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7.1 Eigenvalues and Eigenvectors 

 Eigenvalue problem: 

If A is an nn matrix, do there exist nonzero vectors x in Rn 

such that Ax is a scalar multiple of x？  

 Eigenvalue and eigenvector: 

A：an nn matrix 

：a scalar 

x： a nonzero vector in Rn 

xx A

Eigenvalue 

Eigenvector 

 Geometrical Interpretation 

Elementary Linear Algebra: Section 7.1, p.348 
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 Ex 1:  (Verifying eigenvalues and eigenvectors) 
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Elementary Linear Algebra: Section 7.1, p.349 
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 Thm 7.1: (The eigenspace of A corresponding to ) 

If A is an nn matrix with an eigenvalue , then the set of all 

eigenvectors of  together with the zero vector is a subspace of 

Rn. This subspace is called the eigenspace of  . 

 Pf: 

x1 and x2 are eigenvectors corresponding to  

)  ,  ..( 2211 xAxxAxei  

)  toingcorrespondr eigenvectoan  is   ..(     
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Elementary Linear Algebra: Section 7.1, p.350 
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 Ex 3: (An example of eigenspaces in the plane) 

  Find the eigenvalues and corresponding eigenspaces of 
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Sol: 

Elementary Linear Algebra: Section 7.1, p.350 
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For a vector on the y-axis 
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Geometrically, multiplying a vector (x, y) 

in R2  by the matrix A corresponds to a 

reflection in the y-axis. 

The eigenspace corresponding to               is the x-axis.  

The eigenspace corresponding to               is the y-axis. 

11 

12 

Elementary Linear Algebra: Section 7.1, p.350 
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 Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AMnn ) 

0)Idet(  A(1) An eigenvalue of A is a scalar  such that                           . 

(2) The eigenvectors of A corresponding to  are the nonzero 

      solutions of                       . 

 Characteristic polynomial of AMnn: 

01

1

1)I()Idet( cccAA n

n

n  

  

 Characteristic equation of A: 

0)Idet(  A

0)I(  xA

Let A is an nn matrix. 

If                        has nonzero solutions iff                         .  0)I(  xA 0)Idet(  A

0)I(       xAxAx 
 Note: 

(homogeneous system) 

Elementary Linear Algebra: Section 7.1, p.351 
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 Ex 4: (Finding eigenvalues and eigenvectors) 
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Elementary Linear Algebra: Section 7.1, p.351 
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Elementary Linear Algebra: Section 7.1, p.351 
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 Ex 5: (Finding eigenvalues and eigenvectors) 

Find the eigenvalues and corresponding eigenvectors for 

the matrix A. What is the dimension of the eigenspace of 

each eigenvalue? 

Elementary Linear Algebra: Section 7.1, p.352 
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The eigenspace of A corresponding to                : 2
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Thus, the dimension of its eigenspace is 2. 

Elementary Linear Algebra: Section 7.1, p.352 
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 Notes: 

(1)  If an eigenvalue 1 occurs as a multiple root (k times) for 

the characteristic polynominal, then 1 has multiplicity k. 

(2)  The multiplicity of an eigenvalue is greater than or equal 

to the dimension of its eigenspace. 

Elementary Linear Algebra: Section 7.1, p.353 
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 Ex 6：Find the eigenvalues of the matrix A and find a basis  

             for each of the corresponding eigenspaces. 
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Elementary Linear Algebra: Section 7.1, p.353 



14/88 

 1)1( 1 
































































0

0

0

0

2001

0101

10500

0000

)I(

4

3

2

1

1

x

x

x

x

xA

0,  ,

1

2

0

2

0

0

1

0

2

2

0000

0000

2100

2001

~

2001

0101

10500

0000

4

3

2

1






























































































































tsts

t

t

s

t

x

x

x

x

 

1

2

0

2

,

0

0

1

0





























































 is a basis for the eigenspace 

of A corresponding to   1

Elementary Linear Algebra: Section 7.1, p.353 
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Elementary Linear Algebra: Section 7.1, p.353 
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Elementary Linear Algebra: Section 7.1, p.353 
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 Thm 7.3: (Eigenvalues of triangular matrices) 

If A is an nn triangular matrix, then its eigenvalues are 

the entries on its main diagonal.  

