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5.1 Length and Dot Product in R"

= Length:
The length of a vector v =(v,v,,---,v.) In R"Iis given by

v = \/v12 o
= Notes: The length of a vector is also called its norm.

= Notes: Properties of length
1) V=0
(2) |V|=1= v is called a unit vector.
(3) |v|=0iff v=0
(4) Jev] =[clM

Elementary Linear Algebra: Section 5.1, p.232 3/101



» B b
(@) InR>, the lengthof v=(0,-2,1,4,—2) isgivenby

ol e s

(b) InR3the length of V=(5%, 7=, =) isgiven by

) () B

(v 1S a unit vector)
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= A standard unit vector in R":
1,85, ,€, t={10,--+,0).(0,---,0), (0,0, -, 1)]

s B
the standard unit vector in R {i, j}={{10),(0,1)}

the standard unit vector in R3: {i, j,k}={(1,0,0),(0,1,0),(0,0,1)}

= Notes: (Two nonzero vectors are parallel)
u=cv
(1) ¢>0 = uand v have the same direction
(2) c<0 = uand v have the opposite direction
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- Thm 5.1: (Length of a scalar multiple)

Let v be a vector in R"and ¢ be a scalar. Then

[evi|=]c][[v]|
Pf:
Vv v V]
eV (Y . - )
fevil =]l (cv, ,ev,, -, ev,) ||

e e

— \/cz(vlz Vo Ly

&
n

:|c|\/v12+v22+---+v

=|cllvl]
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= Thm 5.2: (Unit vector in the direction of v)

. . V
If v IS a nonzero vector Iin R", then the vector u = n
V

has length 1 and has the same direction as v. This vector u
Is called the unit vector in the direction of v.

Pf:
V is nonzero :>HVH¢O:>H—\1/H>O
— U =ﬁv (u has the same direction as V)
Y 1
lull=——=-—IIVI[=1 (uhaslength 1)
VIl vl
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= Notes:

Y .
(1) The vector n Is called the unit vector in the direction of v.
Y

(2) The process of finding the unit vector in the direction of v
Is called normalizing the vector v.
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= EX 2: (FInding a unit vector)
Find the unit vector in the direction of v=(3,-1,2),

and verify that this vector has length 1.

Sol:
v=(3,-1,2) :>HVH=\/32+(—1)2—I—22 =14
v &.19 1. 2:(3 -1 2}
Y 0 0 B om

CIRREIR

\Y;
M IS a unit vector.
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= Distance between two vectors:

The distance between two vectors u and v in R" Is

d(u,v)=|lu-v|

= Notes: (Properties of distance)
(1) d(u,v)=0
(2) d(u,v)=0ifandonlyifu=v
(3) d(u,v)=d(v,u)
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= EX 3: (Finding the distance between two vectors)
The distance betweenu =(0,2,2)andv=(2,0,1) is

d(u,v)=lu-v|[=](0-2,2-0,2-1)
:\/(—2)2 2 1] 2
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= Dot product in R™
The dot product of u=(u, ,u,,---,u,) andv=(v, ,v,,---,V,)

Ry

IS the scalar quantity

n-n

= EX 4: (Finding the dot product of two vectors)
The dot product of u=(1, 2, 0, -3) and v=(3, -2, 4, 2) Is

u-v=>1DE)+(2)(-2) +(0)(4) + (=3)(2) =7
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= Thm 5.3: (Properties of the dot product)
If u, v, and w are vectors in R" and c Is a scalar,
then the following properties are true.
(1) u-v=v-u
(2) u-(v+w)=u-v+u-w
(3) c(u-v)=(cu)-v=u-(cv)

(4) v-v=|v|?
(5) v-v>0,and v-v=0 ifandonlyif v=0
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= Euclidean n-space:

R" was defined to be the set of all order n-tuples of real
numbers. When R" is combined with the standard
operations of vector addition, scalar multiplication, vector
length, and the dot product, the resulting vector space Is
called Euclidean n-space.
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= EX 5: (Finding dot products)
U2 2] V(5 6w _|( 1 5

@u-v O @u-vIw ©u-@v) d) w)? €) u-(v-2w)

Sol:
(@) u-v=(2)(5)+(-2)(8)=-6

(b) (u-v)w=-6w=-6(-4,3)=(24,-18)
(c) u-(2v)=2(u-v)=2(-6)=-12
(@) [WIP=w-w=(-4)(-4)+()3) =25

(€) v—2w=(5—(-8),8-6)=(13,2)
U-(V—2W) = (2)(13) + (-2)(2) = 26 — 4 = 22

Elementary Linear Algebra: Section 5.1, p.236
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= EX 6: (Using the properties of the dot product)
Given y-u=39 u-v=-3 Vv-v=79
Find (u+2v)-(Bu+v)
Sol:

