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7.1 Eigenvalues and Eigenvectors

= Eigenvalue problem:
If A IS an nxn matrix, do there exist nonzero vectors x in R"

such that Ax is a scalar multiple of x ¢

« Eigenvalue and eigenvector: « Geometrical Interpretation
A : an nxn matrix }
A - ascalar .
: AX
X . anonzero vector in R"
Eigenvalue )
AX = AX Ax = Ix -

P

Eigenvector

Elementary Linear Algebra: Section 7.1, p.348 2/88



« Ex 1: (Verifying eigenvalues and eigenvectors)

SRR

Eligenvalue

oo Soj-lol-40)-2

Eigenvector

Eigenvalue

rcfy SR

I
Eigenvector

Elementary Linear Algebra: Section 7.1, p.349
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- Thm 7.1: (The eigenspace of A corresponding to 4)

If A Is an nxn matrix with an eigenvalue A, then the set of all
eigenvectors of A together with the zero vector is a subspace of

R". This subspace is called the eigenspace of A .

BE
X, and x, are eigenvectors corresponding to A

(l.e. Ax, = AX,, AX, = AX,)
(1) A(X, +X,) = AX + AX, = AX + AX, = A(X, + X,)
(l.e. X, + X, Is an eigenvecto r corresponding to 4)
(2) A(cx,) = c(Ax) = c(4x,) = A(Cx,)
(1.e. cx, Is an eigenvecto r corresponding to A)

Elementary Linear Algebra: Section 7.1, p.350 4/88



« EX 3: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of

] 0
A —
.
Sol:

If  v=(x,y)

.

For a vector on the x-axis Eigenvalue /11 -1

o allol o) e

Elementary Linear Algebra: Section 7.1, p.350 5/88



For a vector on the y-axis Eigenvalue 12 =1

CEE

Geometrically, multiplying a vector (X, y)
in R by the matrix A corresponds to a

reflection in the y-axis.

The eigenspace corresponding to 4, =—1 Is the x-axis.

The eigenspace corresponding to A, =1 Is the y-axis.

Elementary Linear Algebra: Section 7.1, p.350 6/88



« Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AeM,. ;)
Let A Is an nxn matrix.

(1) An eigenvalue of A Is a scalar A such that det(Al - A)=0.

(2) The eigenvectors of A corresponding to A are the nonzero

solutions of (A1—-A)x=0.
= Note:
Ax=Ix = (Ul-Ax=0 (homogeneous system)

If (11— A)x =0 has nonzero solutions iff det(1l—-A)=0,
« Characteristic polynomial of AeM__ .

det(Al — A) =|(Al - A)|= 2" +c, A+ +CA+C,
= Characteristic equation of A:
det(Al-A)=0

Elementary Linear Algebra: Section 7.1, p.351 7/88



= EX 4: (Finding eigenvalues and eigenvectors)
2 -12
e
1 -5

Sol: Characteristic equation:

12 1
det(Al - A) =
-1 A+5
=2 4314+2=(1+D)(1+2)=0
b

Eigenvalue s: 4, =-1 4, =-2

Elementary Linear Algebra: Section 7.1, p.351 8/88



-3 12 x| |0
Y HIH

Bah Ml
= — = =t |, t20
1 4 0 0 o 1
(2)12=—2:>(/12I—A)x_{ - 12}

.
A M R A

Check: Ax=A4X

Elementary Linear Algebra: Section 7.1, p.351 9/88



- EX 5: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for
the matrix A. What is the dimension of the eigenspace of
each eigenvalue?

A=

Sol: Characteristic equation:

Al — Al =

21

G 7
oo
1

0
0

.
0
2_

—1
A-2
0

Eigenvalue: J =2

Elementary Linear Algebra: Section 7.1, p.352

0
0
A-2

=(A-2)*=0

10/88



The eigenspace of A correspondingto 4 — 2:

0 -1 0] x 0
(Al-A)x=|0 0 O0|x |=|0
0 0 0Olx ) 0O
o I 01 b0 1 B8] Bl el 1Y MO
8 g 000 0 0O iy = 0l=g il St
@ 0 0F 6 0 0F e ity a1
o .
15/ 0 |+t]| O |s,t € R}:the eigenspace of A corresponding to A =2
0 1

Thus, the dimension of its eigenspace Is 2.

Elementary Linear Algebra: Section 7.1, p.352 11/88



= Notes:

(1) If an eigenvalue A, occurs as a multiple root (k times) for
the characteristic polynominal, then 4, has multiplicity k.

(2) The multiplicity of an eigenvalue is greater than or equal
to the dimension of its eigenspace.

