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6.1 Introduction to Linear Transformations

= Function T that maps a vector space V into a vector space W:

TV M s\, V,W :vector space

V: the domain of T

W: the codomain of T V: Domain

V- W W: Codomain
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= Image of v under T:

If visinVandw isin W such that
T(v)=w
Then w is called the image of v under T .

- the range of T:
The set of all images of vectors in V.

= the preimage of w:
The set of all v in V such that T(v)=w.
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« Ex 1: (A function from R?into R?)
T:R*>R* v=(v,v,)eR’
T(V1’V2) % (V1 L 2V2)
(a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11)

Sol:
(a) v=(-12)

=>T(V)=T(-1,2)=(-1-2,-1+2(2))=(-3,3)
(b) T(v)=w=(-111)
T(v,V,) = (v, —V,, v, +2v,) = (-1,11)
=V, -V, =-1
v, +2v, =11
=V, =3, V, =4 Thus {(3, 4)} is the preimage of w=(-1, 11).
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= Linear Transformation (L.T.):

V ,W: vector space
T:V>W: V toW linear tra nsformatio n

1) Tlu+v)=TW+T(v), Yu,veV
(2) T(cu)=cT(u), VceR
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= Notes:

(1) A linear transformation is said to be operation preserving.

Tw+v)=TW)+T(v)

T(cu)=cT (u)

Addition Addition Scalar Scalar
inV in W multiplication | | multiplication
inV in W

(2) A linear transformation T :V —V from a vector space into
itself is called a linear operator.

Elementary Linear Algebra: Section 6.1, p.299
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« Ex 2: (Verifying a linear transformation T from R? into R?)
T (V1’V2) % (V1 —Vy, V 2V2)

Pf:
u=(u,u,), v=_(v,V,):vector in R, c:any real number

(1)Vector addition :
U+V= (ul’ uz) 97 (V1’V2) 7% (ul TV, U, +V2)

TUu+v)=T(u,+Vv,U,+V,)
o ((ul +V1) v (uz +V2)’ (ul +V1) AR 2(”2 +V2))
= ((ul _uz) 3 (Vl _V2)1 (ul W 2“2) s (Vl < 2V2))
= (U, — U, U, + 20, ) +(V, =V, .V, +2V.)
=T(U)+T(v)
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(2) Scalar multiplication
cu =c(u,,u,) = (cu,,cu,)
T(cu)=T((cu,,cu,)=(cu, —cu,,cu, +2cu,)
—Ce{l, ~Uu U +21 )
= Ch(L1)

Therefore, T Is a linear transformation.
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= EX 3: (Functions that are not linear transformations)
(a) f (X) =sin X
sin( X, + X,) = sin( x,) +sin( x,) & f(x) =sin x is not

sin( £ +%) #sin( %) +sin( %) linear transformation

(b) f () =x°
(4 +%,)" # % +X%;
(1+2)* #1° +2°

& f(x)=x* is not linear
transformation

(c)f(x)=x+1
F(X +X)=X+X +1
F(X)+T0G) =0+ + (X +D) =X + X, +2
f(x+x)=f(x)+ f(x,)& f(X)=x+1isnot
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= Notes: Two uses of the term “linear”.

(1) f(x) =x+1 Is called a linear function because Its graph
IS a line.

(2) f(x)=x+1 Isnota linear transformation from a vector
space R into R because it preserves neither vector
addition nor scalar multiplication.
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« Zero transformation:

T:V>W T(v)=0, YveV
= ldentity transformation:
T:V >V T(v)=v, YveV

= Thm 6.1: (Properties of linear transformations)
T:V-o>W, uveV
(1)T(0)=0
)TV )
B TU-V)=T(Uu)-T(v)
(4)If v=cyv,+CV, +---+C.V,
Then T(v) =T(cv,+CV, +---4+C.V,)

=C, T (v,)+C,T(v,)+---+C.T(v,))

Elementary Linear Algebra: Section 6.1, p.300 11/103



= EX 4: (Linear transformations and bases)

Let T:R®— R® be a linear transformation such that
T(1,0,0)=(2,-14)
T(010) = (1,5,-2)
T(0,0,1) =(0,31)
Find T(2, 3, -2).
Sol:
(2,3,—-2) = 2(1,0,0) +3(0,1,0) — 2(0,0,)
T(2,3,-2) = 2T (1,0,0)+ 3T (01,0) - 2T(0,0,) (TisaL.T)
90 14 345 %) R3]
=(7,7,0)
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= EX 5: (A linear transformation defined by a matrix)

The functionT : R? 5 R® Isdefined as T (v) = Av =

(a) Find T (v) ,where v =(2,-1)
(b) Show that T is a linear transformation form R? into R*

Sol: (@)v=(2,-1)

) = A

R? vector R® vector

. 0
2 1
Ll 7

~T(2,-1) =(6,3,0)

|

!

¥

CHy o

3
0

=
>
L

B Tu+v)=Au+Vv)=Au+Av=T(u)+T(v) (vectoraddition)

T(cu) =A(cu) =c(Au) =cT(u)

Elementary Linear Algebra: Section 6.1, p.301
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= Thm 6.2: (The linear transformation given by a matrix)
Let A be an mxn matrix. The function T defined by
T(v)=Av
IS a linear transformation from R" into R™.

