythagorean theorem:  畢氏定理 
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5.2 Inner Product Spaces  

         (1) 

         (2) 

         (3) 

         (4)            and                      if and only if  

〉〈〉〈 uvvu ,, 

〉〈〉〈〉〈 wuvuwvu ,,, 

〉〈〉〈 vuvu ,, cc 

0, 〉〈 vv 0, 〉〈 vv 0v

 Inner product: 

Let u, v, and w be vectors in a vector space V, and let c be 

any scalar. An inner product on V is a function that associates 

a real number <u, v> with each pair of vectors u and v and 

satisfies the following axioms. 

Elementary Linear Algebra: Section 5.2, p.243 
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 Note: 

V

Rn

 space for vectorproduct inner  general, 

 )for product inner Euclidean (productdot       





vu

vu

 Note: 

A vector space V with an inner product is called  an inner 

product space. 

    ,  ,V           Vector space: 

Inner product space:    ,  ,  ,  ,V

Elementary Linear Algebra: Section 5.2, Addition 
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 Ex 1: (The Euclidean inner product for Rn) 

Show that the dot product in Rn satisfies the four axioms 

of an inner product. 

nnvuvuvu  2211, vuvu 〉〈

),, ,(,),, ,( 2121 nn vvvuuu   vu

 Sol: 

By Theorem 5.3, this dot product satisfies the required four axioms. 

Thus it is an inner product on Rn. 

Elementary Linear Algebra: Section 5.2, p.243 



30/101 

 Ex 2:  (A different inner product for Rn) 

Show that the function defines an inner product on R2, 

where                     and                     . 

2211 2, vuvu 〉〈 vu

),(    ),( 2121 vvuu  vu

 Sol: 

〉〈〉〈 uvvu ,22,   )( 22112211  uvuvvuvua

〉〈〉〈

〉〈

wuvu

wvu

,,

)2()2(

22

)(2)(,

22112211

22221111

222111









wuwuvuvu

wuvuwuvu

wvuwvu

),(   )( 21 wwb w

Elementary Linear Algebra: Section 5.2, p.244 
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 Note: (An inner product on Rn) 

0,, 222111  innn cvucvucvuc 〉〈 vu

〉〈〉〈 vuvu ,)(2)()2(,   )( 22112211 cvcuvcuvuvuccc 

02,   )(
2

2

2

1  vvd 〉〈 vv

)0(0020, 21

2

2

2

1  vvv vvvv〉〈

Elementary Linear Algebra: Section 5.2, p.244 
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 Ex 3: (A function that is not an inner product) 

Show that the following function is not an inner product on R3.  

332211 2 vuvuvu  〉〈 vu

 Sol: 

Let )1,2,1(v

06)1)(1()2)(2(2)1)(1(,Then  vv

Axiom 4 is not satisfied.  

Thus this function is not an inner product on R3. 

Elementary Linear Algebra: Section 5.2, p.244 
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 Thm 5.7: (Properties of inner products)  

Let u, v, and w be vectors in an inner product space V, and 

let c be any real number.  

 (1) 

 (2) 

 (3) 

0,,  〉〈〉〈 0vv0

〉〈〉〈〉〈 wvwuwvu ,,, 

〉〈〉〈 vuvu ,, cc 

 Norm (length) of u:  

〉〈 uuu ,|||| 

〉〈 uuu ,|||| 2

 Note: 

Elementary Linear Algebra: Section 5.2, p.245 
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u and v  are orthogonal if                     . 

 Distance between u and v: 

 vuvuvuvu ,||||),(d

 Angle between two nonzero vectors u and v: 

  0,
||||||||

,
cos

vu

vu 〉〈

 Orthogonal: 

0, 〉〈 vu

)( vu 

Elementary Linear Algebra: Section 5.2, p.246 
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 Notes: 

(1) If              , then v is called a unit vector.  