(U+2v)-(Bu+Vv)=u-(Bu+Vv)+2v-(3u+V)
=u-(3Bu)+u-v+(2v)-(3u)+(2v) -V
=3U-U)+u-v+6(v-u)+2(v-v)
=3U-uW+7(U-v)+2(v-v)
=3(39) + 7(=3) + 2(79) = 254
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= Thm 5.4: (The Cauchy - Schwarz inequality)
If u and v are vectors in R", then

ju-v|<|lul[[[v]l (|u-v]|denotes the absolute value of u-v)

= EXx 7: (An example of the Cauchy - Schwarz inequality)
Verify the Cauchy - Schwarz inequality for u=(1, -1, 3)
and v=(2, 0, -1)
Sol: u.v=-1, u-u=11 v-v=5
= |u-v|=|-1=1
Juv]|=Vu-u-v-v =+11-/5 = /55

u-vi= v
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= The angle between two vectors in R":

u-v

Tullliv]

Opposite o Same
direction u-v<0 Lagat . e direction

<__,'LILL_,_,

- L cOo<n o 0.2 0=0
2 2 2

0<O0<r

cos=-1  ¢os<0 cos=0 cos>0 g0
= Note:
The angle between the zero vector and another vector is
not defined.
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= EX 8: (Finding the angle between two vectors)
u=(-4,0,2,-2) v=(2,0,-1,1
Sol:

ul=+u-u :\/(—4)2+02+22+(—2)2 =+/24

Vv =\/W=\/22+(O)2+(—1)2+12 -6

u-v=(-4)(2)+(0)(0) + (2D +(-2)@) = -12

- s e
lulllivll V24v6 144
=60 =x .. uandv have opposite directions. (U=-2v)
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= Orthogonal vectors:

Two vectors u and v in R" are orthogonal if
u-v=0
= Note:

The vector O is said to be orthogonal to every vector.
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= EX 10: (Finding orthogonal vectors)

Determine all vectors in R" that are orthogonal to u=(4, 2).

Sol:

u=(4,2) Let v=(v,,V,)

—> u-v=(4,2)-(v,,V,)

=4v, + 2v,
=0
0

g V1:7 y V2:t

Elementary Linear Algebra: Section 5.1, p.238
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.
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= Thm 5.5: (The triangle inequality)

If u and v are vectors in R", then ||u+ v||<||u]|+]||V]|

Pf:
lu+Vv|*=(u+Vv)-(u+V)

=Uu-(U+v)+Vv-(U+Vv)=U-U+2(U-V)+V- -V
=[ull® +2(u-v)+[IvIF <lul® +2]u - v]+ v
<[jull® +2{lulllvll+IvII®
=(lull+lvih®

Au+v]<|lufl+]v]

= Note:
Equality occurs in the triangle inequality if and only if
the vectors u and v have the same direction.
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= Thm 5.6: (The Pythagorean theorem)
If u and v are vectors in R", then u and v are orthogonal

If and only If

2 2 2
[[u+vI*=[ull” +][v]]
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= Dot product and matrix multiplication:

. o
u, v, | (Avector u=(u,,uU,,---,U,) inR"
u=| . v=| |
IS represented as an nx1 column matrix)
_un_ _Vn_
o
¥ Vs
u-v=u v=J[u, u, u.ll . |=[uv, +u,v, +---+ UV,
_Vﬂ_
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Key Learning in Section 5.1

= Find the length of a vector and find a unit vector.

= Find the distance between two vectors.

= Find a dot product and the angle between two vectors, determine
orthogonality, and verify the Cauchy-Schwarz Inequality, the
triangle inequality, and the Pythagorean Theorem.

= Use a matrix product to represent a dot product.
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Keywords in Section 5.1

. length: £ &

= NOrm: g%ﬁz

- Unit vector: & = &

= Standard unit vector : & # ¥ ~» &
- normalizing: H # i

- distance: jEdg

. dot product: 2:-F%

« Euclidean n-space: ®#8 2 fenia s [
- Cauchy-Schwarz inequality: # & -4+3 % % & 5%
« angle: &% &

« triangle inequality: = & 7 & ;¢

. Pythagorean theorem: & = z 32
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5.2 Inner Product Spaces

= Inner product:

Let u, v, and w be vectors In a vector space V, and let ¢ be
any scalar. An inner product on V is a function that associates

a real number <u, v> with each pair of vectors u and v and

satisfies the following axioms.

1) <u,vw=<{v,w

2) <u,v+wy>=<u,v>+<u,w>

3) c¢<u,v>=<cu,v>

(4) <v,vy>=0and <v,v>=0 ifandonlyif v=0
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= Note:

u - v =dot product (Euclidean inner product for R")
<u, Vv >=general inner product for vector space V

= Note:

A vector space V with an inner product is called an inner
product space.

Vector space: V, + o)

Inner product space:  (V, +, o, <,>)

Elementary Linear Algebra: Section 5.2, Addition 28/101



« EX 1: (The Euclidean inner product for R")

Show that the dot product in R" satisfies the four axioms
of an Inner product.