Elementary Linear Algebra: Section 7.1, p.353 12/88



« EX 6 ® FInd the eigenvalues of the matrix A and find a basis

for each of the corresponding eigenspaces.

0
0 1
1 0
1 0

A —

0
5
2
0

0
—-10
0
3

Sol: Characteristic equation:

A-1
0
.
|

Al - Al =

0
A-1
0
0

0
-9
A—=2
0

0
10
0
g o

(1 00 ) 3 T

Eigernale s° L =1 1 =2 4 =3

Elementary Linear Algebra: Section 7.1, p.353
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(D)4, =1 g o 0 || X 0
g 0 5 1041 x 0
L a4 0
g g Zix U
8 0.0 gl 109 20 i oy
0 0 -5 10 0 0 1 -2 X, S 1 0
= — = =5 |+t , S,t#0
15 1 0t 96 0 0 X, 2t 0 2
L0 28 0 B8 0y b e
r—O— —_2—\
1 e . .
= 0 > 1S a basis for the eigenspace
of A corresponding to 4 =1
0] 1

Elementary Linear Algebra: Section 7.1, p.353 14/88



(2)4, =2 L g 0 iy 0
O 1 5 104x 0
g a0« 0
L g o 4l 0
1 8 0 al 1.6 0 @] iy (0] 00
g 1 5 lg g 1 5 § x| Bl 5
o o = =M b=0
-1 0 g 0 u o o |1 X t 1
0 a0 e 0 08 ik 0 0
ol
S : .
=2 Ur IS a basis for the eigenspace
of A corresponding to 4 =2
0

Elementary Linear Algebra: Section 7.1, p.353 15/88



0 2 0 0 0hx 0
0 2 -5 10| x, 0
= (ALlI-A)x= =
g 1 0 ix 0
L0 0 Odx . 0
2 g g 68 1 8 0§ 0 el gL L0
g 2 5 10 g 1 o 5 X, — 5t -5
4 — - = b=l
g1 0 g a I 0 X, 0 0
L a g 006 0 0 0 0]
o
=5 _ : _
= > 1S a basis for the eigenspace
0 of A correspondingto A =3
1

N o

Elementary Linear Algebra: Section 7.1, p.353 16/88



= Thm 7.3: (Eigenvalues of triangular matrices)
If A Is an nxn triangular matrix, then its eigenvalues are
the entries on its main diagonal.

« EX 7: (Finding eigenvalues for diagonal and triangular matrices)

e ma
(). 11 0 A '8 00 0 B
5 3 -3 6 006 0
Sol: 7 ) 8 0 _
@ [A-A=l 1 i1-1 0 |=(A-2)(A-1D)(A+3)
-5 3 A3
-2 -1 - =

) A =-14=241=014,=-44=3

Elementary Linear Algebra: Section 7.1, p.354
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= Eigenvalues and eigenvectors of linear transformations:

A number A is called an eigenvalue of a linear tra nsformatio n
T:V >V If there is a nonzero vector x such that T (X) = AX.
The vector x is called an eigenvecto r of T corresponding to A,
and the setof all eigenvecto rs of A (with the zero vector) Is
called the eigenspace of A.

Elementary Linear Algebra: Section 7.1, p.355 18/88



- EX 8: (Finding eigenvalues and eigenspaces)

Find the eigenvalues and correspond ing eigenspace s

o

Sol:

Al - A=

eigenvalue s: 4, =4, 4, =2

The eigenspace s for these two eigenvalue s are as follows.

3 0

g e )

g U
A-1 -3 0
-3 4A-1 0
0 0 A1+2

B =111 0)}
B, ={(1 -1,0),(0,0,1)}

Elementary Linear Algebra: Section 7.1, p.355

= (A+2)%(1-4)

Basis for 4, =4
Basis for 4, = -2
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= Notes:

(1) Let T:R® — R® be the linear transformatio n whose standard matrix
is Ain Ex.8,and let B' be the basis of R® made up of three linear
Independent eigenvectors found in EX.8. Then A',the matrix of T
relative to the basis B',is diagonal.

Do
B'={(11,0),(L -1, 0),(0,0,1)} 0 8 ? é@
<\t/v B
Eigenvecto rsof A Eigenvalue sof A

(2) The main diagonal entries of the matrix A' are the eigenvalues of A.

Elementary Linear Algebra: Section 7.1, p.355 20/88



Key Learning in Section 7.1

= \erify eigenvalues and corresponding eigenvectors.
= Find eigenvalues and corresponding eigenspaces.

= Use the characteristic equation to find eigenvalues and
eigenvectors, and find the eigenvalues and eigenvectors of a
triangular matrix.