 

(2) 

1|||| v

0  

1





v

v
 

gNormalizin

v

v (the unit vector in the  

  direction of v) 

not a unit vector 

Elementary Linear Algebra: Section 5.2, p.246 
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 Ex 6: (Finding inner product) 

)(in  spolynomial be24)(,21)(Let 2

22 xPxxxqxxp 

nnbababaqp  1100, is an inner product   

?,)( 〉〈 qpa ?||||)( qb ?),()( qpdc

Sol: 

2)1)(2()2)(0()4)(1(,)a( 〉〈 qp

211)2(4,||||)b( 222  〉〈 qqq

22)3(2)3(

,||||),(

323)c(

222

2







qpqpqpqpd

xxqp

Elementary Linear Algebra: Section 5.2, p.246 
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 Properties of norm: 

(1) 

(2)                 if and only if  

(3) 

 Properties of distance: 

(1) 

(2)                        if and only if  

(3) 

0|||| u

0|||| u 0u 

|||||||||| uu cc 

0),( vud

0),( vud vu 

),(),( uvvu dd 

Elementary Linear Algebra: Section 5.2, p.247 
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 Thm 5.8： 

Let u and v be vectors in an inner product space V. 

(1) Cauchy-Schwarz inequality: 

  

(2) Triangle inequality: 

  

(3) Pythagorean theorem : 

      u and v are orthogonal if and only if    

|||||||||||| vuvu  Theorem 5.5 

222 |||||||||||| vuvu  Theorem 5.6 

|||||||||,| vuvu 〉〈 Theorem 5.4 

Elementary Linear Algebra: Section 5.2, p.248 



39/101 

 Orthogonal projections in inner product spaces:  

Let u and v be two vectors in an inner product space V, 

such that          . Then the orthogonal projection of u 

onto v is given by 

0v 

v
vv

vu
uv






,

,
proj

 Note: 

If v is a init vector, then                              . 

The formula for the orthogonal projection of u onto v 

takes the following simpler form.  

1||||, 2 vvv 〉〈

vvuuv  ,proj

Elementary Linear Algebra: Section 5.2, p.249 
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 Ex 10: (Finding an orthogonal projection in R3) 

Use the Euclidean inner product in R3 to find the 

orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0). 

Sol: 

10)0)(4()2)(2()1)(6(,  vu

5021, 222  vv

)0,4,2()0,2,1(proj
5

10 



 v

vv

vu
uv

Elementary Linear Algebra: Section 5.2, p.249 

 Note: 

).0,2,1(  toorthogonal is 4) 2, (4,0) 4, (2,4) 2, (6,proj  vuu
v
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 Thm 5.9: (Orthogonal projection and distance) 

Let u and v be two vectors in an inner product space V, 

such that         . Then  0v 






vv

vu
vuuu v

,

,
      ,),()proj,( ccdd

Elementary Linear Algebra: Section 5.2, p.260 
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Key Learning in Section 5.2 

▪ Determine whether a function defines an inner product, and find 

the inner product of two vectors in Rn, Mm,n, Pn and  C[a, b]. 

▪ Find an orthogonal projection of a vector onto another vector in 

an inner product space. 
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Keywords in Section 5.2 

 inner product:  內積 

 inner product space:  內積空間 

 norm:  範數 

 distance:  距離 

 angle:  夾角 

 orthogonal:  正交  

 unit vector:  單位向量 

 normalizing:  單範化  

 Cauchy – Schwarz inequality:  科西 - 舒瓦茲不等式 

 triangle inequality:  三角不等式 

 Pythagorean theorem:  畢氏定理 

 orthogonal projection:  正交投影 
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5.3 Orthonormal Bases: Gram-Schmidt Process  

 Orthogonal: 

A set S of vectors in an inner product space V is called an 

orthogonal set if every pair of vectors in the set is orthogonal. 

 Orthonormal: 

An orthogonal set  in which each vector is a unit vector is 

called orthonormal. 

 
 












ji

ji

VS

ji

n

0

1
,

,,, 21

vv

vvv

 

0,

,,, 21





ji

n VS

vv

vvv 

ji 

 Note: 

If S is a basis, then it is called an orthogonal basis or an 

orthonormal basis.  
Elementary Linear Algebra: Section 5.3, p.254 
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 Ex 1: (A nonstandard orthonormal basis for R3) 

Show that the following set is an orthonormal basis. 

 











































3

1
,

3

2
,

3

2
,

3

22
,

6

2
,

6

2
,0,

2

1
,

2

1

321

S

vvv

 Sol: 

Show that the three vectors are mutually orthogonal.  

0
9

22

9

2

9

2

00
23

2

23

2

00

32

31

6
1

6
1

21







vv

vv

vv

Elementary Linear Algebra: Section 5.3, p.255 
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Show that each vector is of length 1.  

Thus S is an orthonormal set. 