Sol:
u=(U,,U,,--,u) , Vv=(V,V,, V)

(U,V)=U-vV=UV, +WV, +---+UV_

By Theorem 5.3, this dot product satisfies the required four axioms.
Thus It Is an inner product on R".
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« EX 2: (A different inner product for R")

Show that the function defines an inner product on R?,
where u=(u, ,u,)and v=(v,V,).

U, V> =uV, +2u,V,
Sol:

(a) (u,v)=uyVv,+2u,v, =vu, +2v,u, ={(v, U
(0) w=(w ,w,)
= U, V+W) =u, (v, +W,) + 2u, (v, +W,)
=u,v, +u,wW, +2u,V, + 2U,W,
= (u,Vv, +2u,v,) + (u,w, +2u,w,)
={u, vy +<u,w)
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(c) c{u,v)=c(uVv, +2u,v,)=(cu,)v, +2(cu,)v, ={cu, v,
(d) (v,v)=v, +2v,° >0

(Vv,v)=0=>Vv +2v,°=0 = v,=v,=0 (v=0)
= Note: (An inner product on R")

U, v>=cUu\V, +CU,V, +---+C UV c >0

n"n-'n? |
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= EX 3: (A function that is not an inner product)

Show that the following function is not an inner product on Re.
CU- VD =UV, —2U,V, +UjsV,
Sol:
Let v=(1,2,])
Then <v,v>=Q)D)-2(2)(2)+@D)@1Q)=-6<0
Axiom 4 is not satisfied.

Thus this function is not an inner product on R3,
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= Thm 5.7: (Properties of inner products)

Let u, v, and w be vectors in an inner product space V, and
let ¢ be any real number.

(1) O,v>=<v,00=0
(2) <u+v,w>=<u,wy+<{v,w
3) <u,cvy=c<u,v,

= Norm (length) of u:

lull=y<u, u)

= Note:

lulP=<u,u)
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= Distance between u and v:

d(u, v) =llu-Vv]=Ju-v,u-v)

= Angle between two nonzero vectors u and v:

v

6 = 00
[[ull vl

= Orthogonal: (u L v)

uand v are orthogonal if <u,v)>=0 .
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= Notes:

(1) If ||v||=1, then v is called a unit vector.

(2) HVH #1 Normalizing i (the unit vector in the
v 20 ' |v| direction of v)

not a unit vector
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« EX 6: (FInding Inner product)

(p,q)=agh, +ab, +---+a,b, isan inner product

Let p(x) =1-2x%, q(X) =4—2x+x* be polynomialsin P,(x)

(@ <p,q>=? (b) llal=? (c) d(p,q)="

Sol:

(@) <p,q>=D)(4)+(0)(-2)+(-2)@) =2

(b) llall=+/<a,q> =y4* +(-2)* +1* =21

(€ =p 0= 3:2%¢ 3¢
~d(p,q)=llp-qll=+{p-a,p-0)
37 3
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= Properties of norm:
(1) |lu]|=0
(2) ||jul|=0 ifandonlyif u=0
3) lleul|=[c||jul

= Properties of distance:
(1) d(u,v)=0
(2) d(u,v)=0 ifandonlyif u=v
(3) d(u,v)=d(v,u)
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« Thm5.8:
Let u and v be vectors in an inner product space V.
(1) Cauchy-Schwarz inequality:
[<u, v < ull] vl Theorem 5.4
(2) Triangle inequality:
lu+ v|<||ul|+]||Vv]| Theorem 5.5
(3) Pythagorean theorem :

u and v are orthogonal if and only if

lu+Vv]P=||ull® +||v||* Theorem 5.6
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= Orthogonal projections in inner product spaces:

Let u and v be two vectors In an inner product space V,
such that v = 0. Then the orthogonal projection of u
onto Vv Is given by

(u,v)

roj. u=
P (V, V)

Vv

« Note:
If v is a init vector, then (v, v)=|v|*=1

The formula for the orthogonal projection of u onto v
takes the following simpler form.

proj,u=<u, vyv
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« Ex 10: (Finding an orthogonal projection in R3)

Use the Euclidean inner product in R3 to find the
orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:
(U, v) =(6)D) +(2)(2) +(4)(0) =10

(v,V)=1°+2°+0°=5
bl ma o 4D
V-V
« Note:

u—proju=(6,2,4)—(2,4,0)=(4,—-2,4) s orthogonal tov =(1,2,0).
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= Thm 5.9: (Orthogonal projection and distance)

Let u and v be two vectors in an inner product space V,
such that v 20. Then

(u, v)

d(u, proj,u)<d(u,cv), c=#
(V, V)

Elementary Linear Algebra: Section 5.2, p.260 41/101



Key Learning in Section 5.2

= Determine whether a function defines an inner product, and find
the inner product of two vectors InR", M, ., P, and C[a, b].
= Find an orthogonal projection of a vector onto another vector In

an inner product space.
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Keywords in Section 5.2

Inner product: P ##

Inner product space: p 4% 7 &
norm: d= #x

distance: FE3g

« angle: % &

- orthogonal: & %

- unit vector: ¥ i~ = ¥

- normalizing: H # i

- Cauchy — Schwarz inequality: o - 4-% %% % & 3¢
« triangle inequality: = & 7 & 3t
- Pythagorean theorem: # = z 32
- orthogonal projection: = < $ %’
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5.3 Orthonormal Bases: Gram-Schmidt Process

= Orthogonal:
A set S of vectors in an inner product space V is called an

orthogonal set if every pair of vectors in the set is orthogonal.