= Note: R" velctor R™ \1ector
A, &, 0 Q|| V) A V) + Vv, + Vv,
Ay — ag1 agz agn V.z . Ay Vy + azzvz."' e+ a,,V,
_aml amz A amn Y _Vn 2 _amlvl %7 amZVZ e amnVn &
T(v)=Av

T:R"——R"
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= EX 7: (Rotation in the plane)
Show that the L.T. T:R* — R? given by the matrix

L cosd —sin@
|sin@ cosé

has the property that it rotates every vector in R?

counterclockwise about the origin through the angle 6.

Sol:
v=(X,y)=(rcosa,rsin @) (polar coordinates)

r : the length of v

a : the angle from the positive
X-axlis counterclockwise to
the vector v :

. . ol
Rotation in R=

oo T(x,w)
..

S (X Y)

Elementary Linear Algebra: Section 6.1, p.303
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o) [ cos@® —sin H}[x} . [cos@ —sin Q}P cos a}

'sin@ cos@ |y| [sin@ cosd || rsina

[ rcos@cosa —rsin Gsin a
| rsin @cosa +rcosdsin a

. [r cos(6 + a)}

rsin( @+ a)
r : the length of T(v)

6+« : the angle from the positive x-axis counterclockwise to
the vector T(v)

Thus, T(v) Is the vector that results from rotating the vector v

counterclockwise through the angle 6.

Elementary Linear Algebra: Section 6.1, p.303 16/103



« Ex 8: (A projection in R3)

The linear transformation T : R® — R® is given by

00 :
A=(0 1 0 ?*
_O 0 O_ T{.T._ v, Z)
Is called a projection in R3. *

N

X y

T(x,y.2)=(x,9,0)

Projection onto xy-plane
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« EX 9: (A linear transformation from M_ . intoM_ )
T(A=A (T: M__—>M

)
Show that T is a linear transformation.

Sol:
ABeM_

T(A+B)=(A+B) = A" +B" =T(A)+T(B)
Tlea (e —eN —elh)

Therefore, T is a linear transformation from M_._.into M, .

Elementary Linear Algebra: Section 6.1, p.304 18/103



Key Learning in Section 6.1

= Find the image and preimage of a function.
= Show that a function is a linear transformation, and find a
linear transformation.
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Keywords in Section 6.1

« function: & #c

- domain: #% &

. codomain: ¥t &#% =

« Image of vunder T: & Tp: & venije
« range of T: Tenig &

= preimage of w: werik ij

. linear transformation: % #& 3%

« linear operator: /|4 :i& & 3+

. zero transformation: % ## 3%

« identity transformation: #4p & #& 4%
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6.2 The Kernel and Range of a Linear Transformation

« Kernel of a linear transformation T:

LetT :V — W be a linear transformation

Then the set of all vectors v In V that satisfy T(v) =0 IS
called the kernel of T and is denoted by ker(T).

ker(T)={v|T(v)=0,VveV}

- EX 1: (Finding the kernel of a linear transformation)
T(A)= A' (T : M3><2 o M2><3)

Sol:

ker(T) =+

Elementary Linear Algebra: Section 6.2, p.309

0o

0 O

\—O O_

J
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= EX 2: (The kernel of the zero and identity transformations)
(a) T(v) =0 (the zero transformation T :V —>W )

ker(T)=V

(b) T(v) = v (the identity transformation T :V —»V )

ker(T) ={0}

= EX 3: (Finding the kernel of a linear transformation)

T(X,Y,2)=(x,Y,0) 0 R Ry
ker(T)="7

Sol:
ker(T)={(0,0,2)| z s a real number }

Elementary Linear Algebra: Section 6.2, p.309

4(0,0.2)

The kernel of T is the set

of all vectors on the z-axis.
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= EX 5: (Finding the kernel of a linear transformation)

-

1 -1 -2 o 5

T(x)—Ax—{_1 5 3};% (T:R°—>R")
e

ker(T)="7

Sol:
ker(T) ={(X,, X3, X3) | T (X, X, X3) = (0,0), X = (%, %,, %) € R}

T(Xl’ Xy Xs) R (O’O)
-1 2 3 o
X3

Elementary Linear Algebra: Section 6.2, p.310 23/103




1 2 3 0 o 1
] [t L

= X [=] ti=n 1
et

= ker(T) ={t(1,—-1,1) |t is a real number }
=spar{(1-11)}

Elementary Linear Algebra: Section 6.2, p.310
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= Thm 6.3: (The kernel is a subspace of V)
The kernel of a linear transformation T:V —-W Isa
subspace of the domain V.

2 '+ T(0)=0 (Theorem 6.1)
. ker(T) Is a nonempty subset of V
Let uand v be vectors inthe kernel of T.then

TU+Vv)=T@U)+T(v)=0+0=0 =Uu+Vveker(T)
T(cu)=cT(u)=c0=0 = cu e ker(T)

Thus, ker(T)isasubspace of V.

= Note:
The kernel of T Is sometimes called the nullspace of T.

Elementary Linear Algebra: Section 6.2, p.311 25/103



= EX 6: (Finding a basis for the kernel)
Let T : R> — R* be defined by T (x) = Ax, where xis in R® and

7 4 1 19
1 53 1 0

A=
190 20 1
800 o 8

Find a basis for ker(T) as a subspace of R>.