1||||

1||||

10||||

9
1

9
4

9
4

333

9
8

36
2

36
2

222

2
1

2
1

111







vvv

vvv

vvv

Elementary Linear Algebra: Section 5.3, p.255 
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The standard basis                        is orthonormal. 

 Ex 2:  (An orthonormal basis for          ) 

In          , with the inner product 

)(3 xP

221100, bababaqp 

} , ,1{ 2xxB 

)(3 xP

Sol: 

,001 2

1 xxv ,00 2

2 xxv ,00 2

3 xx v

0)1)(0()0)(1()0)(0(,    

,0)1)(0()0)(0()0)(1(,    

,0)0)(0()1)(0()0)(1(,    

32

31

21







vv

vv

vv

Then 

Elementary Linear Algebra: Section 5.3, p.255 
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        

        

         1110000

,1001100

,1000011

333

222

111







v,vv

v,vv

v,vv

Elementary Linear Algebra: Section 5.3, p.255 
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Pf: 

 S  is an orthogonal set of nonzero vectors 

 Thm 5.10: (Orthogonal sets are linearly independent) 

If                                 is an orthogonal set of nonzero vectors 

in an inner product space V, then S is linearly independent.  

 nS v,,v,v 21

0and0i.e.  iiji ji v,vv,v

iccc

ccc

iinn

nn





0,0,

0Let

2211

2211

vvvvv

vvv









iii

inniiiii

c

cccc

v,v

v,vv,vv,vv,v

      

   2211 

t.independenlinearly  is          0   0 Siciii  v,v

Elementary Linear Algebra: Section 5.3, p.257 
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 Corollary to Thm 5.10: 

If V is an inner product space of dimension n, then any 

orthogonal set of n nonzero vectors is a basis for V. 

Elementary Linear Algebra: Section 5.3, p.257 
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 Ex 4: (Using orthogonality to test for a basis) 

    Show that the following set is a basis for      . 4R

)}1,1,2,1(,)1,2,0,1(,)1,0,0,1(,)2,2,3,2{(

4321

S

vvvv

 Sol: 
 
 

         : nonzero vectors 

02262

02402

02002

41

31

21







vv

vv

vv

4321 ,,, vvvv

01201

01001

01001

43

42

32







vv

vv

vv

.orthogonal is S

4for  basis a is RS (by Corollary to Theorem 5.10) 

Elementary Linear Algebra: Section 5.3, p.257 
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 Thm 5.11: (Coordinates relative to an orthonormal basis) 

If                                   is an orthonormal basis for an inner 

product space V, then the coordinate representation of a vector 

w with respect to B is 

},,,{ 21 nB vvv 

},,,{ 21 nB vvv   is orthonormal  

ji

ji
ji










0

1
, vv

Vw

nnkkk vvvw  2211 (unique representation) 

Pf: 

                 is a basis for V },,,{ 21 nB vvv 

nn vvwvvwvvww  ,,, 2211 

Elementary Linear Algebra: Section 5.3, p.258 
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ik

kkk

kkk

i

inniiii

inni







〉,〈〉,〈〉,〈

〉,)(〈〉,〈

11

2211

vvvvvv

vvvvvw





nn vvwvvwvvww  ,,, 2211 

 Note: 

If                                 is an orthonormal basis for V and           ,  },,,{ 21 nB vvv  Vw

Then the corresponding coordinate matrix of w relative to B is  

 



























n

B

vw

vw

vw

w

,

,

,

2

1



Elementary Linear Algebra: Section 5.3, p.258 
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 Ex 5: (Representing vectors relative to an orthonormal basis) 

Find the coordinates of  w = (5, -5, 2) relative to the following 

orthonormal basis for       . 

)}1,0,0(,)0,,(,)0,,{(
5
3

5
4

5
4

5
3 B

3R

 Sol: 

2)1,0,0()2,5,5(,

7)0,,()2,5,5(,

1)0,,()2,5,5(,

33

5
3

5
4

22

5
4

5
3

11







vwvw

vwvw

vwvw























2

7

1

][ Bw

Elementary Linear Algebra: Section 5.3, p.258 
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 Gram-Schmidt orthonormalization process: 

                  is a basis for an inner product space V   },,,{ 21 nB uuu 

11Let uv  } )({1 1vw sp a n

} ),({2 21 vvw sp a n

},,,{' 21 nB vvv 

},,,{''
2

2

n

nB
v

v

v

v

v

v

1

1 

is an orthogonal basis. 

is an orthonormal basis. 