S = {vl,vz,.--,vn}gv
. Orthonormal: (Vi Vi2=0 =]
An orthogonal set in which each vector Is a unit vector Is

called orthonormal.
s Wy ey

1 ||
<Vi , Vj> w .

= Note: 0 N
If S Is a basis, then it is called an orthogonal basis or an

orthonormal basis.
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« Ex 1: (A nonstandard orthonormal basis for R3)
Show that the following set is an orthonormal basis.

Vi

Vs
- (2429 64y
Sol:

Show that the three vectors are mutually orthogonal.

H% 1 1 A
V,-V,=—¢+¢+0=0

v, oy = - +0=0
. 320
2 8 20

V.
- g g 9
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Show that each vector is of length 1.

v1||:m=\/l+l+0=1
I=¥s V2 =B+ %51

vsll=m=\/%+%+%=l

Thus S Is an orthonormal set.
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« Ex2: (An orthonormal basis for P,(x) )
In P,(x), with the inner product
(P, O) = agh, +ab, +a,b,

The standard basis B ={1, x, x°} is orthonormal.

Sol:
vV, =1+0x+0x?, Vv,=0+x+0x>, v,=0+0x+Xx°,

Then
(v, V) = (1)(0) +(0)@) + (0)(0) = 0,
(v, Vy) =(1)(0)+(0)(0)+ (0)D) =0,
(V,,V3)=(0)(0)+(2)(0)+(0)(@) =0

Elementary Linear Algebra: Section 5.3, p.255 47/101



Vil = (v, vi) =(0)2)+(0)0)+(0)0) =1,
V| =V, v,) =4(0)(0)+(1)1)+(0)0) =1
Vs = (V3. v5) =/(0)0)+(0)0)+(1)1) =1
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= Thm 5.10: (Orthogonal sets are linearly independent)
If S={v,,v,,---,v,} isan orthogonal set of nonzero vectors

In an inner product space V, then S is linearly independent.
Bl
S Is an orthogonal set of nonzero vectors
lLe. (v;,v;)=0 1=] and (v;,v;)>0
fet cvtey iy ()
= oy ity - eV v -V 0 i
= B by W e N L e (Y
o Ci<Vi’Vi>
(i, Viy#0 =c =0 Vi ..Sis linearly independen t.

Elementary Linear Algebra: Section 5.3, p.257 49/101



= Corollary to Thm 5.10:

If V Is an Inner product space of dimension n, then any
orthogonal set of n nonzero vectors is a basis for V.
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= EX 4: (Using orthogonality to test for a basis)

Show that the following set is a basis for R*.
V, Vv, Vs Vv,

| s+{2,3,2,-2,(,0,0,1),(-1,0,2,1),(-1,2,-1,1}
Sol:

V,,V,,V,, V, . NONzero vectors
N, =2+04+0-2=0 V, -V
N, =-21t0+4-2=-0 V, -V
v, — J2.g 7 210 Yy N

. L ED Ul 0
= 1 Ul
L0210

1

N

=
w
DN

\"
\Y
Vi 3

— S Is orthogonal .
— Sisa basis for R* (by Corollary to Theorem 5.10)
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= Thm 5.11: (Coordinates relative to an orthonormal basis)

If B={v,,v,,---,v, } Isan orthonormal basis for an inner
product space V, then the coordinate representation of a vector
w with respect to B Is

W =(W, V)V, +{(W, V)V, +---+(W,V )V,
Pf:

B={v,,v,,---,v. } Isabasisfor V
weV
w =KV, +Kk,v, +---+K Vv, (unique representation)
B={v,,v,,---,v .} Isorthonormal
{1 1
= (V; ,V;) = o
0 1=
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/

cw, vy =X (kv kv, ek V) v
=k{ v,, V) +--+k{ V. , V) +--+k{ Vo, V)
—k, Vi

=W =(W, V)V, +{W, V)V, +---+{W,V_)V,

= Note:
If B={v,,v,,---, v, }is an orthonormal basis for Vand w eV ,

Then the corresponding coordinate matrix of w relative to B is
e

(W, V,)
[W]B R :

(W, V) |
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= EX 5: (Representing vectors relative to an orthonormal basis)
Find the coordinates of w = (5, -5, 2) relative to the following
orthonormal basis for R®.