= Find the eigenvalues and eigenvectors of a linear
transformation.

21/88



Keywords in Section 7.1

eigenvalue problem: #Fjicie F 48
eigenvalue: F e

eigenvector: #FHcw £

characteristic polynomial: ##c % 78 ;\
characteristic equation: 4 #c=> f2;¢
eigenspace: $Ficz &

multiplicity: £ {23
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7.2 Diagonalization

= Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P
such that P-AP is diagonal?

= Diagonalizable matrix:

A square matrix A is called diagonalizable if there exists an
invertible matrix P such that P~AP is a diagonal matrix.

(P diagonalizes A)
= Notes:

(1) If there exists an invertible matrix P such that B = pt AP,
then two square matrices A and B are called similar.

(2) The eigenvalue problem is related closely to the
diagonalization problem.

Elementary Linear Algebra: Section 7.2, p.359 23/88



= Thm 7.4: (Similar matrices have the same eigenvalues)

If A and B are similar nxn matrices, then they have the

same eigenvalues.
EE

Aand B aresimilar = B =P AP

41— B|=|Al-PAP|=|P*AIP - P*AP| =P (1l - A)P|
=|P7| a1 - AlP|=|P|P| 41 - Al=|P*P| A1 - A
=|Al- A

A and B have the same characteristic polynomial.
Thus A and B have the same eigenvalues.

Elementary Linear Algebra: Section 7.2, p.360 24/88



- EX 1: (A diagonalizable matrix)

A=

i3
o I

00 2

i
0

Sol: Characteristic equation:

Al— A=

A-1

0

-

S

0

0
0
A+2

=(A-4)(1+2)*=0

Eigenvalue s: 4, =4, 4, =-2,4,=-2

(1)A =4 = Eigenvecto r: p, =

Elementary Linear Algebra: Section 7.2, p.359
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(2)A = -2 = Eigenvector : p, =

P:[pl

= Notes:

(1) P=[p,

(2) P=[p,

P

P

Ps

p3] o

p3] :

pl] =

Elementary Linear Algebra: Section 7.2, p.359

1p3:

— PIAP =

— P!AP=

— P'AP=

4 0

.
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= Thm 7.5: (Condition for diagonalization)
An nxn matrix A is diagonalizable if and only if

It has n linearly independent eigenvectors.
Pf:

(=) Ais diagonaliz able

there exists an invertible Ps.t. D = P AP is diagonal

Let P=[p, |p, | - | p,]and D =diag (4, 4,.--, 4,)
400 0

o 1 0
kb0 pl
:[ﬂ’lpl | ;tzpz | | ﬂ’npn]

Elementary Linear Algebra: Section 7.2, pp.360-361 27/88




AP=Ap, [p, || p.]=[Ap, | Ap, | --- | Ap,]
'~ AP=PD
A =pa=-l2 T
(1.e. the column vec tor p. of P are eigenvecto rs of A)
. Pis invertble =p,,p,,:--,p, are linearly independen t.

. Ahas n linearly independent eigenvectors.

(<) Ahas n linearly independent eigenvectors p,, p,,::: P,
with corresponding eigenvalues A, 4,,--- 4

n

e A —4p 112 1
LetP=[p, | P, | -+ | P,]

Elementary Linear Algebra: Section 7.2, pp.360-361 28/88



AP=Ap, [P, || Pl
=[Ap, | Ap, | --- | Ap,]
:[ﬂ’lpl }’2p2|”'|ﬂ“npn]
20 0
9.4 0
:[p1|p2|"’|pn]: e P
09 . g
P, Py, P, are linearly independent = P is invertible
PP D

— Ais diagonaliz able

Note: If n linearly independent vectors do not exist,

then an n x n matrix A is not diagonalizable.
Elementary Linear Algebra: Section 7.2, pp.360-361 29/88



= EX 4: (A matrix that is not diagonalizable)
Show that the following matrix is not diagonalizable.
2
A =
o
Sol: Characteristic equation:

- A= ’161 /{_ZJJ:(A—l)Zzo

Eigenvalue : 4, =1

0 -2 I : i
M—A:I—A:{ }~{ O}:>E|genvector: plz{o}

0 O 0

A does not have two (n=2) linearly independent eigenvectors,

so A Is not diagonalizable.
Elementary Linear Algebra: Section 7.2, p.362 30/88



= Steps for diagonalizing an nxn square matrix:

Step 1: Find n linearly independent eigenvectors pP;, P, P,

for A with corresponding eigenvalues A, A,,---, 4

n

Step2:Let P=[p, [p, || p,]
Step 3: _ _
40 0
. 0 4 0 _
PARD ikl ap =40 [ =12 [
0 O A,
Note: Y v

The order of the eigenvalues used to form P will determine the order
In which the eigenvalues appear on the main diagonal of D.