1

1 〉〈

〉〈
proj

1

n

i

i

ii

in
nnnn n

v
v,v

v,v
uuuv W



2

22

23
1

11

13
3333

〉〈

〉〈

〉〈

〉〈
proj

2
v

v,v

v,u
v

v,v

v,u
uuuv W 

1

11

12
2222

〉〈

〉〈
proj

1
v

v,v

v,u
uuuv W 

Elementary Linear Algebra: Section 5.3, p.259 
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Sol: )0,1,1(11  uv

)2,0,0()0,
2

1
,

2

1
(

2/1

2/1
)0,1,1(

2

1
)2,1,0(

2

22

23
1

11

13
33











 v

vv

vu
v

vv

vu
uv

 Ex 7:  (Applying the Gram-Schmidt orthonormalization process) 

Apply the Gram-Schmidt process to the following basis.   

)}2,1,0(,)0,2,1(,)0,1,1{(

321

B

uuu

)0,
2

1
,

2

1
()0,1,1(

2

3
)0,2,1(1

11

12
22 




 v

vv

vu
uv

Elementary Linear Algebra: Section 5.3, p.260 
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}2) 0, (0, 0), , 
2

1
 ,

2

1
( 0), 1, (1,{},,{' 321


 vvvB

Orthogonal basis  

}1) 0, (0, 0), , 
2

1
 ,

2

1
( 0), , 

2

1
 ,

2

1
({},,{''

3

3

2

2 


v

v

v

v

v

v

1

1B

Orthonormal basis 

Elementary Linear Algebra: Section 5.3, p.260 
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 Ex 10: (Alternative form of Gram-Schmidt orthonormalization process) 

     Find an orthonormal basis for the solution space of the 

          homogeneous system of linear equations. 

0622

07

4321

421





xxxx

xxx

 Sol: 

  












 









08210

01201

06212

07011
.. EJG






















































































1

0

8

1

0

1

2

2

82

2

  

4

3

2

1

ts

t

s

ts

ts

x

x

x

x

Elementary Linear Algebra: Section 5.3, p.262 



59/101 

Thus one basis for the solution space is  

)}1,0,8,1(,)0,1,2,2{(},{ 21  vvB

 

   

 1 ,2 ,4 ,3

0 1, 2, ,2 
9

18
1 0, 8, 1,

,

,

0 1, 2, ,2

1

11

12
22

11














v
vv

vu
uv

uv

    1,2,4,3 0,1,2,2'  B (orthogonal basis)  
















 







 


30

1
,

30

2
,

30

4
,

30

3
 , 0,

3

1
,

3

2
,

3

2
''B

(orthonormal basis)  

Elementary Linear Algebra: Section 5.3, p.262 
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Key Learning in Section 5.3 

▪ Show that a set of vectors is orthogonal and forms an 

orthonormal basis, and represent a vector relative to an 

orthonormal basis. 

▪ Apply the Gram-Schmidt orthonormalization process. 
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Keywords in Section 5.3 

 orthogonal set:  正交集合 

 orthonormal set:  單範正交集合 

 orthogonal basis:  正交基底 

 orthonormal basis:  單範正交基底 

 linear independent:  線性獨立 

 Gram-Schmidt Process:  Gram-Schmidt過程   
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.in   all and in   allfor 0, if

 orthogonal are V spaceproduct inner an  of   and  subspaces The

221121

21

WW

WW

vvvv 

 Orthogonal subspaces:  

Elementary Linear Algebra: Section 5.4, p.266 

 Ex 2: (Orthogonal subspaces) 

.zero is in  any vector and in  any vectorfor 0, because orthogonal are

 )

1

1

1-

span(  and )

0

1

1

 ,

1

0

1

span(          

subspaces The

2121

21

WW

WW























































vv

5.4 Mathematical Models and Least Squares Analysis  
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    Let W be a subspace of an inner product space V. 

(a) A vector u in V is said to orthogonal to  W, 

      if u is orthogonal to every vector in W. 

(b) The set of all vectors in V that are orthogonal to every 

      vector in W is called the orthogonal complement of W. 