Elementary Linear Algebra: Section 6.2, p.311 26/103



Sol:

Al 0]=
a2 0 1 1 g e 2 0 1 0
2 2 o 1. 0 0 0 Ll 0 0
e 20l g 060 0 1 4 0
o a0 g 2 5 9 0 g 0 g a0
S 1
(x| [-2s+t] [-2] [ 1]
X, s 1 2
Xl X S =5 1 1t v
X, — 4t 0 =
o ot b gl

B=1{(-2,1,1,0,0),(12,0,-4,1)}:one basis for the kernel of T

Elementary Linear Algebra: Section 6.2, p.311 27/103



= Corollary to Thm 6.3:

Let T :R" — R™ bethe L.T given by T (x) = Ax
Then the kernel of T Is equal to the solution space of Ax=0

T(X)= Ax (alinear transformation T :R" — R™)
= Ker(T) =NS(A) = {x| Ax=0,VXe Rm} (subspace of R™)

= Range of a linear transformation T:

LetT :V >W bealL.T.
Then the set of all vectors w in W that are images of vector
In V Is called the range of T and is denoted by range(T)

range(T) ={T(v)| Vv eV}

Elementary Linear Algebra: Section 6.2, p.311-312 28/103



= Thm 6.4: (The range of T is a subspace of W)

The range of a linear tra nsformatio n T :V —W Is a subspace of W.

Pf:
+T(0)=0 (Thm.6.1)

. range(T) is a nonempty subset of W

Let T (u)and T (v) be vector inthe range of T
TU+v)=Tu)+T(v)erange(T) (ueV,veV = u+veV)
T(cu) =cT (u) € range(T) (UeV = cueV)

Therefore, range(T) is W subspace.

Elementary Linear Algebra: Section 6.2, p.312 29/103



= Notes:
T :V —)W |S a LT Domain Kernel
(1) Ker(T) is subspace of V

(2)range(T) is subspace of W

= Corollary to Thm 6.4:

LetT:R" — R™ be the L.T. given by T (X) = Ax
Then the range of T is equal to the column space of A
= range (T) =CS(A)

Elementary Linear Algebra: Section 6.2, p.312 30/103



= EX 7: (Finding a basis for the range of a linear transformation)

Let T : R> — R* be defined by T (x) = Ax, where xis R> and

1.2 0 1 |
2 1 3 1 0
A=
10 258 0
09 a 2 3

Find a basis for the range of T.

Elementary Linear Algebra: Section 6.2, p.313 31/103



Sol:

T2 9 1 ¢ o 2 6 1
> 1 3 1 0t 00 10 9

e > — B
10 2 @ 1 6 0 0 2
0 o 86 2 B8 2 0 0 Q0
B e e

= {w,, w,, w, }is a basis for CS(B)

1 2

{c.,c,,c,}is abasis for CS(A)

SR

= {(1, 2,—1,0),(2,1,0,0),(1,1,0, 2)}is a basis for the range of T

Elementary Linear Algebra: Section 6.2, p.313 32/103



« Rank of a linear transformation T:V—W:

rank (T ) = the dimension of the range of T

= Nullity of a linear transformation T:V—W:

nullity (T) = the dimension of the kernel of T

= Note:

LetT:R" — R™ be the L.T. given by T (x) = AX, then
rank (T ) = rank (A)
nullity (T) = nullity (A)

Elementary Linear Algebra: Section 6.2, p.313 33/103



= Thm 6.5: (Sum of rank and nullity)
LetT :V —W bea L.T. form an n - dimensiona | vector spaceV

Into a vector spaceW. then
rank (T)+nullity( T) =n

of. dim( range of T)+dim( kernel of T) =dim(domain of T)

Let T is represented by an mx n matrix A
Assume rank(A)=r
(1) rank (T ) = dim( range of T) =dim( column space of A)

=rank(A) =r
(2) nullity (T) =dim( kernel of T) =dim( solution space of A)
=Nn-r

= rank(T)+nullity(T)=r+(n—r)=n

Elementary Linear Algebra: Section 6.2, p.313 34/103



= EX 8: (Finding the rank and nullity of a linear transformation)
Find the rank and nullity of the L.T.T : R® — R® define by

A —

Sol:

rank (T) =rank (A) =2
nullity (T) =dim(domain of T)—rank(T)=3-2=1

Elementary Linear Algebra: Section 6.2, p.314

Lo
g 1

0 0

e

1
0
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= EX 9: (Finding the rank and nullity of a linear transformation)
Let T : R°> — R’ be a linear tra nsformatio n.

(a) Find the dimension of the kernel of T If the dimension
of the range is 2
(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) ={0}

Sol:
(a) dim( domain of T) =5
dim( kernel of T)=n—-dim(range of T)=5-2=3

() rank(T)=n—nullity (T)=5-4=1
(c)rank(T)=n—nullity (T)=5-0=5

Elementary Linear Algebra: Section 6.2, p.314 36/103



« One-to-one:

A function T :V —W is called one -to -one Iif the preimage of

every w in the range consists of asingle vector.
Tisone-to-oneiff foralluand vinV, T(u)=T(v)

Implies that u =v.

(One-to-one

Elementary Linear Algebra: Section 6.2, p.315

Not one-to-one
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« Onto:

A function T :V —W is said to be onto if every element
In w has a preimage inV

(T 1s onto W when W is equal to the range of T.)

Elementary Linear Algebra: Section 6.2, p.315 38/103



= Thm 6.6: (One-to-one linear transformation)
LetT :V ->W bealL.T.
Then Tis1-1iff ker(T)={0}

Pf: _
Suppose T Is1-1

Then T (v) = 0 can have only one solution :v=0
L.e. ker(T) ={0}
Suppose ker(T) ={0}and T (u) =T (v)
Tw-v)=TU)-T(v)=0
Tl T
~u—-veker(T)=u-v=0

=l i

Elementary Linear Algebra: Section 6.2, p.315 39/103



= EX 10: (One-to-one and not one-to-one linear transformation)

(@) The LT.T:M__ —>M__given byT(A)= A’
IS one - to - one.
Because its kernel consists of only the mx n zero matrix.