Elementary Linear Algebra: Section 7.2, p.362
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= EX 5: (Diagonalizing a matrix)

AL

1
1 2
3

1

1
!

Find a matrix P such that P AP is diagonal.

Sol: Characteristic equation:

oA

4 |

-l 5

3

1

0

1
-1
A+1

2 oD

Eigenvalue s: 4, =2, 4, =-2, 4, =3

Elementary Linear Algebra: Section 7.2, p.363
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Elementary Linear Algebra: Section 7.2, p.363

1 1]
0 0 10

- L 5 0 0 0

-t] [-1]

O |=t 0| = Eigenvector: p, =
t it

2 1 10 il e
-l s 1.0 1

- 1 1} 0 0 0
-

-0l FIOEVeRIo . [
t 4




—> Eigenvecto r: p, =

A3 =3 2 1 07
— il A1 g 18
e L 4D
x| [-t] [-1]
ik ]
a0
11 1
LEtP:[pl P> p3]: g 1 1
1 4 1
2 0 9
— P AP0 7 0
0 0 2

Elementary Linear Algebra: Section 7.2, p.363

BB s OB

34/88



- Notes: Kk Is a positive integer

g0 B
(1)D:? df . ? D
4

(2)D=P'AP

— B
=(PAP)(PAP)---(PAP)
B APE JA(PE | (PR AP

=PAA..- AP
=P AP

A BB

Elementary Linear Algebra: Section 7.2, Addition

d. 0
0 d
g 0
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= Thm 7.6: (Sufficient conditions for diagonalization)

If an n x n matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and
A 1s diagonalizable.

Elementary Linear Algebra: Section 7.2, p.364 36/88



= EX 7: (Determining whether a matrix is diagonalizable)

A=

Sol: Because A Is a triangular matrix,
Its eigenvalues are the main diagonal entries.

A =1,2,=0,4=-3

bl

0
0

2
0
0

.

1
-3

These three values are distinct, so A Is diagonalizable. (thm.7.6)

Elementary Linear Algebra: Section 7.2, p.364
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= EX 8: (Finding a diagonalizing matrix for a linear transformation)
Let T:R® — R°® be the linear transformation given by
T (X, X5,X5) = (X, — X, — Xq, X, +3X, + X5, —3X, + X, — X;)
Find a basis B for R® such that the matrix for T
relative to B is diagonal.
Sol: The standard matrix for T is given by

oo
A T 16 T |1 3 1
o L1
From EX. 5, there are three distinct eigenvalues
W21 24 8

so A is diagonalizable. (Thm. 7.6)

Elementary Linear Algebra: Section 7.2, p.365 38/88



Thus, the three linearly independent eigenvectors found in Ex. 5
p,=(-10,),p,=(@1-14),p,=(-111)

can be used to form the basis B. That 1s

B={p,, P, Pa}={(-1,0,1), (1, -1 4), (-1 1, 1)}
The matrix for T relative to this basis is

D =[[T(p)]s [T(P,)]s [T(Ps)ls]
=[[ApJs [AP,15 [AP;]s]
- ﬂj pl]B [12 pz]B [13 p3]B]

2 0 0
-0 -2 ©
0o o

Elementary Linear Algebra: Section 7.2, p.365 39/88



Key Learning in Section 7.2

= Find the eigenvalues of similar matrices, determine whether
a matrix A Is diagonalizable, and find a matrix P such that
P-L AP is diagonal.

= Find, for a linear transformation T: V—V a basis B for V
such that the matrix T for B relative to is diagonal.

40/88



Keywords in Section 7.2

= diagonalization problem: %t % i £ 8
= diagonalization: %} & it

. diagonalizable matrix: ¥ %} % it s&+L

41/88



7.3 Symmetric Matrices and Orthogonal Diagonalization

= Symmetric matrix:
A square matrix A is symmetric if it is equal to its transpose:

A=A
= EX 1: (Symmetric matrices and nonsymetric matrices)
e 1 7
Al 5 B (symmetric)
42 0 5
. 4 3} . _
3 1 ymmetric)
2 2 1
C=l1 -4 0 (nonsymmetric)
il g 5

Elementary Linear Algebra: Section 7.3, p.368 42/88



= Thm 7.7: (Eigenvalues of symmetric matrices)

If A Is an nxn symmetric matrix, then the following properties
are true.

(1) A is diagonalizable.
(2) All eigenvalues of A are real.