  (read “       perp”) 

} ,0,|{ WVW 
wwvv

W W

 Orthogonal complement of W:  

    0(2)                  0(1)  
VV

 Notes: 

Elementary Linear Algebra: Section 5.4, p.266 
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 Notes:    

                                            

 

WW

WW

VW

VW











)((3)

(2)

 of subspace a is (1)

 of subspace a is 

0

 

WW

WW

RyW

xWRV















)(  (3)         

)0,0(  (2)         

 of subspace a isaxis-  (1)Then 

axis   , If

2

2

 Ex: 

Elementary Linear Algebra: Section 5.4, Addition 
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 Direct sum: 

Let      and       be two subspaces of        . If each vector      

can be uniquely written as a sum of a vector      from       

and a vector         from       ,                       , then         is the 

direct sum of        and       , and you can write                  .  

1W 2W nR
nRx

1W1w

2W2w 21 wwx  nR

21 WWRn 
 Thm 5.13: (Properties of orthogonal subspaces)  

Let W be a subspace of Rn. Then the following properties 

are true.  

(1)    

(2)    

(3)    

nWW  )dim()dim(

 WWRn

WW )(

1W 2W

Elementary Linear Algebra: Section 5.4, pp.267-268 
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 Thm 5.14: (Projection onto a subspace)  

If                               is an orthonormal basis for the 

subspace S  of V, and            , then 

},,,{
21 t

uuu 

Vv

ttW uuvuuvuuvv  ,,,proj 2211 

Elementary Linear Algebra: Section 5.4, p.268 

 Pf: 

for W basis lorthonormaan  is },,,{ andW proj
21 tW

uuuv  

ttWWW
uuvuuvv  ,proj,projproj

11


)projproj(                                       

,proj,proj                
11

vvv

uuvvuuvv









WW

ttWW





) ,0,proj(  ,,                
11

i
iWtt




uvuuvuuv 
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 Ex 5: (Projection onto a subspace) 

     3 ,1 ,1 ,0 ,0 ,2 ,1 ,3 ,0 21  vww

Find the projection of the vector v onto the subspace W. 

  :, 21 ww

 Sol: 

an orthogonal basis for W 

    :0,0,1),
10

1
,

10

3
,0( , ,

2

2

1

1
21























w

w

w

w
uu

an orthonormal basis for W 

}),({ 21 wwspanW 

  )
5

3
,

5

9
,1(0,0,1)

10

1
,

10

3
,0(

10

6

,,proj
2211



 uuvuuvv
W
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 Find by the other method: 

 

bb

b

b

vbww

T1T

)(

T1T

21

)(proj

)(

,,

AAAAAx

AAAx

Ax

A

Acs













Elementary Linear Algebra: Section 5.4, p.269 
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 Thm 5.15: (Orthogonal projection and distance)  

Let W be a subspace of an inner product space V, and         . 

Then for all             , 

Vv

Ww vw Wproj

||||||proj|| wvvv  W

||||min||proj||r   o
W

wvvv
w


W

(                is the best approximation to v from W) vWpro j

Elementary Linear Algebra: Section 5.4, p.269 
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Pf: 

)proj()proj( wvvvwv  WW

)proj()proj( wvvv  WW

By the Pythagorean theorem  

222 ||proj||||proj|||||| wvvvwv  WW

0projproj  wvvw WW

22 ||proj|||||| vvwv W

||||||proj|| wvvv  W

Elementary Linear Algebra: Section 5.4, p.269 
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 Notes: 

(1) Among all the scalar multiples of a vector u, the  

      orthogonal projection of v onto u is the one that is 

      closest to v. (p.250 Thm 5.9) 

(2) Among all the vectors in the subspace W, the vector 

                    is the closest vector to v. 

 

vWproj

Elementary Linear Algebra: Section 5.4, p.269 
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 Thm 5.16: (Fundamental subspaces of a matrix) 

If A is an m × n matrix, then 

 (1) 

 

 (2) 

 

 (3) 

 (4) 

  

)())((

)())((

ACSANS

ANSACS









)())((

)())((









ACSANS

ANSACS

mmT RANSACSRANSACS  ))(()()()(

nTnT RACSACSRANSACS  ))(()()()(

Elementary Linear Algebra: Section 5.4, p.270 
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 Ex 6: (Fundamental subspaces) 

Find the four fundamental subspaces of the matrix. 





