(b) The zero transformation T : R® — R?® is not one - to - one.
Because its kernel is all of R®.

Elementary Linear Algebra: Section 6.2, p.315 40/103



- Thm 6.7: (Onto linear transformation)

LetT :V —>W bealL.T., whereW is finite dimensional.
Then T is onto Iff the rank of T is equal to the dimension of W.

= Thm 6.8: (One-to-one and onto linear transformation)
LetT :V —W bea L.T. with vector spaceV and W both of
dimension n. Then T isone -to -one if and only If it is onto.
- If T Is one -to -one, then ker(T) ={0}and dim(ker(T)) =0

dim( range (T)) = n—dim(ker(T)) =n =dim(W)
Consequent ly, T i1s onto.
If T isonto, then dim(range of T) =dim(W) =n
dim(ker(T))=n—dim(range of T)=n—n=0

Therefore, T is one - to - one.
Elementary Linear Algebra: Section 6.2, p.316 41/103



s Bl

The L.T.T :R" -5 R™isgiven by T (x) = AX, Find the nullity and rank

of T and determine whether T IS one -to - one, onto, or neither.

L
(a)A=|0 1 1 (b)A=|0
0 0 1 0
b2 >
(C)A:[O . _J (d)A{g
Sol:
T:R"—>R™ dim(domainof T) rank(T) nullity(T)
(a)T:R3—Rs 3 3
(b)T:R?—>R8 2 2
(C)T:R3—>R? 3 2
(d)T:R3—>RS 3 2

Elementary Linear Algebra: Section 6.2, p.316

0

0
1
1

i
Yes
Yes
No
No

onto

Yes
No
Yes
No
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= Isomorphism:
A linear transformation T :V — W that i1s one to one and onto

Is called an isomorphism. Moreover, if V and W are vector spaces
such that there exists an isomorphism fromV toW, thenV and W

are said to be iIsomorphic to each other.

= Thm 6.9: (Isomorphic spaces and dimension)
Two finite-dimensional vector space V and W are isomorphic

If and only If they are of the same dimension.
Pf:

Assume that V isisomorphic toW, where V has dimension n.

— Thereexistsa L.T.T :V — W that is one to one and onto.
T Isone-to-one
= dim(Ker(T))=0
= dim(range of T) =dim(domain of T) —dim(Ker(T))=n-0=n

Elementary Linear Algebra: Section 6.2, p.317 43/103



- T 1S onto.

= dim(range of T) =dim(W) =n

Thus dim(V) =dim(W) =n

Assume thatV and W both have dimension n.

Let {v,,V,,---,Vv_}bea basis of V, and
let {w,, w,,---,w_}bea basis of W.

Then an arbitrary vector in V can be represented as
V=CV,+CV,+---+CV,

and you can define a L.T.T :V —W as follows.
T(V)=CcW,+C,W, +---+C W,

It can be shown that this L.T. is both 1-1 and onto.

Thus V and W are isomorphic.
Elementary Linear Algebra: Section 6.2, p.317 44/103



= Ex 12: (Isomorphic vector spaces)

The following vector spaces are iIsomorphic to each other.
(a)R* =4-space
(b)M, , =space of all 4x1 matrices
(c)M,, , =space of all 2x 2 matrices
(d)P,(x) =space of all polynomial s of degree 3or less

eV ={(X,, X,, X5, X, 0), X. is a real number }(subspace of R°)

Elementary Linear Algebra: Section 6.2, p.317 45/103



Key Learning in Section 6.2

= Find the kernel of a linear transformation.
= Find a basis for the range, the rank, and the nullity of a linear

transformation.
= Determine whether a linear transformation IS one-to-one or

onto.
= Determine whether vector spaces are isomorphic.
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Keywords in Section 6.2

kernel of a linear transformation T: 4R+ dE 3Tt 2 &

range of a linear transformation T: 4% #& 3% T (2 3

rank of a linear transformation T: &R |4 i 3 T cf%

nullity of a linear transformation T: 4%+ 48 4% T = #ic
= One-to-one: - #-

- ONtO: P& =

= Isomorphism(one-to-one and onto): F

= ISOmorphic space: f#m;i B
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6.3 Matrices for Linear Transformations

« Two representations of the linear transformation T:R*—R3:

AT (X, X,, X3) = (2%, + X, — X5,—X; +3X, —2%;5,3X, +4X,)

2 1 i
2)T(X)=Ax=|-1 3 —2| X%
0 3 a4 X

= Three reasons for matrix representation of a linear transformation:

- It 1s simpler to write.
- Itis simpler to read.

- It 1s more easily adapted for computer use.

Elementary Linear Algebra: Section 6.3, p.320 48/103



- Thm 6.10: (Standard matrix for a linear transformation)

Let T :R" — R™ be a linear trt ansformati on such that

I (el) %

T
a21

a

ml |

, T(ez) W

Y
a‘22

a'm2

o T(en):

Ay,
a2n

a

mn

Thenthe mxn matrix who se n columns correspond to T (e )

Ay,
a'22

A=[T() |T(,) || T(E,)]=

T
a21

a

ml

a

is such that T (v) = Av for every vin R".