B={(5.£.0).(-%.2,0),(0,0,1)}

Sol:
Wy —w v (5 5 2} (. - 01— |
Wy —wy (5 5 ) ( - 0O |
vy Wy (5 5 ) 001 2
1

—[w]; = -7
2
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= Gram-Schmidt orthonormalization process:
={u,,u,,---,u_} Isa basis for an inner product space V

Let v,=u, w, = span({v,})
V2 pr0qu _U _< UZ,V% Vl
(v, , V) W, Spaiy v b
o <U3,V2>
v [0y, Uz = U, Vi —
T p JW2 <V1,V1> <V2,Vz>
nl V>
V., =U_ —pro = .
projy, U, Z< v

—B'={v,,V,, -, v,} isan orthogonal basis.
Vl V2
vl vall ™ HV H

basis.

— B
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- ExX 7: (Applying the Gram-Schmidt orthonormalization process)

Apply the Gram-Schmidt process to the following basis.
ul u2 u3
B= H1 1. O) (1 2.0y (0.1 2y%
SOI: V1 :u]_ :(1;1; O)
u, -V, Lol

V,=U, — V.= 2 O)——(l,l,O) (—— —,0)
o 2
u3 Vl u3 V2

V. 1 V, — Y

3 3 Vl Vl 1 V2 V2 2

21
(a1 7 ——1,1,0 ——(-=,-,0=(0,0,2
= ( ] ) 1/2( : )=( )
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Orthogonal basis

= B'={v, , v, , v;}={(1,1,0), (‘—1 % 0), (0,0, 2)}

Orthonormal basis
Vv, 1 1 -1 1

~{= F={(=. 7= 0. (5, 5.0, (0,01}
il vl T 3H v2'N2 T2 V2

== B
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« EX 10: (Alternative form of Gram-Schmidt orthonormalization process)
Find an orthonormal basis for the solution space of the

homogeneous system of linear equations.

X; + X, T4
2y b b )
Sol:
0 0y - {02 1 {0
21 2 5 0 a1 5 8 g
_xl_ e il ok ]
X, 2s —8t 2 —8
e = =5 +1
X4 S 1 0
Vo _O_ _1_

Elementary Linear Algebra: Section 5.3, p.262
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Thus one basis for the solution space is
B={v,,v,}={(-2,2,1,0),(1,-8,0,1)}

vy u (2210

. L _~-18
v o L BB : (2210

=(-3,-4,2,1)
B {( 22101 3,_4,2,1)} (orthogonal basis)

:‘B":{(%Z - ) (rg J:;g \/:230 rj}

(orthonormal basis)
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Key Learning in Section 5.3

= Show that a set of vectors is orthogonal and forms an
orthonormal basis, and represent a vector relative to an
orthonormal basis.

= Apply the Gram-Schmidt orthonormalization process.
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Keywords in Section 5.3

- orthogonal set: = % & &

- orthonormal set: & §=1* 2 & &

« orthogonal basis: i = £ &

- orthonormal basis: ¥ & & 2 7 %

« linear independent: 42 4 jH =

= Gram-Schmidt Process: Gram-Schmidt:f #%
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5.4 Mathematical Models and Least Squares Analysis

= Orthogonal subspaces:

The subspaces W, and W, of an inner product space V are orthogonal
if (v,v,)=0forallv,inW and all v, inW.,.

= Ex 2: (Orthogonal subspaces)

The subspaces

Ll -1
W, =span(| O |,| 1 [)and W, =span(| 1 |)
A Ry

are orthogonal because (v, v,) =0 for any vector in W,_and any vector in W, is zero.
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= Orthogonal complement of W

Let W be a subspace of an inner product space V.
(a) A vector u in V is said to orthogonal to W,

If u Is orthogonal to every vector in W.
(b) The set of all vectors in V that are orthogonal to every

vector in W is called the orthogonal complement of W.
W-={veV|(v,w)=0,VweW}

= Notes: W - (read “ W perp”)

(1) (o) =V 2 v 0
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= Notes:

W is a subspace of V

(1) W™ is asubspace of V
() W W - o

3 W) =W

= EX:
IfV =R*, W =Xx—axis
Then (1) W* = y-axis isa subspace of R*
(2) W W ={(0,0)}
B W) =W
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= Direct sum:
Let w, and w, be two subspaces of R" . If each vector x e R"
can be uniquely written as a sum of a vector w,from w,
and a vector w, from W,,X=W,+W, ,then R" isthe
direct sum of w, and w, , and you can write

R" =W, ®W,
- Thm 5.13: (Properties of orthogonal subspaces)

Let W be a subspace of R". Then the following properties
are true.