000

000

100

021

A (reduced row-echelon form) 

Sol: 

      4 of subspace a is0,0,1,00,0,0,1span)( RACS 

        3 of subspace a is1,0,00,2,1span)( RARSACS 

    3 of subspace a is0,1,2span)( RANS 

Elementary Linear Algebra: Section 5.4, p.270 
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      4 of subspace a is1,0,0,00,1,0,0span)( RANS 





































0000

0010

0001

~

0010

0002

0001

RA

 Check: 

)())((   ANSACS

)())(( ANSACS 

4)()( RANSACS T 

3)()( RANSACS T 

ts    

Elementary Linear Algebra: Section 5.4, p.270 
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 Ex 3 & Ex 4: 

 

Let W is a subspace of R4 and                                                      .  

(a) Find a basis for W 

(b) Find a basis for the orthogonal complement of W. 

)1 0, 0, 0,(   ),0 1, 2, 1,( 21  ww

 Sol: 

21

00

00

10

01

~

10

01

02

01

ww







































 RA (reduced row-echelon form) 

}),({span 21 wwW

Elementary Linear Algebra: Section 5.4, p.267 
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 

    1,0,0,0,0,1,2,1

)(



 ACSWa

is a basis for W 

    

     































































 

































W

ts
t

s

ts

x

x

x

x

A

ANSACSWb

for  basis a is  0,1,0,10,0,1,2

0

1

0

1

0

0

1

2

0

2

      
1000

0121

)(

4

3

2

1



 Notes: 

4

4

    (2)

)dim()dim()dim(     (1)

RWW

RWW









Elementary Linear Algebra: Section 5.4, p.267 
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 Least squares problem: 

                               (A system of linear equations)  

(1) When the system is consistent, we can use the Gaussian 

elimination with back-substitution to solve for x 

bx A
11  mnnm

    (2) When the system is inconsistent, how to find the “best possible” 

solution of the system. That is, the value of x for which the 

difference between Ax and b is small. 

Elementary Linear Algebra: Section 5.4, p.271 
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 Notes: 

 Least squares solution: 

Given a system Ax = b of m linear equations in n unknowns, 

the least squares problem is to find a vector x in Rn that 

minimizes                   with respect to the Euclidean inner 

product on Rn. Such a vector is called a least squares 

solution of  Ax = b. 

bx A

Elementary Linear Algebra: Section 5.4, p.271 

xbxbbb

b

xbx

x

x

AA

ACSAAA

R

nR
ACS

ACS

n







minˆproj               

is,That   .  topossible as close as is

))(ˆ (i.e.,  of spacecolumn  in the  projˆ

such that in   ˆ vector a find  tois problem squareleast  The

)(

)(
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  )of subspace a is ()( m

n

nm

RACSACSA

R

MA

 






x

x

bx

xb

xb

xb

bx

















AAA

AA

ANSACSA

ACSA

projA
ACS

ˆi.e.

0)ˆ(

)())((ˆ

)()ˆ(

ˆLet 
)(

(the normal system associated with Ax = b) 

Elementary Linear Algebra: Section 5.4, p.271 
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 Note: (Ax = b is an inconsistent system) 

The problem of finding the least squares solution of              

is equal to he problem of finding an exact solution of the 

associated normal system                       . 

bx A

bx
  AAA ˆ

Elementary Linear Algebra: Section 5.4, p.271 
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 Ex 7: (Solving the normal equations) 

      Find the least squares solution of the following system 

 

 

                                            (this system is inconsistent) 

 

and find the orthogonal projection of b on the column space of A. 

 












































3

1

0

31

21

11

1

0

c

c

A bx

Elementary Linear Algebra: Section 5.4, p.271 



82/101 

Sol: 









































































11

4

3

1

0

321

111

146

63

31

21

11

321

111

b
T

T

A

AA

the associated normal system 





























11

4

146

63

ˆ

1

0

c

c

AAA TT
bx

Elementary Linear Algebra: Section 5.4, p.271 
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the least squares solution of Ax = b  











2
3

3
5

x̂

the orthogonal projection of b on the column space of A 
















































6
17

6
8

6
1

2
3

3
5

)(

31

21

11

ˆproj xb A
ACS

Elementary Linear Algebra: Section 5.4, p.271 
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Key Learning in Section 5.4 

▪ Define the least squares problem. 

▪ Find the orthogonal complement of a subspace and the 

projection of a vector onto a subspace. 

▪ Find the four fundamental subspaces of a matrix. 