Ais called the standard matrix for T.
Elementary Linear Algebra: Section 6.3, p.320

m?2

Ay,
a2n

a

mn
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Pf:

v=| ?|=ve +V.e,+---+Ve

TisaLT.=>T(v)=T(ve +ve +---+Vve)
=T(ve)+T(ve)+---+T(ve)
=vT(e)+v,T(e)+:---+vT(e)

A, Qdp 0 G [V AV +a,V, +--+ Vv,
AV = Ay Ay Qo ||V v QyqVy + 85V, + ooy, Yy
_aml a‘m2 W a'mn il _Vn 3 _amlvl 95 a‘m2V2 SR a'mnVn 2

Elementary Linear Algebra: Section 6.3, p.321 50/103



=v,T(e)+Vv,T(e)+---+Vv. T(e,)

Vi

ml

+V,

m?2

etV

mn

Therefore, T(v) = Av for each vin R”

Elementary Linear Algebra: Section 6.3, p.321



= EX 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T.T : R°> — R* define by
T(X,Y,2)=(X=-2Y,2X+Y)

Sol: _
Vector Notation

T(e,)=T@0,0)=(,2)

T(e,)=T(0,1,0)=(-2,1)

T(e;)=T(0,0,1) =(0,0)

Elementary Linear Algebra: Section 6.3, p.321

Matrix Notation
.

T(el) :T(

T(ez):T(

T(e3) :T(

PR OO O = O

o O
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A=[T(e) | T(e,) | T(e,)]

1 o g
2 | q

Ax_l -2 0 X_x—2y
.
Le. T(X,Y,2)=(X—-2Y,2X+Y)

= Note:

. 1 -2 0| « 1x-2y+0z
2 1 0 o 21y 0y

Elementary Linear Algebra: Section 6.3, p.321
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= EX 2: (Finding the standard matrix of a linear transformation)
The linear tra nsformatio n T : R* — R is given by projecting

each point in R” onto the x -axis. Find the standard matrix for T.
Sol:

T(x,y)=(x,0)
A=[T(e) | T(e)]=[T(@0) IT(O’l)]{cl) 8}
= Notes:

(1) The standard matrix for the zero transformation from R" into R™
IS the m x n zero matrix.

(2) The standard matrix for the zero transformation from R" into R"
IS the n x n identity matrix ..
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- Composition of T,:R"—>R™with T)R™—-RP: (&
TV =T,(T,(V)), VeR’

T =T,0T,, domain of T =domain of T, \

= Thm 6.11: (Composition of linear transformations)

LetT,:R" >R"andT,:R™ -> R” be L.T.
with standard matrices A and A, ,then

(1)The compositio n T : R" — R", defined by T(v) =T, (T,(v)),isa L.T.

(2) The standard matrix Afor T is given by the matrix product A=A, A
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2p
()(TisaL.T.)

Let uand v be vectors in R" and let ¢ be any scalar the n
I (u 0 V) o Tz (T1 (U s V)) o T2 (Tl (U) +T1 (V))
=T, (T, (U)) + T, (Ty(V)) =T (u) + T (V)

T (CV) R Tz (Tl (CV)) w Tz (CTl (V)) > CTz (Tl (V)) =cT (V)
(2)(A, A is the standard matrix for T)

T(v) =T,(T,(v)) =T,(AVv) = AAV=(AA)V
« Note:
e 2o

Elementary Linear Algebra: Section 6.3, p.323 56/103



= EX 3: (The standard matrix of a composition)
Let T, and T, be L.T. from R’ into R’ s.t.

T,(X,Y,2) =(2x+VY,0,x+2)

T,(x Yy 2)=(X=-Y,2,)
Find the standard matrices for the compositio ns

. =T Tapnl —FTcl

Sol: A .
2 1 0
A=/0 0 O] (standard matrix for T,)
Lo 1]
1 -1 0
A,=|0 0 1| (standard matrix for T,)
o 1 a

Elementary Linear Algebra: Section 6.3, p.324 57/103



The standard matrix for T =T, 0T,

g2 2 1 0
A-AN 10 O 110 0 8 1 3 1
o L ol 8 118 g
The standard matrix for T'=T, 0T,
2 1 Ol 1 9l 2 2 1
A=AA =10 0 010 0O 1 =0 0 0
b8 e 10 gl 0 g
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« Inverse linear transformation:

If T,:R" >R"and T, :R" > R" are L.T. s.t. for every vinR"
T, (Tl(V)) =V and T, (Tz (V))=v

Then T, Is called the inverse of T, and T, Is said to be invertible

= Note:

If the transformation T Is invertible, then the inverse Is
unigue and denoted by T.
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- Thm 6.12: (Existence of an inverse transformation)
LetT :R" —> R" bea L.T. with standard matrix A,
Then the following condition are equivalent .

(1) T is invertible.
(2) T Is an isomorphism.
(3) Ais invertible.

= Note:

If T 1s invertible with standard matrix A, then the standard
matrix for T 1is AL,
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= EX 4: (Finding the inverse of a linear transformation)
The LT.T: R® — R®is defined by
T (X, X5, X3) = (2% +3X, + X5, 3X, +3X, + Xg, 2X, +4X, +X,)

Show that T Is invertible, and find its inverse.