(1) dim(W)+dim(W")=n

(2) R"=W ®W"

3 W) =w
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- Thm 5.14: (Projection onto a subspace)

If {u ,u ,---,u} isanorthonormal basis for the
subspace S of V,and v eV, then

f proj, V=<V, u)u, +{V, U,)u, +---+{V, U, u,
e

- proj,ve Wand{u ,u,,---, u}is an orthonorma | basis for W
= proj, v ={proj,v,u u, +---+{proj, v, u u

=(V—proj ,v,upu, +---+{v—proj v,u)u,

(.'. prOJWV TN prOJWLV)
~ <V1 u1>u1 L <V’ ut>ut (.’. <prOJW¢V’ u|> = O! \V/ I)
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= EX 5: (Projection onto a subspace)
=(0,3,1),w, =(2,0,0),v=(11,3)

Find the projection of the vector v onto the subspace W.
ol W =span({w;,w,})

W, W, © an orthogonal basis for W

W, W, e :
-y {uwlu uwzu} 0 i 0]

an orthonormal basis for W

proj, v =V, uu +<v )u
6
J_ J_J_
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= Find by the other method:

A=|w,w,| b=v

A

— x=(ATA)*Ab

= Proj b = Ax=A(A'A)"A'b

Elementary Linear Algebra: Section 5.4, p.269 68/101



= Thm 5.15: (Orthogonal projection and distance)
Let W be a subspace of an inner product space V, and v eV

Then forall wew, w = proj, v

V—proj,, V|| <[lv-w]

or [[v—proj,Vv|l=min [lv—w]|

( proj, v Iis the best approximation to v from W)
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Pf:
V—W = (v —proj,, V) + (proj,, v—w)

(V N projw V) L (projw o W)
By the Pythagorean theorem

={lv—wl|*=]|v - proj, v|I* + | proj, v - w|I

W = proj,, v = [|proj,, v —w| > 0
={lv—w||*>||v —proj, v||°

={|V —proj, V||<||v —w||
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= Notes:
(1) Among all the scalar multiples of a vector u, the

orthogonal projection of v onto u is the one that is
closest to v. (p.250 Thm 5.9)
(2) Among all the vectors in the subspace W, the vector

proj,, v Is the closest vector to v.
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« Thm 5.16: (Fundamental subspaces of a matrix)

If A IS an m x n matrix, then
(1) (CS(A)* =NS(A")
(NS(A"))" =CS(A)
(2) (CS(A™)* =NS(A)
(NS(A))" =CS(A")
(3) CS(A)®NS(A")=R™  CS(A)®(NS(A)*: =R"
(4) CS(AT)®NS(A)=R"  CS(A")®(CS(A"))* =R"
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= EX 6: (Fundamental subspaces)
Find the four fundamental subspaces of the matrix.

(reduced row-echelon form)

ER)ES S CEY S S M S S Joh
ST R O Bl O LR
| K o L o e

Sol:
CS(A) =span({(1,0,0,0) (0,1,0,0)}) isasubspace of R*

CS(A")=RS(A)=span({(1,2,0) (0,0,1)}) isasubspace of R’

NS (A) =span({(-2,1,0)}) isasubspace of R’
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v -+

1000 1000

AT=[2 0 0 0|~R=[0 1 0 O
0100 0000

S

)

NS(A") =span({(0,0,1,0) (0,0,0,1)}) isa subspace of R*

= Check:
(CS(A)* =NS(AT)
(CS(A"))" =NS(A)
CS(A)®NS(A") =R*
CS(A")®NS(A) =R’
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s EX3 & Ex4d.
W =span({w,,w,})
Let W is a subspace of R*and w, =(1,2,1,0), w, =(0,0,0,1).
(a) Find a basis for W
(b) Find a basis for the orthogonal complement of W.
Sol:

oo 1 0
2.0 Sl
A= = R (reduced row-echelon form)
10 0 0
01 g o
W, W,
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(a) W =CS(A)
= {(1,2,1,0),(0,0,0,1)} is a basis for W

(b) W+ =(CS(A))" = NS(AT)

X, | [-25-t —2 -1
1 2 | B X, S 1 0
A - = s +1
0 0 0 1 X, t 0 1
o a0 g 10

= {(-21,0,0) (-1,0,1,0)} isa basis forw *

= Notes:
(1) dim(W)+dim(W ") = dim(R“)

2) Waew'=R*

Elementary Linear Algebra: Section 5.4, p.267 76/101



- Least squares problem:

AX=Db (A system of linear equations)

mxn nx1 mx1

(1) When the system Is consistent, we can use the Gaussian

elimination with back-substitution to solve for x

(2) When the system is inconsistent, how to find the “best possible”
solution of the system. That is, the value of x for which the
difference between Ax and b is small.
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= Least squares solution:

Given a system Ax = b of m linear equations in n unknowns,
the least squares problem is to find a vector x in R" that
minimizes HAX_ bH with respect to the Euclidean inner
product on R". Such a vector is called a least squares
solution of Ax =Dh.