 Ex 7: (Finding eigenvalues for diagonal and triangular matrices) 
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Elementary Linear Algebra: Section 7.1, p.354 
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 Eigenvalues and eigenvectors of linear transformations: 

. of eigenspace  thecalled

 is  vector)zero (with the  of rseigenvecto all setof  theand

 ,  toingcorrespond  ofr eigenvectoan  called is  vector The

.)(such that   vector nonzero a is  thereif :

n nsformatiolinear tra a of eigenvaluean  called is number A 
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Elementary Linear Algebra: Section 7.1, p.355 
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 Ex 8: (Finding eigenvalues and eigenspaces) 
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Elementary Linear Algebra: Section 7.1, p.355 
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 Notes: 

)}1 ,0 ,0(),0 ,1 ,1(),0 ,1 ,1{('            

      

diagonal. is,basis  the torelative

 ofmatrix  the,Then   8. Ex.in  found rseigenvectot independen      
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Elementary Linear Algebra: Section 7.1, p.355 
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Key Learning in Section 7.1 

▪ Verify eigenvalues and corresponding eigenvectors. 

▪ Find eigenvalues and corresponding eigenspaces. 

▪ Use the characteristic equation to find eigenvalues and 

eigenvectors, and find the eigenvalues and eigenvectors of a 

triangular matrix. 

▪ Find the eigenvalues and eigenvectors of a linear 

transformation. 
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Keywords in Section 7.1 

 eigenvalue problem:  特徵值問題 

 eigenvalue:  特徵值 

 eigenvector:  特徵向量 

 characteristic polynomial:  特徵多項式 

 characteristic equation:  特徵方程式 

 eigenspace: 特徵空間 

 multiplicity:  重根數 
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7.2 Diagonalization 

 Diagonalization problem: 

For a square matrix A, does there exist an invertible matrix P 

such that P-1AP is diagonal? 

 Diagonalizable matrix: 

A square matrix A is called diagonalizable if there exists an 

invertible matrix P such that P−1AP is a diagonal matrix. 

                     (P diagonalizes A) 
 Notes: 

(1) If there exists an invertible matrix P such that                  , 

then two square matrices A and B are called similar. 

(2) The eigenvalue problem is related closely to the 

diagonalization problem. 

 

APPB 1

Elementary Linear Algebra: Section 7.2, p.359 
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 Thm 7.4: (Similar matrices have the same eigenvalues) 

If A and B are similar nn matrices, then they have the 

same eigenvalues. 

 Pf: 

APPBBA 1similar are  and 

A

APPAPPPAP

PAPAPPPPAPPB
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A and B have the same characteristic polynomial.  

Thus A and B have the same eigenvalues. 

Elementary Linear Algebra: Section 7.2, p.360 
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 Ex 1: (A diagonalizable matrix) 



















200

013

031

A

 Sol:  Characteristic equation: 

0)2)(4(

200

013

031

I 2 







 







 A

2 ,2 ,4  :sEigenvalue 321  

 

0

1

1

:rEigenvecto 4(1) 1

















 p

Elementary Linear Algebra: Section 7.2, p.359 
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Elementary Linear Algebra: Section 7.2, p.359 
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 Thm 7.5: (Condition for diagonalization) 

An nn matrix A is diagonalizable if and only if  

it has n linearly independent eigenvectors. 