▪ Solve a least squares problem. 

▪ Use least squares for mathematical modeling. 
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Keywords in Section 5.4 

 orthogonal to W:  正交於W 

 orthogonal complement:  正交補集 

 direct sum:  直和 

 projection onto a subspace:  在子空間的投影 

 fundamental subspaces:  基本子空間 

 least squares problem:  最小平方問題 

 normal equations:  一般方程式 
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5.5 Applications of Inner Product Spaces 

 The cross product of two vectors in R3 

kjiv 321321 ),,( vvvvvv 

A vector product that yields a vector in R3 is orthogonal to two 

vectors. This vector product is called the cross product, and it 

is most conveniently defined and calculated with vectors 

written in standard unit vector form 

Elementary Linear Algebra: Section 5.5, p.277 

)1,0,0(),0,1,0(),0,0,1(  kji



87/101 

 Cross product of two vectors in R3: 

kjiu 321 uuu  kjiv 321 vvv 

kjivu )()()( 122113312332 vuvuvuvuvuvu 

Let                            and                           be vectors in R3.  

The cross product of u and v is the vector 

kji         

kjivu

)()()( 122113312332

21

21

31

31

32

32

vuvuvuvuvuvu

vv

uu

vv

uu

vv

uu





321

321

vvv

uuu

kji

vu   Components of u 

 Components of v 

Elementary Linear Algebra: Section 5.5, p.277 

 Notes: 

(1) The cross product is defined only for vectors in R3.  

(2) The cross product of two vectors in R3 is orthogonal to two vectors. 

(3) The cross product of two vectors in Rn, n ≠ 3 is not defined here. 
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 Ex 1: (Finding the Cross Product of Two Vectors) 

kjiu  2 kjiv 23 

kjikji

kji

vu 753
13

21

23

11

21

12

213

121 















Sol: 

kjikji

kji

uv 753
21

13

11

23

12

21

121

213 















0kjikji

kji

vv 












 000
13

13

23

23

21

21

212

213

Elementary Linear Algebra: Section 5.5, p.278 
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 Thm 5.17: (Algebraic Properties of the Cross Product) 

If u, v, and w are vectors in R3 and c is a scalar, then the following 

properties are true. 

w)vu()wv(u 6.

0uu 5.

0u00u 4.

vuvu)vu( 3.

)wu(v)u()wv(u 2.

)uv(vu 1.













ccc

Elementary Linear Algebra: Section 5.5, p.278 
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Pf: 

kjiu 321 uuu  kjiv 321 vvv 

kji

kji

vu )()()( 122113312332

321

321 vuvuvuvuvuvu

vvv

uuu 

)(

)()()(

)()()(

122113312332

122113312332

321

321

uv                               

kji                               

kji

kji

uv







vuvuvuvuvuvu

uvuvuvuvuvuv

uuu

vvv

 Note: 

The vectors u × v and v × u have equal lengths but 

opposite directions. 

Elementary Linear Algebra: Section 5.5, p.278-279 
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 Thm 5.18: (Geometric Properties of the Cross Product) 

If u and v are nonzero vectors in R3, then the following properties 

are true. 

1. u × v is orthogonal to both u and v. 

2. The angle θ between u and v is given by                            . 

3. u and v are parallel if and only if              . 

4. The parallelogram having u and v as adjacent sides has an 

    area of           . 

sinv uvu 

0vu 

vu

Elementary Linear Algebra: Section 5.5, p.279 
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Pf: 

vuv u  sinArea

Base Height 

 Notes: 

(1) The three vectors u, v, and u × v form a right-handed system. 

(2) The three vectors u, v, and v × u form a left-handed system. 

Elementary Linear Algebra: Section 5.5, p.279 
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Ex 2: (Finding a Vector Orthogonal to Two Given Vectors) 

kj4iu  jiv 32 

Sol: 

kji

kji

vu 1123

032

141 

134112)3( 222  vu

kji
vu

vu

134

11

134

2

134

3









01) ,4(1,)
134

11
,

134

2
,

134

3
( 


   

0)0 ,3,2()
134

11
,

134

2
,

134

3
( 


   

length 

unit vector 

Elementary Linear Algebra: Section 5.5, p.280 
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Ex 3: (Finding the Area of a Parallelogram) 

kj4iu  3 kjv 62 

Sol: 

kji

kji

vu 61826

620

143 





19321036

61826 222

.          

vu





area 

Elementary Linear Algebra: Section 5.5, p.280 
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Key Learning in Section 5.5 

 Find the cross product of two vectors in R3. 