(3) If A Is an eigenvalue of A with multiplicity k, then A has k
linearly independent eigenvectors. That Is, the eigenspace
of 4 has dimension k.

Elementary Linear Algebra: Section 7.3, p.368 43/88



s EX 2
Prove that a symmetric matrix is diagonalizable.

.

Pf. Characteristic equation:

A _A‘:‘l—a 0

s a2
. i—b_;t (a+b)A+ab—-c” =0

As a quadratic in A, this polynomial has a discriminant of
(a+b)° —4(ab-—c°)=a* +2ab +b° — 4ab + 4c?
~—3 2ab b ¢

=(a—-h)*+4c® >

Elementary Linear Algebra: Section 7.3, p.369 44/88



(1) (a—b)*+4c2=0

—a-hb o0

a 0] . : :
A= {O } IS a matrix of diagonal.
a

(2) (a—b)*+4c* >0

The characteristic polynomial of A has two distinct real roots,
which implies that A has two distinct real eigenvalues. Thus,
A i1s diagonalizable.

Elementary Linear Algebra: Section 7.3, p.369 45/88



= Orthogonal matrix:

A square matrix P is called orthogonal if it is invertible and
P—l o PT

= EX 4: (Orthogonal matrices)

ooy . g
(@) P= Is orthogonal because P =P = :
-1 0 1 0
3 0 . 3 0
5 5 5
()P={0 1 O |isorthogonal because P"=P'=| 0 1
4 3 -4
— 0 = — 0
e o e

Elementary Linear Algebra: Section 7.3, p.370




- Thm 7.8: (Properties of orthogonal matrices)

An nxn matrix P is orthogonal if and only if

Its column vectors form an orthogonal set.

Elementary Linear Algebra: Section 7.3, p.370 47/88



- EX 5: (An orthogonal matrix)

i s Z
3 3 3
A 1
S = 0
o o 5
a5 35 35

Sol: If P is a orthogonal matrix, then P*=P" = PP’ =|

PP" =

Letp, =

1 VL 2
3 3 3
2 1 0
e
9 —4 5
3J5 3J5 345 |
§ 1 . ; 2
3 3
on D= A
s A J5
9 o
| 345 | 3.5

Elementary Linear Algebra: Section 7.3, p.371

wd Wi we

©
w

2
J5 35
1 _4
V5 345
VAR
0 375 _
-
3
0
Yo
LauE

il a0

0 |
00

0
1_
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produces
PP, =Py P3=P;, Ps =0
Ipol|= [P = P4 =1

{p,. P, P,}is an orthonorma I set.

Elementary Linear Algebra: Section 7.3, p.371 49/88



= Thm 7.9: (Properties of symmetric matrices)

Let A be an nxn symmetric matrix. If A, and A, are distinct
eigenvalues of A, then their corresponding eigenvectors x,
and X, are orthogonal.

Elementary Linear Algebra: Section 7.3, p.372 50/88



= EX 6: (Elgenvectors of a symmetric matrix)

-1 0
corresponding to distinct eigenvalue s are orthogonal .
= Sol: Characteristic function

A-3 -1
- A =
-1 1-3

— Eigenvalue s: 4, =2, 4 =4

- 1 1 |
(1) 2= 41 N - — e 50
4 1 Q0 1

o0l 1
2)A,=4=>41-A= - X L0
- 0 O 1

Sl
X, - X :{ ]L}:st—st:O — X, and x, are orthogonal .
S

Elementary Linear Algebra: Section 7.3, p.372 51/88
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Show that any two eigenvecto rs of A= }
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= Thm 7.10: (Fundamental theorem of symmetric matrices)
Let A be an nxn matrix. Then A Is orthogonally diagonalizable
and has real eigenvalue if and only if A Is symmetric.

= Orthogonal diagonalization of a symmetric matrix:
Let A be an nxn symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each.
(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector.

(3) For each eigenvalue of multiplicity k>2, find a set of k linearly
Independent eigenvectors. If this set is not orthonormal, apply Gram-
Schmidt orthonormalization process.

(4) The composite of steps 2 and 3 produces an orthonormal set of n
eigenvectors. Use these eigenvectors to form the columns of P. The
matrix P "AP = P' AP = D will be diagonal.

Elementary Linear Algebra: Section 7.3, p.373 52/88



= EX 7: (Determining whether a matrix is orthogonally diagonalizable)

Symmetric Orthogonally

ol matrix diagonalizable
A=101 () ()
1 1
52 1
A2 1.8 X >
18 0
3.2 0
%2 o 1} X X
0 O
> 0 —2} 2 )

Elementary Linear Algebra: Section 7.3, p.373 53/88



= EX 9: (Orthogonal diagonalization)
Find an orthogonal matrix P that diagonalizes A.