Sol:
The standard matrix for T

2 3 1] <« 2x +3X,+X,

A=|13 3 1 € X EaxX

2 o Ll e P idy R
2 3 101 0 0
Aal1]-12 3 118 10
2 4 110 6 1
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00 11 0
CiE Jg1 0 10 1l QA
0016 o g

Therefore T is invertible and the standard matrix for T tis A™

vy 1 0
A9 0 |
6 2 3
1 1 Ofxd F o oxa x|
o) aw— 1 0 1dxi- x5
| 6 -2 -3[X | |6X—2X,—3X, |

In other word s,

T (%, %, %) = (=% + X5, — X, + X, 6% — 2%, —3x,)
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= the matrix of T relative to the bases B and B':

T:V-o>W (aL.T.)
B={v,v,-,v} (abasis forV)
B'={w,w,---,w } (abasis for W)

Thus, the matrix of T relative to the bases B and B' is

A=[T )]s [T )]s [T e M.,
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« | ransformation matrix for nonstandard bases:

LetV and W be finite - dimensiona | vector spaces with basis B and B',

respective ly, where B ={v,,v,,---,V_}

If T:V >WisalL.T.s.t.

[T (Vl)]B' %

then the mx n matrix who se n columns correspond to [T (v;)]..

Ay
a21

a

ml _|

’ [T (VZ)]B' A

Elementary Linear Algebra: Section 6.3, p.326

) [T (Vn)]B' T
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A=[T(e) [T(e) |+ | T(e,)]=

is such that [T (v)],. = Alv], for every vin V.

Elementary Linear Algebra: Section 6.3, p.326

Ay
a21

a

ml
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= EX 5: (Finding a matrix relative to nonstandard bases)
Let T: R° > R*beaL.T. defined by
T (X, %) = (% +X;, 2% —X,)
Find the matrix of T relative to the basis

B={(1, 2),(-1D}and B'={(1, 0), (0,1)}
Sol:
T@L2)=(3,0)=3(1,0)+0(0,1)

T(-1,1)=(0,—-3)=0(10)-3(0,1)
ra.2k =g} FeLolk-| S|
the matrix for T relative to B and B’

A=[T@2)) [T@ 2)]3-]{3 —03}

Elementary Linear Algebra: Section 6.3, p.326
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« EXG:
Forthe L.T.T: R® — R”given in Example 5, use the matrix A

to find T (v), where v =(2,1)

Sol:
v=(2,1)=1(1,2)-1(-11) Bl AL

=TV =Av] = [g _03}[—11} . B}

= T(v)=3(1,0)+3(0,1) =(3,3) b =il 01 {0 1}

= Check:
T(2,)=(2+12(2)-1)=(3,3
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= Notes:

(1)In the special case whereV =W and B = B',
the matrix Ais alled the matrix of T relative to the basis B

(2)T :V —>V : the identity t ransformat ion
B={v,v,,---,v }: abasis forV
— the matrix of T relative to the basis B

0

g1 0
ATl el rekl=| . o . )=,

0 0 1

Elementary Linear Algebra, Section 6.3, p.327 68/103



Key Learning in Section 6.3

= Find the standard matrix for a linear transformation.
= Find the standard matrix for the composition of linear
transformations and find the inverse of an invertible linear

transformation.
= Find the matrix for a linear transformation relative to a

nonstandard basis.
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Keywords in Section 6.3

. standard matrix for T: T &% & 4prd

« composition of linear transformations: 4R |+ & 3% e & =

. inverse linear transformation: »~ %t |+ #

- matrix of T relative to the bases B and B' : T¥t /&>t &L KB
B' s i

= matrix of T relative to the basis B: T &>t 2L & Bawuge L
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6.4 Transition Matrices and Similarity

T:V >V (aL.T.)
={v,,v,,---,v,} (abasis of V)
B'={w,w,,---,w_} (abasis of V)

A=T)L.Tv) L. [Tv),]  (matrix of T relative to B)
A=[Tw)], . [Tw)],, - [Tw)].] (matrix of T relative to B')
P={w].w],,---[w.].]  (transitio n matrix from B'to B)

P=[v,]..[v,]s.--»[v.].]  (transitio n matrix from B to B')
5 ¥ A V— (Basis B) /"_" v
] — P[ ] . V]B. =P v . .,/[a-]g\1 A | [T{x-a]g\,.
' ' . N N
T(V)], = Alv]; , N
T(V)]B N A [V]B /"[_] \\ Basis B") //T{ » \
vlg A’ v)lp
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- Two ways to get from [V]B. to [T (V)]B': ndirect

(1)(direct) (Basis B)
Allv]g =[T (V)]s ﬁ )

(2)(indirect) _ |
PAP[V],. =[T (V)] Q) i

— A'=P AP e

direct
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= EX 1: (Finding a matrix for a linear transformation)
Find the matrix A'for T: R* > R?
T(X%,X%)=(2% —2X,,— % +3X,)
reletive to the basis B'={(1,0), (1,1}

Sol:
HA=[TLo)) [T@yk]

T4 @ 1 34 10y — [0 {_3 1—
T1,)=(0,2=-21,0+2(11) = [T (1, 1)]8' % {_22_

=[[T@ 0. [T(l,l)]s-]:{_i _22}
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(I1) standard matrix for T (matrix of T relative to B ={(1, 0), (0,1)})

A=[T@L0) T(0,1]= [_21 _32}

transition matrix from B'to B

—feol, b} |

0 1
transition matrix from B to B’

e

matrix of T relative B’

A= PlAP{é _1}{_21 _32}{(1) iH—Sl _22}
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= EX 2: (Finding a matrix for a linear transformation)
Let B={(-3,2), (4,—2)}and B'={(-1, 2), (2, — 2)} be basis for R?,

.
and let A:{ 7} be the matrix for T : R* — R? relative to B.

Find the matrix of T relative to B'.