 Pf: 

ablediagonaliz is )( A
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Elementary Linear Algebra: Section 7.2, pp.360-361 
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) of rseigenvecto are  of tor column vec  the..(    

 ,,2 ,1  ,

APei

niA

PDAP

i

iii

p

pp 









t.independenlinearly  are ,,,  invertible is 21 nP ppp  

rs.eigenvectot independenlinearly   has   nA

n

npppnA

 



,, seigenvalue ingcorrespondh        wit

 ,, rseigenvectot independenlinearly   has )(

21

21

niA iii  ,,2 ,1  , i.e.  pp 

][Let 21 nP ppp 

Elementary Linear Algebra: Section 7.2, pp.360-361 
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Elementary Linear Algebra: Section 7.2, pp.360-361 

Note: If n linearly independent vectors do not exist,  

          then an n  n matrix A is not diagonalizable. 
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 Ex 4: (A matrix that is not diagonalizable) 
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A does not have two (n=2) linearly independent eigenvectors, 

so A is not diagonalizable. 
Elementary Linear Algebra: Section 7.2, p.362 
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 Steps for diagonalizing an nn square matrix: 

  Step 2: Let ][ 21 nP ppp 

  Step 1: Find n linearly independent eigenvectors 

              for A with corresponding eigenvalues 

nppp ,,, 21 

  Step 3: 

niADAPP iii
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Elementary Linear Algebra: Section 7.2, p.362 

n ,,, 21 

Note:  

The order of the eigenvalues used to form P will determine the order 

in which the eigenvalues appear on the main diagonal of D. 
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 Ex 5: (Diagonalizing a matrix) 

diagonal. is such that  matrix  a Find      
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Elementary Linear Algebra: Section 7.2, p.363 
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Elementary Linear Algebra: Section 7.2, p.363 
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Elementary Linear Algebra: Section 7.2, p.363 
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 Notes:  k is a positive integer 
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Elementary Linear Algebra: Section 7.2, Addition 
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 Thm 7.6: (Sufficient conditions for diagonalization) 

If an n  n matrix A has n distinct eigenvalues, then the 

corresponding eigenvectors are linearly independent and 

A is diagonalizable. 

Elementary Linear Algebra: Section 7.2, p.364 
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 Ex 7: (Determining whether a matrix is diagonalizable) 
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These three values are distinct, so A is diagonalizable. (Thm.7.6) 

Elementary Linear Algebra: Section 7.2, p.364 
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 Ex 8: (Finding a diagonalizing matrix for a linear transformation) 

diagonal. is   torelative

 for matrix  thesuch that  for  basis a Find
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Elementary Linear Algebra: Section 7.2, p.365 

From Ex. 5, there are three distinct eigenvalues 

 

so A is diagonalizable. (Thm. 7.6) 

3,2 ,2 321  
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The matrix for T relative to this basis is 

Elementary Linear Algebra: Section 7.2, p.365 

)}1 ,1 ,1(),4 ,1 ,1(),1 ,0 ,1{(},,{ 321  pppB

Thus, the three linearly independent eigenvectors found in Ex. 5 

 

can be used to form the basis B. That is 

)1 ,1 ,1(),4 ,1 ,1(),1 ,0 ,1( 321  ppp
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Key Learning in Section 7.2 

▪ Find the eigenvalues of similar matrices, determine whether 

a matrix A is diagonalizable, and find a matrix P such that 

P‒1 AP is diagonal. 

▪ Find, for a linear transformation T: V→V a basis B for V 

such that the matrix T for B relative to is diagonal. 
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Keywords in Section 7.2 

 diagonalization problem:  對角化問題 

 diagonalization:  對角化 

 diagonalizable matrix:  可對角化矩陣 
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7.3 Symmetric Matrices and Orthogonal Diagonalization  

 Symmetric matrix: 

A square matrix A is symmetric if it is equal to its transpose: 

TAA 

 Ex 1: (Symmetric matrices and nonsymetric matrices) 
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Elementary Linear Algebra: Section 7.3, p.368 
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 Thm 7.7: (Eigenvalues of symmetric matrices) 

If A is an nn symmetric matrix, then the following properties 

are true.  