2 2 0
AS ) 1 g
2 4

Sol:
@) |Al -A=(1-3)°(1+6)=0

A, =6, A, = 3(has a multiplici ty of 2)
(2) 4,=-6, v, =(1,-2,2) = u, —h )

@ ¢« ¢l (20D

Linear Independent
Elementary Linear Algebra: Section 7.3, p.375 54/88



Gram-Schmidt Process:

Vs, - W,

w, =V, =(2,1,0), W3=V3—3—WW2 —
2 2
W2 YA W3 VA
o] R D B G )
@) P=[p p pl=|F + %
105
500
__BAP PAP 0 5 B
a3

Elementary Linear Algebra: Section 7.3, p.375 55/88



Key Learning in Section 7.3

= Recognize, and apply properties of, symmetric matrices.
= Recognize, and apply properties of, orthogonal matrices.

- FiInd an orthogonal matrix P that orthogonally diagonalizes
a symmetric matrix A.
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Keywords in Section 7.3

. Symmetric matrix: ¥FfErL
. orthogonal matrix: i+ 2 &'
= Orthonormal set: H gml s

= orthogonal diagonalization: &+ < ¥t % it
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7.4 Applications of Eigenvalues and Eigenvectors

= Population growth:

The age distribution vector x represents the number of

population members in each age class, where

X
X

X

n

Number in first age class

Number in second age class

Number in nth age class

Multiplying the age transition matrix by the age distribution
vector for a specific time period produces the age distribution
vector for the next time period. That is,

LX; = X4

Elementary Linear Algebra: Section 7.4,

00
p.378 ¥

b

P
L=10 p, ..

bn—l
0
0

o pn—l

o

0
0

n

O_

58/88



- EXx 1: (A Population Growth Model)

The current age distribution vector is

24
24

304
12

0<age<l
Iz aoe = 2

24| O0<age<l
X, =| 24 I aoe < 2
20 2o gog o
and the age transition matrix is
g 6 8
L0585 0 0
g 05 0
After 1 year, the age distribution vector will be
‘0 B siloas g0ay
X, ~lLx =5 0 0
g 0510

Elementary Linear Algebra: Section_7.4, p.379

20

12

2<age<3
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- EX 2: (Finding a Stable Age Distribution Vector)

To solve this problem, find an eigenvalue and a corresponding
eigenvector x such that Lx = x. The characteristic polynomial

of Lis
Al —L|=(1+D)*(1-2)

(check this), which implies that the eigenvalues are —1 and 2.
Choosing the positive value, let A=2. Verify that the
corresponding eigenvectors are of the form

X, 16t 16
X, =| % |=| 4t =t
X4 t 1

Elementary Linear Algebra: Section 7.4, p.379 60/88



- EX 2: (Finding a Stable Age Distribution Vector)

For example, if t = 2, then the initial age distribution vector is

32| 0<age<1
X,=| 8| 1=age<?2
9| 2<age<3

and the age distribution vector for the next year is

X,=Lx,={05 0 O 8|=|16| 1<age<?2
0 a50] 2| | 4] 2
Notice that the ratio of the three age classes is still 16 : 4 : 1,

and so the percent of the population in each age class remains
the same.

Elementary Linear Algebra: Section 7.4, p.379 61/88



= Systems of Linear Differential Equations (Calculus)
A system of first-order linear differential equations

Y1 =agy tapy, t...tayy,
Yo =ayy; tayy, ...t aY,

ynl > anlyl + an2y2 ... T annyn
dy,

where each y; is a function of t andy, = r . If you let
ey — - t
y y : .
? . a,; a, - &,
y'=| 2| y=|7?] and A= i a. A
. _’yn_ 4. a  a

then the system can be written in matrix form as y' = Ay.
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= EX 3: (Solving a System of Linear Differential Equations)

Solve the system of linear differential equations.

y, =4y,
Yo =~
Y3 = 2Y;

Sol:

From calculus, you know that the solution of the differential

equation y' = ky Is
y = Cekt

So, the solution of the system is
y, = Ce*
y, = Cpe™
Y3 = Cse”t
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= EX 4: (Solving a System of Linear Differential Equations)
Solve the system of linear differential equations.
y1 =3y1 2y,
Y, =6Y1— s

3
first find a matrix P that diagonalizes A= {6 J .