Sol: S 7
transition matrix from B'to B: P =[[(-1 2)], [(2, —2)]5]:{2 _J

X . - -1 2
transition matrix from Bto B:P* =[[(-3,2)],. [(4.-2)].]= . .
matrix of T relative to B':

s
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= EX 3: (Finding a matrix for a linear transformation)
For the linear tra nsformatio n T : R> — R? given in Ex.2, find [v],

[T(v)],and [T (v)]..,for the vector v whose coordinate matrix is

-
o -k - [ Al
Tk -kl =25 7] el
Tk =P =| T 3] } [ .

or [T(V)]s. = { / 1}
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« Similar matrix:

For square matrices A and A ‘ of order n, A‘is said to be
similar to A if there exist an invertible matrix P s.t. A= P 'AP
= Thm 6.13: (Properties of similar matrices)
Let A, B, and C be square matrices of order n.
Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If Ais similar to B and B is similar to C, then A is similar to C.

Pf:
MDA=I1_Al

(2 A=PBP = PAP '=P(P 'BP)P"
PAP'=B = Q'AQ=B (Q=P7)
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= EX 4: (Similar matrices)

2 7 37 .
(a)A= and A'= are similar
12 2

Ja v
because A'= P AP, where P = {O J

2 2 1 o
(b)A= and A'= are similar
3 3

3 -2
because A'= P AP, where P = {2 J

Elementary Linear Algebra: Section 6.4, p.332
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« Ex 5: (A comparison of two matrices for a linear transformation)

1 8 0
Suppose A=|{3 1 0 |[is the matrix for T : R® — R® relative
o g 2
to the standard basis. Find the matrix for T relative to the basis
o B'={(11,0),( -10),(0,0,1)}
The transition matrix from B' to the standard matrix
R b g
B lndiml (L 10 foon |1 1 0
- REL B

2 0
=P =1 -1 0
1
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matrix of T relative to B':
- . ol 2 @ d Q
A=P7*AP=|{ -1 03 1 0|1 -1 0
o o L0 8 2900 0 1
4 00
=1 -7 0
a a7
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= Notes: Computational advantages of diagonal matrices:

4 0
k
o
00

(2)D" =D
o
0 L
(3D = : d:Z
0 0

Elementary Linear Algebra: Section 6.4, p.333

0
0

d =0

o

0 d,
0 0
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Key Learning in Section 6.4

= Find and use a matrix for a linear transformation.
= Show that two matrices are similar and use the properties of
similar matrices.
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Keywords in Section 6.4

« matrix of T relativeto B: T 4p >t Bag L

« matrix of T relativeto B': T 4p ¥ 3+ B' e

« transition matrix from B' to B : & B'3| B 5 427
« transition matrix from B to B' : /€ B3| B’ #5 45 'L

« similar matrix: #p iz 4B "L
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6.5 Applications of Linear Transformations

« Elementary matrices for linear transformations in R?:

Reflection in y-axis Reflection in x-axis  Reflection in line y = x

e,

Horizontal expansion (k > 1) Vertical expansion (k > 1)

or contraction (0 <k < 1) or contraction (0 <k < 1)
k O 10
A = A=
0 0 K
Horizontal shear Vertical shear

Ty =
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« Ex 1: (Reflections in R?)

a. Reflection b. Reflection c. Reflection
In the y-axis In the x-axis In the liney = x
T (X’ y) v (_X’ y) T (X’ y) - (X’_y) T(X1 y) : (y’ X)
-l Dix X 1 O XX g Lixi Ly
Oly_y O—y_—y loy_x
(=X, 7) (x. ) (X, y) | &

__________ . .
| .
\ ! (v, X)
= X \‘ i - X
|
|
I
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« Ex 2: (Expansions and Contractions in R?)

a. Horizontal contractions
and expansions kry) @y

T(x,y) = (kx, y) '

o 2l x

Contraction (0 <k < 1)

y

b. Vertical contractions
and expansions o(t.Y)

T(X,¥)=(xky) x. k)

o byl |

Contraction (O <k < 1)

Elementary Linear Algebra: Section 6.5, p.337

(x.y)  (kx,y)

> X

Expansion (k > 1)

A (x, ky)

o (X, V)

Expansion (k> 1)
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« Ex 3: (Shears in R?) do
a. Horizontal shear ‘ """"
T(X,y)=(x+ky,y) R4
1 kx| [x+ky T A T

ol y 5 y oo/
i ]

T(X,y)=(x+2y,Y)

Under this transformation, points in the upper half-plane “shear” to
the right by amounts proportional to their y-coordinates. Points in
the lower half-plane “shear” to the left by amounts proportional to
the absolute values of their y-coordinates. Points on the x-axis do
not move by this transformation.
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b. Vertical shear

T(X,¥)=(X,y+kx)

B (ﬂm :{kxi y}

T(X,y)=(X,y+2X)

Here, points in the right half-plane “shear” upward by amounts
proportional to their x-coordinates. Points in the left half-plane
“shear” downward by amounts proportional to the absolute values
of their x-coordinates. Points on the y-axis do not move.
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= Rotation in R3:

Suppose you want to rotate the point (X, y, z) counterclockwise

about the z-axis through an angle 6.