(1) A is diagonalizable. 

(2) All eigenvalues of A are real. 

(3) If  is an eigenvalue of A with multiplicity k, then  has k 

linearly independent eigenvectors. That is, the eigenspace 

of  has dimension k. 

 

Elementary Linear Algebra: Section 7.3, p.368 
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 Ex 2: 

           Prove that a symmetric matrix is diagonalizable. 
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As a quadratic in , this polynomial has a discriminant of 

Elementary Linear Algebra: Section 7.3, p.369 
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04)(  (1) 22  cba

0  ,   cba

diagonal. ofmatrix  a is  
0

0










a

a
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04)(  )2( 22  cba

The characteristic polynomial of A has two distinct real roots, 

which implies that A has two distinct real eigenvalues. Thus, 

A is diagonalizable. 

Elementary Linear Algebra: Section 7.3, p.369 
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A square matrix P is called orthogonal if it is invertible and 

 Orthogonal matrix: 

TPP 1

Elementary Linear Algebra: Section 7.3, p.370 
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 Thm 7.8: (Properties of orthogonal matrices) 

An nn matrix P is orthogonal if and only if  

its column vectors form an orthogonal set. 

Elementary Linear Algebra: Section 7.3, p.370 



48/88 

 Ex 5: (An orthogonal matrix) 
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Elementary Linear Algebra: Section 7.3, p.371 
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Elementary Linear Algebra: Section 7.3, p.371 
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 Thm 7.9: (Properties of symmetric matrices) 

 Let A be an nn symmetric matrix. If 1 and 2 are distinct 

eigenvalues of A, then their corresponding eigenvectors x1 

and x2  are orthogonal.  

Elementary Linear Algebra: Section 7.3, p.372 
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 Thm 7.10: (Fundamental theorem of symmetric matrices) 

Let A be an nn matrix. Then A is orthogonally diagonalizable 

and has real eigenvalue if and only if A is symmetric.  

 Orthogonal diagonalization of a symmetric matrix: 

Let A be an nn symmetric matrix. 

(1) Find all eigenvalues of A and determine the multiplicity of each. 

(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.  

(3) For each eigenvalue of multiplicity k2, find a set of k linearly 

independent eigenvectors. If this set is not orthonormal, apply Gram-

Schmidt orthonormalization process. 

(4) The composite of steps 2 and 3 produces an orthonormal set of n 

eigenvectors. Use these eigenvectors to form the columns of P. The 

matrix                                       will be diagonal. 

 

DAPPAPP
T


1

Elementary Linear Algebra: Section 7.3, p.373 



53/88 

 Ex 7: (Determining whether a matrix is orthogonally diagonalizable) 
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 Ex 9: (Orthogonal diagonalization) 
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Gram-Schmidt Process:  
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Key Learning in Section 7.3 

 Recognize, and apply properties of, symmetric matrices. 

 Recognize, and apply properties of, orthogonal matrices. 

 Find an orthogonal matrix P that orthogonally diagonalizes 

a symmetric matrix A. 
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Keywords in Section 7.3 

 symmetric matrix:  對稱矩陣 

 orthogonal matrix:  正交矩陣 

 orthonormal set:  單範正交集 

 orthogonal diagonalization:  正交對角化 
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7.4 Applications of Eigenvalues and Eigenvectors 

 Population growth: 

The age distribution vector x represents the number of 

population members in each age class, where 
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Multiplying the age transition matrix by the age distribution 

vector for a specific time period produces the age distribution 

vector for the next time period. That is, 

Lxj = xj+1 
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 Ex 1: (A Population Growth Model) 

The current age distribution vector is 
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and the age transition matrix is 
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After 1 year, the age distribution vector will be 
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 Ex 2: (Finding a Stable Age Distribution Vector) 

To solve this problem, find an eigenvalue  and a corresponding 

eigenvector x such that Lx = x. The characteristic polynomial 

of L is 

)2()1( 2   LI

(check this), which implies that the eigenvalues are −1 and 2. 