Verify that the eigenvalues of Aare 1 = -3 and 2 = 5, and
that the corresponding eigenvectors are p, = [1 —3]' and

p, = [1 1]". Diagonalize A using the matrix P whose
columns consist of p, and p, to obtain

T - 30
P = ,and P~AP =
e

Elementary Linear Algebra: Section 7.4, p.381

e Ll U

Aw b
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= Quadratic Forms

ax” +bxy +cy® +dx+ey+ f =0 Quadratic equation

a'(X)’ +c'(y)° +dX +ey' + f'=0
a b/2
A_[b/z ¢ }

ax” + bxy + cy? Quadratic form
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= EX 5: (Finding the Matrix of the Quadratic Form)

(@) 4x°+9y2—-36=0
(b) 13x% — 10xy + 13y>— 72 =0

Sol:
(@)a=4,b=0,and c =29, so the matrix is
4 0
A= { 0 9} Diagonal matrix (no xy-term)

(b) a=13, b=-10, and c = 13, so the matrix is

L trix (xy-term)
= onalagonal matrix (xy-term
- : )

Elementary Linear Algebra: Section 7.4, p.382
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Elementary Linear Algebra: Section 7.4, p.382

13x2 — 10xy + 13y2-72=0
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%0
o g y]{bjlz b/z}qu e]mn

¢
= ax” +bxy +cy’ +dx+ey+ f

PW:X':N
y

% — P

XTAX =(PX) A(PX")=(X") PTAPX'=(X")' DX’

. cgs@ —siné@ \P\zl
sind cosé
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= Principal Axes Theorem

ax® +bxy +cy” +dx+ey+ f =0

X=PX' |P|=1

o 40
PAP—{O ﬁj

LX) +4,(y) +[d e]PX'+f =0

Elementary Linear Algebra: Section 7.4, p.383
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= EX 6: (Rotation of a Conic)

Sol:
e
|-5 13
eigenvalue
A, =8and 4, =18
8(x')? +18(y")* -72=0
"2 "2
- 0
3 2
eigenvector

selyfme-[3]

Elementary Linear Algebra: Section 7.4, p.383

13x% —10xy +13y2 —72 =0 AR

‘ [3x2 — 10xy + 13y2-72=0

Orthogonal matrix

. .
. J2  J2| |cos@ -—sind
1 1 iiising cesy
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0 20 ) a0 2 2
(x")=  (v)” x)= (v~ ()= )7
— + — = | —+ = = | — + — = |
3 2° 2° 3- 2° 3°
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- EX 7: (Rotation of a Conic)
3x* —10xy +3y* +16~/2x-32=0

3 -5
.
eigenvalue
A =8and A4, =-2
eigenvector
X, =(-L1)and x, =(-1,-1)
orthogonal matrix

Sol:

1 1
5_ /2 J2| |cos@ -sing P|=1
. 1 " cing esd
2
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.
[d e]PX’'=[16+2 0] 1@ JE
2

8(x")* —2(y")* —16X -16Yy'—32 =0

(X' -1)° (Y +4)°
. =
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ax” +by® +cz® + dxy +exz + fyz+gx+hy+iz+ j =0 Quadratic equation

- a
A=|d/2
e

ax’ +by® +cz® + dxy +exz + fyz

Elementary Linear Algebra: Section 7.4, p.388

d/2
b
f /2

e/2
f/2
C

Quadratic form
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= Ellipsoid

Elementary Linear Algebra: Section 7.4, p.386

Trace Plane

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
Ellipse Parallel to yz-plane

The surface i1s a sphere when
a=b=c#N0.

Z

yz-trace

L Xxz-trace }

Xy-trace
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Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane

3 HyperbOIOId of One Sheet Hyperbola Parallel to yz-plane

X N The axis of the hyperboloid
2 "2 o2 corresponds to the variable whose
coefficient is negative.
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Trace Plane

Ellipse Parallel to xy-plane

. Hvoerboloid of Two Sheet Hyperbola Parallel to xz-plane
yp Hyperbola Parallel to yz-plane

X2 y2 72 The axis of the hyperboloid

o 02 % = =1 corresponds to the variable whose

coefficient 1s positive. There 1is
no trace in the coordinate plane
perpendicular to this axis.

p
Z yz-trace xz-trace

L : o

[ { —/

~

parallel to
xy-plane

—— no xy-trace
—_—

v
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Trace Plane

= Elliptic Cone

Elementary Linear Algebra: Section 7.4, p.387

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds
to the variable whose coefficient
1s negative. The traces in the
coordinate planes parallel to this
axis are intersecting lines.