X'| [cos@® -—sin@ O x| [xcos@-ysing
y'|=|sind cosd O} y|=|xsin@+ycosd
7 0 0 1] z Z

Z
)

S=3

—
==
—

1

"

o
=
»
R T o
LY
o
o
.
IF\.
'Q'.‘«# - 5 5
-
-

X y
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= EX 4: (Rotation About the z-axis)

V,(0,0,0)  V,(L0,0)
V,(1,2,0)  V,(0,2,0)
V(0,0,3)  V,(10,3)
V123 V(025

Sol:

a. A rotation of 60°
w60 o sinebs o a3 ()]

A sne)e osED 0l 20 10 0 //f

0 0 1 0 0 1

V/(0,0,0) V/(0.5,0.87,0) V.(-1.23,1.87,0) V,(-1.73,1,0)
V003 ©50873 Vil2193 yilzla
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b. A rotation of gp°

(c0s90° —sin90° 0] [0 0
A=[sin90° cos90° O0|=|1 O O
0 0 1 g 0 f

c. Arotation of 120°

cos1200 smione o) Bl - B0 §
A=|sin120° co0s120° 0|=(~3/2 -1/2 0
0 0 1 0 g 1
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Rotation about the x-axis Rotation about the y-axis Rotation about the z-axis

'l 0 0 ' cos® 0 siné| cos® -singd 0]
0O cos@ -—-sind@ 0 1 0 sin@ cos@ O
0O sin@d cosd —sind 0 cosd@ 0 0 1
S
x% \}‘ | / m\ | | / \ |
Rotation about x-axis Rotation about y-axis Rotation about z-axis
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= Note:

To illustrate the right-hand rule, imagine the thumb of your
right hand pointing in the positive direction of an axis. The
cupped fingers will point in the direction of counterclockwise
rotation. The figure below shows counterclockwise rotation
about the z-axis.

s

X
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= EX 5: (Rotation About the x-Axis and y-AXISs)

(a) A rotation of 90° about the x-axis

A=

1 0
0 cos90°

0 sin90°

0
—sin 90°

cos90° |

(b) A rotation of 90° about the y-axis

VA

[ cos90°
0

| —sin90°

0
1
0

sin 90° |
0

cos 90° |

Elementary Linear Algebra: Section 6.5, p.340
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Key Learning in Section 6.5

- ldentify linear transformations defined by reflections,
expansions, contractions, or shears in R2.

« Use a linear transformation to rotate a figure in R3.
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Keywords in Section 6.5

- reflection: 4 5+

« expansion: # &

= contraction:

= Share: *» ¥

. rectangular prism: £ = &4
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6.1 Linear Algebra Applied

« Multivariate Statistics

Many multivariate statistical methods can use linear
transformations. For instance, in a multiple regression
analysis, there are two or more independent variables
and a single dependent variable. A linear transformation
Is useful for finding weights to be assigned to the
Independent variables to predict the value of the
dependent variable. Also, in a canonical correlation
analysis, there are two or more independent variables
and two or more dependent variables. Linear
transformations can help find a linear combination of
the independent variables to predict the value of a linear
combination of the dependent variables.

Elementary Linear Algebra: Section 6.1, p.304 97/103



6.2 Linear Algebra Applied

= Control Systems

A control system, such as the one shown for a dairy
factory, processes an input signal x, and produces an
output signal x,,,. Without external feedback, the
difference equation X, = AXx, a linear
transformation where x; iIsan n x 1 vector and A Is
an n x n matrix, can model the relationship between
the input and output signals. Typically, however, a
control system has external feedback, so the
relationship becomes X, = Ax,+Bu,, where B is an
n Xm matrix and u,is an m x 1 mput or control,
vector. A system Is called controllable when it can
reach any desired final state from its initial state in or
fewer steps. If A and B make up a controllable
system, then the rank of the controllability matrix

[BE AB AB . .. A™B]
IS equal to n.
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6.3 Linear Algebra Applied

= Circuit Design

Ladder networks are useful tools for electrical
engineers involved in circuit design. In a ladder
network, the output voltage V and current | of one
circuit are the input voltage and current of the circuit
next to it. In the ladder network shown below, linear
transformations can relate the input and output of an
Individual circuit (enclosed in a dashed box). Using
Kirchhoff’s Voltage and Current Laws and Ohm’s

T e
W
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6.3 Linear Algebra Applied

= Circuit Design

A composition can relate the input and output of the
entire ladder network, that is, V; and I, to V; and ;.
Discussion on the composition of linear
transformations begins on the following page.

1 r=-==—= , 12 2 or—————— ,IJ
RO RO
El

£

—0O

O
O
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6.4 Linear Algebra Applied

« Weather

A Leslie matrix, named after British mathematician
Patrick H. Leslie (1900-1974), can be used to find the
age and growth distributions of a population over time.
The entries in the first row of an n x n Leslie matrix L
are the average numbers of offspring per member for
each of n age classes. The entries in subsequent rows
are pi in row 1 +1, column i and O elsewhere, where pi Is
the probability that an ith age class member will survive
to become an (i +1)th age class member. If X; Is the age
distribution vector for the jth time period, then the age
distribution vector for the (j +1)th time period can be
found using the linear transformation x;,; = LX;. You
will study population growth models using Leslie
matrices in more detail in Section 7.4.
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6.5 Linear Algebra Applied

- Computer Graphics

The use of computer graphics Is common in many
fields. By using graphics software, a designer can
“see” an object before it is physically created. Linear
transformations can be useful in computer graphics.
To illustrate with a simplified example, only 23 points
in R® were used to generate images of the toy boat
shown in the figure at the left. Most graphics software
can use such minimal information to generate views
of an image from any perspective, as well as color,
shade, and render as appropriate. Linear
transformations, specifically those that produce
rotations in R3 can represent the different views. The
remainder of this section discusses rotation in R3,
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