= Notes:
The least square problem is to find a vector X in R" such that
AX = proj.,,, b inthe column space of A(ie., AXeCS (A))
IS as close as possible to b. That is,

=|b— AX|| = min

xeR"

|b - proj. b b — AX|
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AceM

mxn

XeR’
Ax e CS(A) (CS(A)is asubspace of R")

~bgCS(A) (Ax=Dbis aninconsiste nt system)

Let AX = proj,, b

= (b— AX) L CS(A)

= b—-AX € (CS(A)) = NS(A")

— A A =0

L.e. A'AX = A'b (the normal system associated with Ax = b)
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= Note: (Ax = b Is an inconsistent system)
The problem of finding the least squares solution of Ax=b

IS equal to he problem of finding an exact solution of the
assoclated normal system ATAx= ATb.
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= EX 7: (Solving the normal equations)
Find the least squares solution of the following system

B
w N P

Ax=Db

1

(this system Is inconsistent)

and find the orthogonal projection of b on the column space of A.
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. o i 4
AD- =
i 2 3 11
the associated normal system
AR AD

Eabl
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1

36
S

6 14
3

}
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the least squares solution of Ax = b

AR
A 3
R

=

2

the orthogonal projection of b on the column space of A

projCS(A)b =~ A

I
N =
wWw NP
|
~o|w w|dy
ERESRaRRRY
I
ol 07||L

[EnN
~
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Key Learning in Section 5.4

= Define the least squares problem.

= Find the orthogonal complement of a subspace and the
projection of a vector onto a subspace.

= Find the four fundamental subspaces of a matrix.

= Solve a least squares problem.

= Use least squares for mathematical modeling.
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Keywords in Section 5.4

« orthogonal to W: & % *+W

= orthogonal complement: = < 4 &

« direct sum: = fr

= projection onto a subspace: # &+ 7 F el B2
- fundamental subspaces: #& &+ 7 ¥

= least squares problem: # -] T = B 45

. normal equations: — %= Fg 3¢
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5.5 Applications of Inner Product Spaces

= The cross product of two vectors in R®

A vector product that yields a vector in R3is orthogonal to two
vectors. This vector product is called the cross product, and it
IS most conveniently defined and calculated with vectors

written In standard unit vector form

V= (V,V,,V3) = Vi +V,j+ VK 1=(1,0,0),j=(0,1,0),k =(0,0,2)
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= Cross product of two vectors in R3:
Let u=u,i +U,j+usk and v =vii+Vv,j+V;K be vectors in R3.
The cross product of u and v iIs the vector
UX V= (UyV3 —UgVp )1+ (UpVg — UgVy ) J + (UyV, —UpVy DK
i | K
UxXV=[U, U, Ug| e==== Components of u
V, V, V|| «====Components ofv

u bl B il u
uxv=|2 -t Hj+t "2k
Vo Mo g W s
= (UyVg — U3V, )l — (U Vg — UsVy ) ] + (UyV, — U,V K
= Notes:

(1) The cross product is defined only for vectors in R3,
(2) The cross product of two vectors in R3is orthogonal to two vectors.

(3) The cross product of two vectors in R", n # 3 is not defined here.
Elementary Linear Algebra: Section 5.5, p.277 87/101



= EX 1: (Finding the Cross Product of Two Vectors)

U=i—-2j+k

Sol:

UXV =

VXU=

VXV =

i
b
3

~ W —
H

]
] 1

2 1

Kk

gl

7

v=3i+j-2k

2
2

Elementary Linear Algebra: Section 5.5, p.278

3
3

=
-

—

3

3

1 -2

k=31+5]+ 7k
30
a1

k=-3I-5]-7k
1 -2

jk=0i+0j+0k=o
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= Thm 5.17: (Algebraic Properties of the Cross Product)

If u, v, and w are vectors in R3 and c is a scalar, then the following
properties are true.

l.uxv=—-(vxu)

2.Uux(V+w)=(UuxV)+(UuUxw)

3.c(UxV)=CUxV=UxXCV

4.ux0=0xu=0

5.uxu=0

6.U-(Vxw)=(UxV)-w
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Pf:

U=u,i+U,j+Uusk V=Vi+V,]+VK
P ] Kk
UXV =l Uy Ug=(UpVs—UaVp)l = (UyVs —UgVy )] + (UV, —U,yVy K
v, V, V,
L] K
VXU=V;  Vy Vgl = (Valg —V3Up )l — (Valz — V5l ) J + (ViU — V,Uy K
v

= —(U,V3 — UV )1 + (UpVg —UgVy ) ] — (UgV, — U,V K
=—(vxU)
= Note:
The vectors u x v and v x u have equal lengths but

opposite directions.
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= Thm 5.18: (Geometric Properties of the Cross Product)

If u and v are nonzero vectors in R3, then the following properties

are true.

1. u x v is orthogonal to both u and v.

2. The angle 6 between u and v Is given by |ux v| = u|v]sin 6.
3. uand v are parallel if and only if uxv=0.

4. The parallelogram having u and v as adjacent sides has an

area of |uxv|.
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-

Pf:

Base Height

i ¢ Ivll sin6

= ———te——
Area =|u| |v|sin @ =|uxv|

u

k=iXj

This is the plane
determined by

xy-plane uand v,

Right-Handed
Systems

= Notes:
(1) The three vectors u, v, and u x v form a right-handed system.