 Find the linear or quadratic least squares approximation of a 

function. 

 Find the nth-order Fourier approximation of a function. 
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Keywords in Section 5.5 

 cross product: 外積 

 parallelogram: 平行四邊形 
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 Electric/Magnetic Flux 
 
 Electrical engineers can use the dot product to calculate 
electric or magnetic flux, which is a measure of the 
strength of the electric or magnetic field penetrating a 
surface. Consider an arbitrarily shaped surface with an 
element of area dA, normal (perpendicular) vector dA, 
electric field vector E and magnetic field vector B. The 
electric flux Φe can be found using the surface integral Φe 

= ∫ E‧dA and the magnetic flux can be found using the 
surface integral Φe = ∫ B‧dA. It is interesting to note 
that for a given closed surface that surrounds an electrical 
charge, the net electric flux is proportional to the charge, 
but the net magnetic flux is zero. This is because electric 
fields initiate at positive charges and terminate at 
negative charges, but magnetic fields form closed loops, 
so they do not initiate or terminate at any point. This 
means that the magnetic field entering a closed surface 
must equal the magnetic field leaving the closed surface. 

5.1 Linear Algebra Applied 

Elementary Linear Algebra: Section 5.1,  p.240 
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 Work 
 

     The concept of work is important to scientists and 
engineers for determining the energy needed to 
perform various jobs. If a constant force  F acts at an 
angle     with the line of motion of an object to move 
the object from point A to point B (see figure below), 
then the work done by the force is given by 

 

 

 

     where        represents the directed line segment from A 

to B. The quantity                   is the length of the 

orthogonal projection of F onto           Orthogonal 

projections are discussed on the next page. 

 

5.2 Linear Algebra Applied 

Elementary Linear Algebra: Section 5.2,  p.248 

(cos )

    =

W AB

AB





F

F

AB
(cos )    F

AB


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 Heart Rhythm Analysis 
 

     Time-frequency analysis of irregular physiological 
signals, such as beat-to-beat cardiac rhythm variations 
(also known as heart rate variability or HRV), can be 
difficult. This is because the structure of a signal can 
include multiple periodic, nonperiodic, and pseudo-
periodic components. Researchers have proposed and 
validated a simplified HRV analysis method called 
orthonormal-basis partitioning and time-frequency 
representation (OPTR). This method can detect both 
abrupt and slow changes in the HRV signal’s 
structure, divide a nonstationary HRV signal into 
segments that are “less nonstationary,” and determine 
patterns in the HRV. The researchers found that 
although it had poor time resolution with signals that 
changed gradually, the OPTR method accurately 
represented multicomponent and abrupt changes in 
both real-life and simulated HRV signals. 

5.3 Linear Algebra Applied 

Elementary Linear Algebra: Section 5.3,  p.255 



100/101 

 Revenues 
 

     The least squares problem has a wide variety of real-
life applications. To illustrate, in Examples 9 and 10 
and Exercises 39, 40, and 41, are all least squares 
analysis problems, and they involve such diverse 
subject matter as world population, astronomy, 
master’s degrees awarded, company revenues, and 
galloping speeds of animals. In each of these 
applications, you will be given a set of data and you 
are asked to come up with mathematical model(s) for 
the data. For example, in Exercise 40, you are given 
the annual revenues from 2008 through 2013 for 
General Dynamics Corporation. You are asked to find 
the least squares regression quadratic and cubic 
polynomials for the data, to predict the revenue for the 
year 2018, and to decide which of the models appears 
to be more accurate for predicting future revenues. 

5.4 Linear Algebra Applied 

Elementary Linear Algebra: Section 5.4,  p.266 
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 Torque 
 

     In physics, the cross product can be used to measure 
torque—the moment M of a force F about a point A as 
shown in the figure below. When the point of 
application of the force is B, the moment of F about A 
is given by 

 

 

     where         represents the vector whose initial point is 

A and whose terminal point is B. The magnitude of the 

moment M measures the tendency of          to rotate 

counterclockwise about an axis directed along the 

vector M. 

 

5.5 Linear Algebra Applied 

Elementary Linear Algebra: Section 5.5,  p.277 

AB M F

AB

AB