3
Z ’ xZ-trace
A S—

/’ Xy-trace

(one point)
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Trace Plane

= Elliptic Paraboloid

Ellipse Parallel to xy-plane

: . Parabola Parallel to xz-plane

o X i VR Parabola Parallel to yz-plane
N 2

a b The axis of the paraboloid

corresponds to the variable raised
to the first power.

parallel to
xy-plane

xy-trace
(one point)
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= Hyperbolic Paraboloid Trace Plane

Hyperbola Parallel to xy-plane

y2 NG Parabola Parallel to xz-plane

7 = b_2 o Parabola Parallel to yz-plane
a

The axis of the paraboloid
corresponds to the variable raised
to the first power.

3 Z

Z yz-trace J
A L ,
\

o

y
\/'
\ /|
\4 / ’I
/1
parallel to
xy-plane
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= EX 8: (Rotation of a Quadric Surface)

5x* +4y® +52° +8xz—-36 =0
Sol:

A =

B~ O Ol
DR e S o
o1 O b~

=4 —dand ) 0
(X)* +4(y)*+9(z)* -36 =0

X)) U )
& =
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Key Learning in Section 7.4

= Model population growth using an age transition matrix and an
age distribution vector, and find a stable age distribution vector.

= Use a matrix equation to solve a system of first-order linear
differential equations.

« Find the matrix of a quadratic form and use the Principal Axes
Theorem to perform a rotation of axes for a conic and a quadric
surface.

= Solve a constrained optimization problem.
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Keywords in Section 7.4

-« population growth: 4 ¢ = £

« age distribution vector: # # & v » &

. age transition matrix: # #4 & 3% 55 'L
= quadratic form: = =t 3t
. quadratic equation; = =t > £z ;\

« principal axes theorem: - fih 32
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7.1 Linear Algebra Applied

= Diffusion

Eigenvalues and eigenvectors are useful for modeling
real-life phenomena. For example, consider an
experiment to determine the diffusion of a fluid from one
flask to another through a permeable membrane and then
out of the second flask, researchers determine that the
flow rate between flasks is twice the volume of fluid in
the first flask and the flow rate out of the second flask Is
three times the volume of fluid in the second flask, then
the system of linear differential equations below, where
y; represents the volume of fluid in flask i, models this
situation.

Vi A
Yo' = 2Y,—-3Y,
In Section 7.4, you will use eigenvalues and eigenvectors

to solve such systems of linear differential equations. For
now, verify that the solution of this system is

y,; =C,e 2
y,=2C.e 2+ Ce 3t
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7.2 Linear Algebra Applied

= (Genetics

;_»"' Genetics is the science of heredity. A mixture of chemistry and
> biology, genetics attempts to explain hereditary evolution and gene
, w«»é movement between generations based on the deoxyribonucleic acid
(DNA) of a species. Research in the area of genetics called population
genetics, which focuses on genetic structures of specific populations,
is especially popular today. Such research has led to a better
understanding of the types of genetic inheritance. For instance, in
humans, one type of genetic inheritance is called X—linked inheritance
(or sex-linked inheritance), which refers to recessive genes on the X
chromosome. Males have one X and one Y chromosome, and females
have two X chromosomes. If a male has a defective gene on the X
chromosome, then its corresponding trait will be expressed because
there is not a normal gene on the Y chromosome to suppress its
activity. With females, the trait will not be expressed unless it is
present on both X chromosomes, which is rare. This is why inherited
diseases or conditions are usually found in males, hence the term sex-
linked inheritance. Some of these include hemophilia A, Duchenne
muscular dystrophy, red-green color blindness, and hereditary
baldness. Matrix eigenvalues and diagonalization can be useful for
coming up with mathematical models to describe X-linked inheritance
in a given population.
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7.3 Linear Algebra Applied

= Relative Maxima and Minima

The Hessian matrix is a symmetric matrix that can be
helpful in finding relative maxima and minima of
functions of several variables. For a function f of two
variables x and y—that is, a surface in R® —the Hessian
matrix has the form

|: fxx fxy:|
fyX fyy

The determinant of this matrix, evaluated at a point for
which f, and f, are zero, Is the expression used in the
Second Partials Test for relative extrema.
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7.4 Linear Algebra Applied

= Architecture

Some of the world’s most unusual architecture makes
use of quadric surfaces. For example, Catedral
Metropolitana Nossa Senhora Aparecida, a cathedral
located in Brasilia, Brazil, is in the shape of a
hyperboloid of one sheet. It was designed by Pritzker
Prize winning architect Oscar Niemeyer, and dedicated
In 1970. The sixteen identical curved steel columns are
Intended to represent two hands reaching up to the sky.
In the triangular gaps formed by the columns,
semitransparent stained glass allows light inside for
nearly the entire height of the columns.
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