Choosing the positive value, let λ=2. Verify that the 

corresponding eigenvectors are of the form 
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 Ex 2: (Finding a Stable Age Distribution Vector) 

For example, if t = 2, then the initial age distribution vector is 

and the age distribution vector for the next year is 



















2  

8  

32

1x

0 ≤ age < 1 

1 ≤ age < 2 

2 ≤ age ≤ 3 





















































4  

16

64

2  

8  

32

0   5.0      0

0      0   5.0

8      6      0

12 xx L

0 ≤ age < 1 

1 ≤ age < 2 

2 ≤ age ≤ 3 

Notice that the ratio of the three age classes is still 16 : 4 : 1, 

and so the percent of the population in each age class remains 

the same. 
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A system of first-order linear differential equations 

 Systems of Linear Differential Equations (Calculus) 

 

y1' = a11y1 + a12y2 + . . . + a1nyn 

y2' = a21y1 + a22y2 + . . . + a2nyn 

 

yn' = an1y1 + an2y2 + . . . + annyn 

where each yi is a function of t and             . If you let 
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then the system can be written in matrix form as  y' = Ay. 
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 Ex 3: (Solving a System of Linear Differential Equations) 

Solve the system of linear differential equations. 

y1' = 4y1 

y2' = −y2 

y3' = 2y3 

Sol:  

From calculus, you know that the solution of the differential 

equation y' = ky is 

y = Cekt 

So, the solution of the system is 

y1 = C1e
4t 

y2 = C2e
−t 

y3 = C3e
2t 

Elementary Linear Algebra: Section 7.4, p.380 
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 Ex 4: (Solving a System of Linear Differential Equations) 

Solve the system of linear differential equations. 

y1' = 3y1 + 2y2 

y2' = 6y1 −  y2 

first find a matrix P that diagonalizes                     .  
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that the corresponding eigenvectors are p1 = [1   −3]T and   

p2 = [1  1]T. Diagonalize A using the matrix P whose 

columns consist of p1 and p2 to obtain 
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 Quadratic Forms 

022  feydxcybxyax Quadratic equation 
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 Ex 5: (Finding the Matrix of the Quadratic Form) 

(a) 4x2 + 9y2 − 36 = 0  

(b) 13x2 − 10xy + 13y2 − 72 = 0 

Elementary Linear Algebra: Section 7.4, p.382 

Sol: 
(a) a = 4, b = 0, and c = 9, so the matrix is 
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A Diagonal matrix (no xy-term) 

(b) a = 13, b = −10, and c = 13, so the matrix is 
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 Principal Axes Theorem 

022  feydxcybxyax

XPX  1P









2

1

0

0




APPT

  0)()( 2
2

2
1  fXPedyx 

Elementary Linear Algebra: Section 7.4, p.383 



70/88 

 Ex 6: (Rotation of a Conic) 
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 Ex 7: (Rotation of a Conic) 
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0222  jizhygxfyzexzdxyczbyax Quadratic equation 
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 Ellipsoid 
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 Hyperboloid of One Sheet 
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 Hyperboloid of Two Sheet 
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 Elliptic Cone 
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 Elliptic Paraboloid 
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 Hyperbolic Paraboloid 

2

2

2

2

a

x

b

y
z 

Elementary Linear Algebra: Section 7.4, p.387 



81/88 

 Ex 8: (Rotation of a Quadric Surface) 
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Key Learning in Section 7.4 

 Model population growth using an age transition matrix and an 

age distribution vector, and find a stable age distribution vector. 

 Use a matrix equation to solve a system of first-order linear 

differential equations. 