(2) The three vectors u, v, and v x u form a left-handed system.
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Ex 2: (Finding a Vector Orthogonal to Two Given Vectors)
u=i—-4j+k V=21+3]

Sol: i j Kk
uxv=1l -4 1=-31+2)J+11k

length 2 3 0
Juxv|=+/(=3)? +2% +11> = /134

unit vector
uxvV -3 2
HuXVH N AN
2
(JF V134’ J134)( 0
3 7 .
(J134 134’ JF) c
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Ex 3: (Finding the Area of a Parallelogram)

u=-3i+4j+k v=-2j+6k v=-2j+6k
Sol: / ]
' K

uxv=-3 4 1/=261+18j+6k

L R L =} ~l| =
AY LY hY Ay LY LY
7 7 7 7 7 7

dl'éa

~y

: : % u=-3i+4j+k
Jux V| =26 +18% +6 :
=\ 1036 = 32.19 The area of the parallelogram is '
luxv]|l =+/1036.

Elementary Linear Algebra: Section 5.5, p.280 94/101



Key Learning in Section 5.5

« Find the cross product of two vectors in R3,
= Find the linear or quadratic least squares approximation of a

function.
= Find the nth-order Fourier approximation of a function.
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Keywords in Section 5.5

= Cross product: *F ##
. parallelogram: < {7 w 2
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5.1 Linear Algebra Applied

= Electric/Magnetic Flux

Electrical engineers can use the dot product to calculate
electric or magnetic flux, which is a measure of the
strength of the electric or magnetic field penetrating a
surface. Consider an arbitrarily shaped surface with an
element of area dA, normal (perpendicular) vector dA,
electric field vector E and magnetic field vector B. The
electric flux @, can be found using the surface integral @,
= [ E « dA and the magnetic flux can be found using the
surface integral @, = | B « dA. It is interesting to note
that for a given closed surface that surrounds an electrical
charge, the net electric flux is proportional to the charge,
but the net magnetic flux is zero. This is because electric
fields initiate at positive charges and terminate at
negative charges, but magnetic fields form closed loops,
so they do not initiate or terminate at any point. This
means that the magnetic field entering a closed surface
must equal the magnetic field leaving the closed surface.
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5.2 Linear Algebra Applied

= Work

The concept of work is important to scientists and
engineers for determining the energy needed to
perform various jobs. If a constant force F acts at an
angle @ with the line of motion of an object to move
the object from point A to point B (see figure below),
then the work done by the force is given by

W = (cos 6) |F| A8
:FKB

where og represents the directed line segment from A
to B. The quantity (cos@)|F| is the length of the
orthogonal projection of F onto AB  Orthogonal
projections are discussed on the next page.

AL T
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5.3 Linear Algebra Applied

= Heart Rhythm Analysis

Time-frequency analysis of irregular physiological
signals, such as beat-to-beat cardiac rhythm variations
(also known as heart rate variability or HRV), can be
difficult. This is because the structure of a signal can
Include multiple periodic, nonperiodic, and pseudo-
periodic components. Researchers have proposed and
validated a simplified HRV analysis method called
orthonormal-basis partitioning and time-frequency
representation (OPTR). This method can detect both
abrupt and slow changes in the HRV signal’s
structure, divide a nonstationary HRV signal into
segments that are “less nonstationary,” and determine
patterns in the HRV. The researchers found that
although it had poor time resolution with signals that
changed gradually, the OPTR method accurately
represented multicomponent and abrupt changes In
both real-life and simulated HRV signals.
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5.4 Linear Algebra Applied

« Revenues

The least squares problem has a wide variety of real-
life applications. To illustrate, in Examples 9 and 10
and Exercises 39, 40, and 41, are all least squares
analysis problems, and they involve such diverse
subject matter as world population, astronomy,
master’s degrees awarded, company revenues, and
galloping speeds of animals. In each of these
applications, you will be given a set of data and you
are asked to come up with mathematical model(s) for
the data. For example, in Exercise 40, you are given
the annual revenues from 2008 through 2013 for
General Dynamics Corporation. You are asked to find
the least squares regression quadratic and cubic
polynomials for the data, to predict the revenue for the
year 2018, and to decide which of the models appears
to be more accurate for predicting future revenues.
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5.5 Linear Algebra Applied

= lorque

In physics, the cross product can be used to measure
torque—the moment M of a force F about a point A as
shown in the figure below. When the point of
application of the force is B, the moment of F about A
IS given by

M= ABxF

where pg represents the vector whose initial point is
A and whose terminal point is B. The magnitude of the
moment M measures the tendency of AB to rotate
counterclockwise about an axis directed along the
vector M.

S

M

A
A —

—7
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