 Find the matrix of a quadratic form and use the Principal Axes 

Theorem to perform a rotation of axes for a conic and a quadric 

surface. 

 Solve a constrained optimization problem. 
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Keywords in Section 7.4 

 population growth: 人口成長 

 age distribution vector: 年齡分佈向量 

 age transition matrix: 年齡轉換矩陣 

 quadratic form: 二次式 

 quadratic equation: 二次方程式 

 principal axes theorem: 主軸定理 
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 Diffusion 
 

     Eigenvalues and eigenvectors are useful for modeling 
real-life phenomena. For example, consider an 
experiment to determine the diffusion of a fluid from one 
flask to another through a permeable membrane and then 
out of the second flask, researchers determine that the 
flow rate between flasks is twice the volume of fluid in 
the first flask and the flow rate out of the second flask is 
three times the volume of fluid in the second flask, then 
the system of linear differential equations below, where 
yi represents the volume of fluid in flask i, models this 
situation. 

                        y1' = ‒2y1  

                        y2' =   2y1 ‒ 3y2 

     In Section 7.4, you will use eigenvalues and eigenvectors 
to solve such systems of linear differential equations. For 
now, verify that the solution of this system is 

                        y1 = C1e ‒2t       

                        y2 = 2C1e ‒2t
 + C2e ‒3t . 

7.1 Linear Algebra Applied 

Elementary Linear Algebra: Section 7.1,  p.354 
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 Genetics 
 

      Genetics is the science of heredity. A mixture of chemistry and 

biology, genetics attempts to explain hereditary evolution and gene 

movement between generations based on the deoxyribonucleic acid 

(DNA) of a species. Research in the area of genetics called population 

genetics, which focuses on genetic structures of specific populations, 

is especially popular today. Such research has led to a better 

understanding of the types of genetic inheritance. For instance, in 

humans, one type of genetic inheritance is called X–linked inheritance 

(or sex-linked inheritance), which refers to recessive genes on the X 

chromosome. Males have one X and one Y chromosome, and females 

have two X chromosomes. If a male has a defective gene on the X 

chromosome, then its corresponding trait will be expressed because 

there is not a normal gene on the Y chromosome to suppress its 

activity. With females, the trait will not be expressed unless it is 

present on both X chromosomes, which is rare. This is why inherited 

diseases or conditions are usually found in males, hence the term sex-

linked inheritance. Some of these include hemophilia A, Duchenne 

muscular dystrophy, red-green color blindness, and hereditary 

baldness. Matrix eigenvalues and diagonalization can be useful for 

coming up with mathematical models to describe X-linked inheritance 

in a given population.  

7.2 Linear Algebra Applied 

Elementary Linear Algebra: Section 7.2,  p.365 
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 Relative Maxima and Minima 

 

     The Hessian matrix is a symmetric matrix that can be 

helpful in finding relative maxima and minima of 

functions of several variables. For a function f of two 

variables x and y—that is, a surface in R3 —the Hessian 

matrix has the form 

 

 

 

     The determinant of this matrix, evaluated at a point for 

which fx and fy are zero, is the expression used in the 

Second Partials Test for relative extrema. 

 

7.3 Linear Algebra Applied 

Elementary Linear Algebra: Section 7.3,  p.375 
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 Architecture 

 
     Some of the world’s most unusual architecture makes 

use of quadric surfaces. For example, Catedral 

Metropolitana Nossa Senhora Aparecida, a cathedral 

located in Brasilia, Brazil, is in the shape of a 

hyperboloid of one sheet. It was designed by Pritzker 

Prize winning architect Oscar Niemeyer, and dedicated 

in 1970. The sixteen identical curved steel columns are 

intended to represent two hands reaching up to the sky. 

In the triangular gaps formed by the columns, 

semitransparent stained glass allows light inside for 

nearly the entire height of the columns. 

7.4 Linear Algebra Applied 

Elementary Linear Algebra: Section 7.4,  p.388 


